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Abstract: Oral niacinamide mononucleotide (NMN) and aerobic exercise have been shown to enhance
niacinamide adenine dinucleotide (NAD+) in the body. NAD+ plays a critical role in the body and
can directly and indirectly affect many key cellular functions, including metabolic pathways, DNA
repair, chromatin remodeling, cell aging, and immune cell function. It is noteworthy that the level
of NAD+ decreases gradually with increasing age. Decreased levels of NAD+ have been causally
associated with a number of diseases associated with aging, including cognitive decline, cancer,
metabolic diseases, sarcopenia, and frailty. Many diseases related to aging can be slowed down or
even reversed by restoring NAD+ levels. For example, oral NMN or exercise to increase NAD+ levels
in APP/PS1 mice have been proven to improve mitochondrial autophagy, but currently, there is no
regimen combining oral NMN with exercise. This review summarizes recent studies on the effect of
oral NMN on the enhancement of NAD+ in vivo and the improvements in mitochondrial autophagy
abnormalities in AD through aerobic exercise, focusing on (1) how oral NMN improves the internal
NAD+ level; (2) how exercise regulates the content of NAD+ in the body; (3) the relationship between
exercise activation of NAD+ and AMPK; (4) how SIRT1 is regulated by NAD+ and AMPK and
activates PGC-1α to mediate mitochondrial autophagy through changes in mitochondrial dynamics.
By summarizing the results of the above four aspects, and combined with the synthesis of NAD+

in vivo, we can infer how exercise elevates the level of NAD+ in vivo to mediate mitochondrial
autophagy, so as to propose a new hypothesis that exercise interferes with Alzheimer’s disease (AD).

Keywords: NAD+; NMN; exercise; AD; mitochondrial autophagy

1. Introduction

Alzheimer’s disease (AD) is widespread worldwide, with 6.7 million Americans aged
65 and older diagnosed with Alzheimer’s dementia in the United States alone in 2023, a
number that could grow to 13.8 million by 2060 [1]. The cause of AD is still unclear, and the
more popular hypotheses include the amyloid (Aβ) hypothesis, the neuronal entanglement
hypothesis, and the mitochondrial cascade hypothesis, which have the common feature of
suggesting that Aβ has a damaging effect on neurons [2,3]. Aβ is deposited over time, and
its toxicity causes damage to the mitochondria in the neuronal cells in the brain in many
ways, such as structural damage, mitochondrial malfunction, and abnormal mitochondrial
autophagy [4]. The inability to remove damaged mitochondria from the brain leads to an
excessive release of ROS, which contributes to inflammation, so normalizing mitochondrial
autophagy appears to be a therapeutic approach to save AD neurons [5,6].

Nicotinamide mononucleotide (NMN), known as β-nicotinamide mononucleotide, is a
biologically active nucleotide that is naturally formed via the reaction of a phosphate group
with a nucleoside containing ribose and nicotinamide [7]. In recent years, in an animal
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model, an experiment confirmed that oral NMN can mitigate the negative effects of aging
by increasing the amount of NAD+ in the body via the promotion of NAD+ synthesis [8].
The electron chain in mitochondria undergoing oxidative phosphorylation plays a role in
transferring H+, and a large body of evidence indicates that NAD+ decreases significantly
in the aging organism, resulting in the limitation of its response when the level of NAD+

cannot meet the demand for redox in oxidative phosphorylation, which explains why
the energy metabolism is much lower in the elderly than in the young. As a result, the
cells cannot obtain enough energy supply, meaning that the cells cannot carry out normal
physiological functions [9–11]. NAD+ plays an important role in regulating many aspects of
mitochondria, such as regulating mitochondrial homeostasis (mitophagy and autophagy),
increasing mitochondrial respiration rate, and playing a key role in the pathogenesis of
neurodegenerative diseases [11–13]. Evandro found that NAD+ has the ability to induce
mitochondrial autophagy in the AD brain and that mitochondrial autophagy inhibits the
sustained increase in Aβ and tau proteins and acts as a scavenger, reversing cognitive
dysfunction in APP/PS1 mice [14,15]. Thus, oral administration of NMN to elevate NAD+

in vivo seems to provide a new avenue for the treatment of AD.
Many studies have shown that low-to-moderate-intensity aerobic exercise elevates

NAD+ in vivo, and exercise has a significant effect on improving AD cognitive dysfunc-
tion [15,16]. It has been suggested that exercise also activates AMPK when it elevates
NAD+ in vivo, which, in turn, regulates mitochondrial autophagy [17]. However, the exact
mechanism by which exercise elevates NAD+ levels in various parts of the body is not
known, and the exact pathway by which AMPK mediates mitochondrial autophagy is also
not known. This review analyzes whether there is an intrinsic link between oral NMN
elevation of NAD+ and exercise elevation of NAD+ in vivo and investigates how NAD+

affects mitochondrial autophagy to improve AD cognitive dysfunction.

