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Abstract: Choline availability regulates neural progenitor cell proliferation and differentiation in
the developing cerebral cortex. Here, we investigated the molecular mechanism underlying this
process and demonstrated that choline regulates the transcription factor SOX4 in neural progenitor
cells. Specifically, we found that low choline intake during neurogenesis reduces SOX4 protein levels,
causing the downregulation of EZH2, a histone methyltransferase. Importantly, we demonstrate that
low choline is not involved in SOX4 protein degradation rate and established that protein reduction
is caused by aberrant expression of a microRNA (miR-129-5p). To confirm the role of miR-129-5p, we
conducted gain-of-function and loss-of-function assays in neural progenitor cells and demonstrated
that directly altering miR-129-5p levels could affect SOX4 protein levels. We also observed that
the reduction in SOX4 and EZH2 led to decreased global levels of H3K27me3 in the developing
cortex, contributing to reduced proliferation and precocious differentiation. For the first time, to our
knowledge, we demonstrate that a nutrient, choline, regulates a master transcription factor and its
downstream targets, providing a novel insight into the role of choline in brain development.
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1. Introduction

Choline is an essential nutrient required for several metabolic functions through its dif-
ferent metabolites [1]. Phosphatidylcholine is an extensive component of cell membranes [2]
and is also a precursor for the neurotransmitter acetylcholine. Choline is considered a
primary methyl group donor through the production of betaine, which is used as a sub-
strate to generate S-adenosylmethionine [3]. Choline-derived methyl groups are used in
epigenetic regulation via DNA and histone methylation.

Choline can be made through de novo synthesis, requiring the methylation of phos-
phatidylethanolamine (catalyzed by the enzyme phosphatidylethanolamine N-methyl
transferase (PEMT)) [4,5]. However, the de novo synthesis of choline is not sufficient to
meet the requirements for all its biological functions; hence, it needs to be obtained from
the diet [6]. Dietary choline intake is below the recommended intake levels in the US
and developing countries [7–9]. This is particularly important for pregnant women since
choline supply to the fetus is critical for the development of the central nervous system.

In rodents, low choline availability over the course of pregnancy results in spatial
memory and memory processing deficits in the offspring [10–12]. Choline regulates neuro-
genesis by maintaining neural progenitor cell (NPC) self-renewal capacity [13,14], thereby
impacting NPC cell fate. Cell fate—the decision to self-renew or differentiate—is critical for
brain development and can be influenced by nutrient availability [15,16]. In addition, low
choline (LC) status impacts brain development through the reduction in angiogenesis in
the hippocampus, altering the cerebral cortex cytoarchitecture and reducing NPC prolifera-
tive capacity [14,17,18]. Specifically, under LC status, NPCs have an increased expression
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of microRNA-129-5p (miR-129-5p), resulting in a reduction in epidermal growth factor
receptor (EGFR) protein levels and a subsequent decrease in NPC self-renewal [19]. Due
to the reduction in NPC proliferative capacity, it is suggested that NPC cell fate would
be biased towards premature differentiation. We specifically showed, in a mouse model,
that when there is LC during neurogenesis (Embryonic days 11.5–17.5), the numbers of
early-born neurons are increased and late-born neurons are decreased [14], reinforcing the
notion that an increase in miR-129-5p may induce precocious NPCs differentiation.

SRY-box transcription factor 4 (SOX4) is a master transcription factor that plays a
significant role in organogenesis, development, and chromatin structure [20,21]. An aber-
rant expression of SOX4 is present in different cancer types, including melanoma, which
promotes cell migration and invasion [22]. Furthermore, in colorectal and breast cancer,
SOX4 expression is dysregulated, in part, by a reduced expression of miR-129-5p [23,24]. In
the developing brain, SOX4 is critical for neurogenesis in that it maintains the self-renewal
capacity of NPC and intermediate progenitor cell (IPC) phenotypes [25]. SOX4 acts, in part,
as a molecular switch, whereby the differentiation of NPCs and IPCs can be effectively
executed when SOX4 is reduced [25,26]. This molecular switch occurs within the ventric-
ular and subventricular zones of the cerebral cortex, at which point the NPCs and IPCs
migrate and differentiate [25,26]. However, the regulation of SOX4 in the developing brain
by nutrient availability is unknown.

In this study, we determined that NPCs with an LC status have reduced SOX4 protein