2. Oral NMN and Exercise Enhance NAD+ In Vivo
2.1. Pathway of NAD+ Synthesis by NMN

The accumulation of NAD+ in different cellular regions is referred to as “NAD+ pools”,
so the pathway of NMN synthesis or the enzymes that promote NAD+ synthesis also differ
in different regions [18]. Recently, it was shown that SLC12A8, a protein that transports
NMN across the cell membrane, is expressed in the small intestine, liver, and hippocampus,
with the highest expression in the small intestine [19]. NMN enters the cell stroma via
SLC12A8 and is synthesized via the NAD+ salvage pathway in the presence of NMNAT1,
NMNAT2, and NMNAT3. Part of the NAD+ in the cell matrix remains in there, while
part enters the nucleus, and another part enters the mitochondria. The NAD+ entering
the nucleus is degraded to NAM by NAD+-dependent deacetylases, such as SIRT1, SIRT6,
and SIRT7 and PARPs poly (ADP-ribosyl) polymerase, and then NMN is synthesized by
iNAMPT. NMNAT1 in the nucleus synthesizes NMN to NAD+, thus completing the NAD+

salvage pathway in the nucleus.
SLC25A51 on the outer mitochondrial membrane has been identified in several ex-

periments as a transporter protein for NAD+ [20]. NAD+ in the cell matrix is transported
into the mitochondria by SLC25A51 and is degraded to NAM by SIRT3, SIRT4, and SIRT5,
but the NAD+ salvage pathway in the mitochondria is unknown, and it has not been
determined which of the NAMPTs is responsible for completing the conversion of NAM
to NMN. Although NMN can be detected in mitochondria, whether it is converted from
NAM or enters the mitochondria from NMN in the cell matrix is not known for the time
being. A role for a specific NMNAT isoform (NMNAT3) has been proposed, but it is not
certain that NNMN can be converted into NAD+ in mitochondria [21].

In summary, NMN synthesis of NAD+ is dominated by the NAD+ salvage pathway
and is primarily synthesized by the NAD+ salvage pathway located in the extracellular
fluid and the cell matrix.
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2.2. Oral NMN Can Improve the Level of NAD+ in All Tissues

Oral administration of NMN can effectively enhance NAD+ in humans and animal
models, as demonstrated in several experiments [22–24]. NAD+, as a regulatory factor
closely related to energy metabolism, is, therefore, present in various tissues, but its
expression varies greatly in different tissues. In rodent studies, oral or injected NMN
effectively enhances NAD+ biosynthesis in a variety of tissues, including the pancreas,
liver, adipose tissue, heart, skeletal muscle, and kidneys, and the NAD+ levels in the
hippocampal and hypothalamic brain regions also rapidly increase [25–35]. The above
results suggest that NMN can pass through the BBB and act as a substrate for NAD+

biosynthesis in brain regions, providing one piece of evidence that NAD+ can ameliorate
neurodegenerative diseases.

The highest expression of SLC12A8, the transporter protein of NMN, has been found
in the small intestine, so the most significant increase in NAD+ has been detected in the
small intestine after NMN administration [19,36]. Alessia et al. used double-labeled isotope
NMN (O18-D-NMN) fed to WT mice and clearly detected 018-D-NMN in the jejunum and
ileum after 10 min [19]. NMN in the small intestine was absorbed into the blood through
SLC12A8 on the small intestinal villi. Additionally, in the experiments of Alessia et al., who
fed NMN at 500 mg/kg body weight to WT-type mice, the plasma NMN levels significantly
increased 5 min after feeding [19]. There appear to be differences in the efficiency of the
intestinal absorption of different doses of NMN feeding. In a study by Kathryn et al.,
feeding ET mice at 300 mg/kg body weight resulted in a rapid increase in the plasma
NAD+ levels at 2.5 min, with a sustained increase during the 5–10 min period and a return
to original levels at 15 min [24]. In experiments using humans as study subjects, similar
results to those obtained in rodents have been observed, with oral administration of NMN
resulting in similarly elevated plasma NMN and NAD+ concentrations. Back in 1995,
Ann et al. found a rapid increase in the plasma levels of nicotinamide in a trial in which
young men were given low (2.5 mg/kg body weight) and high (25 mg/kg body weight)
doses of nicotinamide, with the increase being more rapid with higher doses [37]. In a
Japanese clinical trial of oral NMN in 2020, significant changes in plasma NMN metabolites
were found in adult men taking 100, 250, or 500 mg NMN capsules orally, with the most
pronounced changes occurring at a dose of 500 mg/kg [22].

The liver contains most of the enzymes required in the NAD+ biosynthetic pathway,
and Liu et al. showed that the liver accounts for more than 95% of circulating nicotinamide
in mice using isotope tracer techniques and quantitative flux analysis, suggesting that the
main site of NMN conversion to NAD+ via the biosynthetic pathway is in the liver [36].
In Kathryn et al.’s study, mice were fed double-labeled isotopic NMN (C13-D-NMN) at
a dose of 300 mg/kg body weight, and using mass spectrometry to track these markers
in the liver NAD+, it was found that although the increase in NMN in the liver was not
as pronounced and rapid as in the blood, double-labeled NAD+ was clearly detected at
13 min (C10-D-NAD+), with a further increase in C30-D-NAD+ levels at 13 min [24].

Oral or injected NMN similarly elevates NAD+ water in muscles [24,38]. Additionally,
in the experiments of Kathryn et al., C30-D-NAD+ was detected in mouse flounder muscle
13 min after feeding [24]. In Golam et al.’s experiment, they injected a dose of 500 mg/kg
body weight from the peritoneal cavity of mice and found elevated levels of NAD+ in
mouse muscle [38]. In a human experiment with elderly subjects, 250 mg of NMN was
administered to elderly men daily for 6 or 12 weeks, and although the investigators only
measured blood levels of NMN versus NAD+ and found a significant increase, muscle
strength was found to be increased in the elderly taking NMN [38].

Elevated NAD+ in the brain can help improve cognitive dysfunction [39]. In a 2021
study of NMN to improve CICI-induced cognitive dysfunction, it was found that feeding
C57 mice at a dose of 250 mg/kg body weight increased their NAD+ levels in the hippocam-
pus [40]. Ruben et al. similarly demonstrated, in their experiments, that injecting NMN
into the body is effective in boosting the NAD+ levels in the brain, when they administered
C57BL/6N mice via injection of a dose of 250 mg/kg body weight and found an increase in
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the NAD+ levels in the brains of the mice upon taking the material and 24 h later [41]. A
higher dose of NMN was tested in a trial by Chidambaram et al. They administered strong
oral feeding to C57/B6J mice at a dose of 400 mg/kg body weight and examined the brain
tissue from the mice 45 min after feeding, finding a significant increase in the NAD+ levels
in their brains [8].

2.3. Exercise Regulates the Level of NAD+ In Vivo

The way in which exercise regulates NAD+ varies considerably between tissues, and
the different intensities of exercise have different effects on NAD+, probably due to the
existence of a more complex synthetic pathway for NAD+. Studies have shown that the
kynurenine pathway in the liver accounts for 90% of the whole body, due to the fact that
the enzymes required for the kynurenine pathway are not expressed in most extrahepatic
cells [36]. Therefore, exercise appears to be more dependent on the second pathway for
NAD+ synthesis, i.e., through redox reactions in the energy metabolism.

Several experiments have reported changes in the NAD+ content and NAD+/NADH
ratio in muscle in vivo in animals (mice, rats, and insects) and humans by exercise, but the
results obtained in animal and human experiments differ significantly due to the intensity
of exercise [42]. In experiments with humans, it has been concluded that the NAD+ content
has different degrees of expression with the intensity of exercise, with a decrease in the
NAD+/NADH ratio (NAD+ decreases and NADH increases) at 60% and 100% of the
maximum oxygen uptake (i.e., moderate- to high-intensity exercise). However, in another
experiment, it was concluded that the NAD+/NADH ratio increases at 50% of the maximal
oxygen uptake (NAD+ rises and NADH falls), suggesting that low-to-moderate-intensity
exercise (i.e., aerobic exercise) increases NAD+ levels [43,44].

The reason for such a large difference in NAD+ expression at different exercise intensi-
ties could be that the high glycolysis rates under high-intensity exercise lead to a decrease in
NAD+/NADH, as has been demonstrated in cardiac myocytes [45]. It is now hypothesized,
with respect to high glycolysis causing a decrease in NAD+/NADH, that since oxidative
phosphorylation proceeds depending on the availability of NADH, i.e., the balance between
the reduction in NAD+ to NADH and the oxidation of NADH to NAD+, high glycoly-
sis rates lead to NADH saturation, while the malate–aspartate and α-phosphoglycerol
shuttle systems, which oxidize NADH to NAD+, have limited capacity, resulting in lower
NAD+/NADH [46]. Therefore, elevating NAD+ in the cytoplasm and mitochondria in vivo
through low-to-moderate-intensity aerobic exercise is a feasible option.

3. NAD+ Ameliorates Abnormal Mitochondrial Autophagy
3.1. AD Leads to Abnormal Mitochondrial Autophagy in the Brain

The accumulation of Aβ is one of the pathological features of AD, and it has been
experimentally demonstrated that severe damage to mitochondria occurs in the AD brain.
Damage to the mitochondria leads to a lack of energy supply in the brain, which prevents
the clearance of Aβ [47,48]. The toxic effect of Aβ on mitochondria further impairs many mi-
tochondrial functions, such as structural and autophagic abnormalities in the brain [49,50].
When abnormal mitochondrial autophagy is coupled with slowed energy metabolism
in the AD brain, it leads to reduced AMPK activity [51,52]. Reduced AMPK expression
tends to inhibit SIRT1 and PGC-1α, which regulate mitochondria-related functions, and
the AMPK/SIRT1/PGC-1α pathway fails to regulate mitochondrial dynamics, leaving the
mitochondrial mass uncontrolled and exacerbating abnormal mitochondrial autophagy [4].
Moreover, it has been experimentally demonstrated that when the energy metabolism is
imbalanced in the brain, it causes axonal damage [53]. As shown in Figure 1, the AD brain
undergoes marked atrophy and neuronal damage due to aberrant autophagy (Figure 1).
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Figure 1. The mitochondria of the neurons in the brain of Alzheimer’s disease patients are damaged.
The left side of Figure 1 shows the mitochondria of neurons in a healthy brain, with the mitochondrial
kinetics and mitochondrial autophagy being in normal state; the right side of Figure 1 shows neurons
in an AD brain; due to the toxicity of Aβ and Tau, the neurons become entangled, the mitochondrial
kinetics and mitochondrial autophagy in neurons are abnormal, and the mitochondria break down
and release ROS to further harm the neurons.

At the same time, the PINK–PARKIN pathway is inhibited in the AD brain [4]. In
normal neuronal cells, PINK1 can recruit PARKIN to damaged mitochondria and can lead
to the recruitment of p62 (SQSTM1) and ubiquitinated mitochondria or other autophagy-
related proteins, thereby inducing mitochondrial autophagy. Mitochondria are damaged
by Aβ, coupled with inhibition of the PINK–PARKIN pathway, such as proteins associ-
ated with autophagy. The activating molecules of becn1 regulatory autophagy protein 1
(AMBRA1), Bcl2L13, FUN14 domain-containing protein 1 (FUNDC1), and NFKB-1 mi-
tochondrial ubiquitin ligase activator (MUL1)2 in neuronal cells in AD are reduced, and
the levels of lipid-modified microtubule-associated protein light chain 3 (LC3B-II) and
beclin-1 are lower, with both autophagosomes and autosome numbers being reduced in
AD neurons [52,54]. These results suggest normal autophagic flux but reduced overall
induction of the autophagic pathway. Thus, mitochondrial autophagy damage has been
detected in both hippocampal samples and neurons of AD [14]. This results in abnor-
mal mitochondrial autophagy, with severely damaged mitochondria not being cleared by
autophagy, resulting in the inability of new mitochondria to be synthesized (when old
mitochondria are phagocytosed by lysosomes to provide the protein material needed for
new mitochondrial synthesis) [55,56].

In AD, in addition to the toxicity of Aβ and Tau, which can act directly on mito-
chondria, they can also cause an inflammatory response, disrupting the balance of ROS
production and elimination in the brain. ROS continue to accumulate, leading to the de-
velopment of an inflammatory response, along with Foxo3 acetylation, which leads to a
decrease in the energy of mitochondria to resist ROS, resulting in a decrease in mitochon-
drial activity and an abnormal mitochondrial dynamics, i.e., a serious imbalance between
mitochondrial fusion and division, leading to a decrease in the mitochondrial mass in the
brain (Figure 1) [57–59].
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3.2. Mechanisms by Which NAD+ Ameliorates Abnormal Mitochondrial Autophagy in AD

NAD+ is a coenzyme used in redox reactions and is a key regulator of the energy
metabolism [60]. Increased intracellular and mitochondrial NAD+ levels maintain mito-
chondrial fitness and improve mitochondrial biogenesis, mitochondrial unfolded protein
responses, and mitochondrial autophagy [61]. In recent years, it has been found that during
aging and age-related diseases, such as AD and T2DM, the NAD+ levels are altered in
several organs of mice and humans [24,56,62–64]. As there is both severe DNA damage
and chronic inflammation in the AD brain, this leads to an increase in PARPs, CD38,
SARM1, and a few other NAD+-depleting substances, further exacerbating the depletion of
NAD+ in the brain. As Covarrublias et al. concluded in their article, when PARPs, CD38,
SARM1, and some other NAD+-depleting substances were inhibited, NAD+ levels in AD
were significantly increased, and AD brain dysfunction and cognitive impairment were
improved [11]. Recent studies have shown that the administration of the NAD+ precursor
NMN is rapidly absorbed and converted to NAD+ by nicotinamide/nicotinic acid mononu-
cleotide adenyl transferase (NMNAT), which rapidly and effectively elevates the NAD+

levels in the body [65,66]. NMN supplementation may inhibit chronic diseases associated
with aging; for example, in AD, NMN supplementation may improve the mitochondrial
and neuronal function in the brain [35,65,67].

SIRT1 is an NAD+-dependent deacetylase located primarily in the nucleus, and ele-
vated NAD+ levels in organisms activate SIRT1 [68]. SIRT1 has been shown to improve the
mitochondrial oxidative metabolism and positively regulate autophagy and mitochondrial
function in response to oxidative stress [69–71]. The overexpression of SIRT1 stimulates
autophagosome formation and increases basal autophagy levels, while SIRT1 deficiency
prevents autophagy during nutrient deprivation [70,72,73]. In the latest study by Rasti
et al., SIRT1 was the main factor of DNA damage response and DNA repair, autophagy
could also be understood as a response to DNA damage, and autophagy was affected by
SIRT1 deacetylation. SIRT1 signaling to DNA damage through PP4 ensures the normal
progress of DNA damage repair, which will be beneficial to neuronal regeneration [74–76].
SIRT1 plays an important role in AD, especially in the regulation of mitochondrial home-
ostasis through deacetylation [77]. In several studies, SIRT1 has been shown to be linked
to the clearance of Aβ and Tau, and deacetylation of SIRT1 is, one, a transcription factor
retinoic acid receptor β to mediate the reduction in neurotoxic Aβ deposition in the brain
to improve the repair rate of damaged neurons, and, two, may allow ubiquitin ligases to
target tau proteins to facilitate the clearance of these proteins rather than allowing for their
pathological intracellular aggregation [78–80]. Therefore, deacetylation of SIRT1 has been
shown to protect neurons in AD and enhance cognition [81].

Peroxisome proliferator-activated receptor coactivator 1α (PGC-1α) is a major tran-
scriptional coactivator that regulates mitochondrial function and maintains mitochondrial
homeostasis. As a semi-autonomous organelle, the downstream target of PGC-1α, TFAM,
acts as a communication substance between the nucleus and the mitochondrial nucleus,
regulating mitochondrial fusion and division. NAD+ can indirectly activate PGC-1α from
multiple pathways; firstly, movement can activate AMPK to activate PGC-1α via phos-
phorylation, and, secondly, it can be activated by altered NAD+/NADH SIRT1, which, in
turn, deacetylates and activates PGC-1α, which is involved in the regulation of metabolic
homeostasis and mitochondrial function, increasing mitochondrial biosynthesis and oxy-
gen consumption [82]. It has been found that PGC-1α is associated with mitochondrial
autophagy. When PGC-1α is activated, Nrf1 in the nucleus enters the mitochondria, and
Nrf1 in the mitochondria returns to the nucleus to activate TFAM, which comes from the
nucleus to the mitochondria to regulate mitochondrial biogenesis [83,84].

When PGC-1α is activated, the mitochondria are more inclined to fuse, i.e., Mfn1/2 is
activated. It has been demonstrated that MFN2 deficiency reduces the autophagic activity
in energy-stressed cells, suggesting that PGC-1α can mediate mitochondrial autophagy
through mitochondrial biogenesis [85]. Mitochondrial autophagy protects the neurons in
AD patients, and PGC-1α may reduce Aβ load by regulating BACE1 ubiquitination and
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degradation. Thus, increased NAD+ may play a therapeutic role in AD by reducing BACE1
levels [86]. Katouri et al. further demonstrated the neuroprotective effects of PGC-1α
by transferring PGC-1a to the cortical and hippocampal CA1 regions of AD mice using
a lentiviral vector, which demonstrated that the upregulation of PGC-1α can improve
mitochondrial dynamics, as well as spatial memory and cognitive function, and it can
prevent neuronal loss [87].

3.3. Exercise Ameliorates Abnormal Mitochondrial Autophagy in AD

AMPK acts as a sensor of the energy metabolism and can receive stimuli from changes
in the AMP/ATP ratio. Changes in the levels of ATP, ADP, and AMP activate AMPK [88].
In addition to this, exercise activates AMPK by changing the NAD+/NADH ratio [89].

In our laboratory, we found that aerobic exercise activates AMPK in the brain of
APP/PS1 transgenic mice [52]. AMPK has multiple effects on mitochondria, both regulating
the rate of mitochondrial ATP production to control the rate of energy metabolism and
activating SIRT1 to phosphorylate PGC-1α to mediate mitochondrial dynamics, restore
mitochondrial function, and increase mitochondrial activity (Figure 2). It is suggested that
improved mitochondrial autophagy provides energy for the clearance of Aβ and tau [90].

Figure 2. Exercise upregulates AMPK and NAD+ to activate SIRT1 and PGC-1α. Exercise in humans
and rodents drives the upregulation of NAD+ and AMPK and activates the AMPK–SIRT1–PGC-1α
signaling pathway.

Exercise mediates different mitochondrial autophagic pathways through AMPK. First,
the AMPK–SIRT1–PGC-1α pathway, in which AMPK and SIRT1 have close interactions in
energy regulation, metabolism, and aging, as they can mutually enhance one another’s ac-
tivities [91,92]. NAD+ enhances SIRT1 activity by activating AMPK, leading to deacetylation
of PGC-1α, a downstream target of SIRT1, thus activating the AMPK–SIRT1–PGC-1α sig-
naling pathway [93,94]. Therefore, exercise can improve mitochondrial health through mi-
tochondrial biogenesis and the removal of damaged/dysfunctional mitochondria through
mitochondrial autophagy [95–97].
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The second is the AMPK–ULK1 mitochondrial autophagy pathway. Experiments have
shown that ULK1 can be activated directly after the upregulation of AMPK by exercise [98].
In this experiment, by using the novel fluorescent reporter gene pMitoTimer, monitoring
revealed that mice experienced mitochondrial oxidative stress 3–12 h after acute treadmill
exercise and mitochondrial autophagy 6 h after skeletal muscle exercise. Exercise-induced
metabolic adaptation requiring ulk1 was proven in the same experiment. These findings
provide direct evidence of exercise-induced mitochondrial phagocytosis and demonstrate
the importance of AMPK–Ulk1 signaling in skeletal muscle [98].

The third is the AMPK–TBK1 mitochondrial autophagy pathway. Upregulation of
AMPK can also directly activate TBK1 to mediate mitochondrial autophagy, thus, inde-
pendent of the PINK–PARKIN mitochondrial autophagy pathway. In a 2020 experiment,
increased phosphorylation of TANK-binding kinase 1 (TBK1) in the absence of PINK1 was
demonstrated in a non-muscle cell line, regulated by AMPK-dependent signaling. TBK1
activation by AMPK mediates mitochondrial autophagy by phosphorylating P52, P62, and
OPTN, while TBK1 can control mitochondrial mass in a manner that regulates cell growth
by isolating centrosomes to affect cell mitosis [99].

The fourth is the AMPK–MFF–TBK1 mitochondrial autophagy pathway. AMPK also
promotes mitochondrial autophagy by activating MFF phosphorylation to enhance mito-
chondrial fission and by activating TBK1 to promote autophagosomal phagocytosis [100].
During PINK1/Parkin-mediated mitochondrial autophagy, TBK1 is directly or indirectly
mediated by phosphorylation of the autophagy receptors [30]. TBK1 activity is required
for efficient recruitment of OPTN and NDP52 to ubiquitinated mitochondria, where TBK1
phosphorylates OPTN at Ser177 to increase the LC3 binding affinity and at Ser473 and
Ser513 to further increase binding of OPTN to the ubiquitin chain [101,102]. Therefore, in
addition to the Parkin–PINK1 mitochondrial autophagy pathway, another mitochondrial
autophagy pathway (ubiquitin–OPTN–TBK1), constitutes more landing sites for autophagy
joints on damaged mitochondria.

4. Potential Mechanisms for Upregulation of NAD+ to Improve
Mitochondrial Autophagy
4.1. SLC12A8—An NMN Transporter Protein on the Cell Membrane

SLC12A8 is a solute carrier responsible for material transport across cell membranes [103].
Nearly 100 human SLCs have been proposed to transport amino acids, 60% of which have
been shown to transport amino acids, while the rest are closely related to phylogenetically
known amino acid transporter proteins [104]. In an earlier study, by examining 195 psoriasis
families from Sweden, associations with five marker haplotypes were identified, including
haplotype spanning member 8 of the solute carrier family 12 (SLC12A8) [105].

In 2019, in a study by Alessia Grozio et al., experiments were first performed by
studying SLC12A8 in mouse liver. To exclude interference with experimental measure-
ments following CD73-mediated degradation of extracellular NMN to NR, followed by
re-synthesis of NR into cells by NAMPT, these were excluded using inhibitors (inhibition of
NR entry via the nucleoside transporter and inhibition of NAMPT-mediated intracellular
NMN synthesis). Then, 100 µM of NMN was added, and the intracellular NMN levels were
found to be significantly elevated at the 1 min time point in primary mouse hepatocytes
compared to controls. Under these conditions, NMN uptake in primary hepatocytes was
examined using the same inhibitor and 100 µM of NMN in stem cells knocked down for
SLC12A8 and Nrk1 (a major NR kinase that converts NR to NMN intracellularly) (knock-
down efficiency of approximately 80% for both genes) and at the 1 min time point. The
rapid uptake of NMN was completely eliminated in SLC12A8 knockout (SLC12A8-KD)
hepatocytes, whereas no significant reduction in NMN uptake was observed in Nrk 1
knockout (Nrk 1-KD) hepatocytes, suggesting that SLC12A8 is required for rapid NMN
uptake in primary hepatocytes and that the observed increase in intracellular NMN was
not due to the conversion of NR or nicotinamide to NMN. Additionally, in experiments,
SLC12A8 was found to be expressed in the liver, small intestine, and hippocampal neuro-
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spheres, with high expression in the small intestine and pancreas and moderate expression
in the liver and white adipose tissue [19].

In a paper titled “SlC12A8 in the lateral hypothalamus maintains energy metabolism
and skeletal muscle function in aging” published by Naoki Ito et al. in July 2022, it was
found that SCL12A8 expression is also present in the cells in the hypothalamus, and its
overexpression effectively regulates hypothalamic function, thereby improving the energy
metabolism and skeletal muscle function reduced by aging. It also allows the hypothalamus
to regulate glycolysis through protein synthesis to regulate skeletal muscle mass and
modulate the sympathetic–β2-adrenergic receptor (β2AR) axis in skeletal muscle [106].

In summary, SLC12A8 is now identified as a transporter protein for NMN. In Figure 3,
SLC12A8 is located on the cell membrane (Figure 3).

Figure 3. Related transporter proteins on the cell membrane and mitochondrial outer membrane.
Extracellular NMN enters the cell interior through SLC12A8 on the cell membrane, is synthesized
into NAD+ by NAMPT, and then is transported into the mitochondrial lumen through SLC25A51 on
the mitochondrial outer membrane to participate in the TCA cycle.

4.2. SLC25A51—An NAD+ Transporter Protein on Mitochondria

For many years after 1996, it was thought that there was no NAD+ transporter pro-
tein in the cell membrane, an idea supported by an in vitro experiment on mitochondria
extracted from rat liver cells, which showed that NAD+ does not cross the inner membrane
of mitochondria [107]. The lack of NAD+ transport between cytoplasm and mitochondria
is supported by data showing that mitochondrial NAD+ is maintained within normal
physiological concentrations. After treatment of cells with the DNA alkylating agent MMS
or inhibition of NAMPT activity with the inhibitor FK866, NAD+ in cytoplasm and nucleus
was significantly depleted, but mitochondrial NAD+ was maintained within normal physi-
ological concentrations, supporting the absence of NAD+ transport between the cytoplasm
and mitochondria [108,109]. The only alternative pathway for NAD+ import from the
cytoplasm appears to be intra-mitochondrial synthesis.

However, in 2020, three independent experimental groups all confirmed the presence
of a transporter protein, SLC25A51, on the inner mitochondrial membrane that transports
NAD+ into the mitochondria. In October 2020, Nora et al. stated that SLC25A51 is required
for mitochondrial NAD+ transport [20]. SLC25A51 belongs to the same family as SLC12A8,
mentioned in the previous section. First, Nora et al. identified a previously unstudied
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gene, SLC25A51, through sequencing, and found that SLC25A51 is localized to the inner
mitochondrial membrane in Hela cells, after immunofluorescence detection and STED
microscopy. Subsequently, to test whether SLC25A51 is involved in the mitochondrial
energy metabolism, SLC25A51 was knocked out in Hela cells. A defect in mitochondrial
function was found in Hela cells by culture, in which SLC25A51 was knocked out and had
a significantly lower OCR and reduced total cellular ATP levels, indicating an impaired
mitochondrial energy metabolism. Interestingly, SLC25A51 deletion causes defects in the
mitochondrial metabolism and ETC complex I activity but does not affect mitochondrial
integrity, unlike the usual situation of an impaired mitochondrial respiration rate, which
is usually due to defects in mitochondrial replication, translation, or structural integrity,
resulting in loss of respiratory chain complexes. However, loss of SLC25A51 does not alter
the morphology of mitochondria or mitochondrial ridges, nor does it alter mitochondrial
DNA or mass. In addition, the mitochondrial membrane potential and the levels of
mitochondrial and nuclear-encoded mitochondrial proteins are only slightly affected, so in
the next experiments, it was found that the reduced respiratory rate following SLC25A51
deletion was caused by the loss of intracellular mitochondrial metabolites but probably
due to the presence of cytoplasmic lysates that replenished the lost metabolites and, thus,
did not cause structural damage to the mitochondria [20].

In December 2020, Enrico et al. similarly concluded that SLC25A51 is an NAD+ trans-
porter protein located on the inner mitochondrial membrane [110]. Their team first found a
strong correlation with SLC2A1, a glucose transporter protein expressed at the plasma mem-
brane and a major regulator of glycolytic metabolism, by performing a genetic interaction
analysis of SLC25A51 with other SLC families located on the inner mitochondrial mem-
brane, suggesting a correlation between SLC25A51 and mitochondrial energy metabolism.
SLC25A51, in turn, has coding complementarity with SLC25A3 and is functionally related
but not non-redundantly functional. Co-efficient analysis of SCL25A51 and SLC25A3 was
then performed to determine their important role in the energy metabolism. Subsequently,
by comparing whole-cell and mitochondrial-targeted metabolomics, knockout of SLC25A51
was identified as the key to affect energy metabolites, and it was found that NAD+ was the
only molecule significantly depleted in SLC25A51 KO cells, and the intracellular NAD+

level was restored after SLC25A51 overexpression [110].
To further identify SLC25A51 as an NAD+ transporter protein on mammalian mito-

chondrial membranes, Ndt1 and Ndt2, previously identified on mitochondrial membranes
in yeast cells, were used [111]. Enrico et al. implanted yeast Ndt1 into SLC25A51-deficient
cells and found that it reversed the mitochondrial respiration defect in these cells [110].

Timothy et al.’s team similarly screened several channel proteins on the mitochondrial
membrane, including SLC25A51 and SLC25A52, and concluded that SLC25A51 is the
channel protein that is primarily a transporter of NAD+ on the mitochondrial membrane.
The NAD+ content inside the mitochondria of SLC25A51 KO cells was significantly reduced,
and mitochondrial respiration was severely affected by the culture of SLC25A51 KO cells
compared with normal cells, but interestingly, the whole-cell NAD+/NADH was not
altered, and the mitochondrial membrane potential was not significantly altered. After re-
expression of SLC25A51 in SLC25A51KO cells, the NAD+ content in cellular mitochondria
was restored [112]. All of the above experiments demonstrated that SLC25A51 is a NAD+

transporter protein located on the mitochondrial outer membrane (Figure 3).

4.3. SLC12A8 and SLC25A51 May Be Potential Therapeutic Targets for Improving
Mitochondrial Autophagy

As described in the previous section, many experiments in recent years have shown
that exercise can upregulate NAD+, AMPK, SIRT1, and PGC-1α and can effectively improve
the mitochondrial membrane potential, mitochondrial ridge, mitochondrial dynamics, and
mitochondrial autophagy. Here, we may propose the hypothesis that exercise increases
cellular NMN uptake by increasing SLC12A8 in the cell membrane and SLC25A51 in
the mitochondrial membrane, the uptake of extracellular NMN to increase intracellular
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NMN content, and the mitochondrial uptake of intracellular NAD+. Intracellular NMN
is converted to NAD+ by NMNAT1-3, and upregulation of intracellular NAD+ activates
the AMPK–SIRT1–PGC-1α signaling pathway to improve mitochondrial dynamics (mito-
chondrial fusion and division), which, in turn, mediates the PINK1/Parkin mitochondrial
autophagy signaling pathway via Mnf1, thereby improving mitochondrial autophagy.

In the previous section, we mentioned that exercise upregulates NAD+, AMPK, and
SIRT1 in vivo. Therefore, we propose the following hypothesis: is the expression of
SLC12A8, a channel protein of NMN as a NAD+ precursor, activated by exercise (Figure 4),
so that more NMN will enter the cell and then be converted into NAD+ by intracellular
NMNAT, thus enhancing the NAD+ content in vivo? PINK1/Parkin, a mitochondrial
autophagy signaling pathway, or PGC-1α and FoXo improve the toxicity of Aβ and Tau,
spatial memory, and cognitive memory and prevent neuronal loss. In the latest study, this
year, Ryu et al. used NR and caffeine in humans and on different types of cells and found
that NR and caffeine can help the aging body to improve NAD+ and bioenergy metabolism
temporarily, but there seems to be no substantial improvement in long-term cellular energy
metabolism, which may be due to the lack of long-term use. These results suggest that
NR and caffeine may alter the metabolism of NAD+ and bioenergy in the aging body in
nature. It may be necessary to improve the degraded NAD+ metabolism in the aging body
through long-term stimulation, such as periodic regular exercise, so as to improve the
spatial memory, cognitive memory, and prevent the loss of neurons in AD [113].

Figure 4. Possible mechanisms by which exercise upregulates NAD+ to improve mitochondrial
autophagy. Exercise promotes SLC12A8 expression, which allows more NMN to enter the cell
membrane from the extracellular fluid, and NMNAT2 in the cytoplasm converts NMN to NAD+.
NAD+ in the cytoplasm can enter the nucleus or the mitochondria via SLC25A51. NAD+ enter-
ing the mitochondria activates the SIRT1–PGC-1α signaling pathway. Transfer of PGC-1α from
the nucleus to the mitochondria activates Mfn1/2 to mediate mitochondrial fusion and improve
mitochondrial autophagy.

Whether or not SLC12A8, which acts as a Na+-dependent transporter protein, and
exercise can regulate the Na+ concentrations inside and outside myocytes via the sodium–
potassium pump, which would promote the turning on of SLC12A8, is unknown, but in
cellular experiments, the removal of Na+ resulted in a significant decrease in SLC12A8
expression, leading to a decrease in intracellular NAD+ content [19,114]. It is suggested
that the effect of exercise on Na+ may have a regulatory effect on SLC12A8, allowing more
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NAD+ outside the cell to enter the cell to participate in the energy metabolism, DNA repair,
chromatin remodeling, cellular senescence, and immune cell function.

5. Summary and Outlook

There have been many studies showing that exercise upregulates NAD+ levels in vivo,
and there are also many studies showing that oral administration or injection of the NAD+

precursors NMN or NR can effectively improve the NAD+ levels that are downregulated
due to aging, thus extending the life span of the organism.

The deficiency of NAD+, a key coenzyme in the tricarboxylic acid cycle, will cause
mitochondrial dysfunction and lead to abnormalities in the organism. Improving the NAD+

levels in the body to treat mitochondrial dysfunction has been demonstrated, so exercise as
an inexpensive prescription for its mediated elevation of NAD+ can effectively improve
impaired mitochondrial function.

At present, the NMN (NAD+ precursor) transporter protein SLC12A8, located on
the cell membrane, and the NAD+ transporter protein SLC25A51, on the mitochondrial
membrane, have been identified, which provides new therapeutic avenues to elevate the
NAD+ levels in cells and mitochondria. This is coupled with the recent discovery of
a strong link between gut microbes and body functions [115]. It has been shown that
mycoplasma contributes to host NAD+ biosynthesis, and experimentally, mycoplasma
plays a role similar to that of resistance to NAMPT inhibitors in cancer cells and xenograft
tumors. To further verify whether these results are true, researchers have used stable
isotope tracing and microbiota-depleted mice, experimentally demonstrating that this
bacteria-mediated deamidation contributed significantly to the NAD+-enhancing effects of
oral nicotinamide and nicotinamide riboside supplements in several tissues. The findings
revealed an important role for the bacterially enabled deamidation pathway in host NAD+

metabolism [115]. In our laboratory’s research on the relationship between AD and gut
microbiota, it has been found that brain inflammation in APP/PS1 mice is closely related to
gut microbial metabolites and bacterial lipopolysaccharide (LPS), and exercise enriches gut
microbial diversity and alleviates neuroinflammation in the brain. These results suggest
that long-term exercise can effectively regulate gut microbiota and the gut barrier, thereby
reducing LPS translocation and ultimately alleviating AD-related neuroinflammation [116].

In summary, for the time being, drugs related to NAD+ are agonists of NMN, NR,
and NAMPT, while drugs related to the activation or overexpression of NMN and NAD+

transport proteins have not been studied. Similarly, research on NAD+ production by gut
microbes is scarce. Therefore, similar probiotic supplements and NMN/NAD+ transporter
activators could be developed in the future to increase NAD+ production and uptake
in vivo, thus providing a new therapeutic approach to rescue mitochondrial autophagy ab-
normalities due to aging, improve mitochondrial function, restore mitochondrial autophagy,
and enhance AD neuronal plasticity.
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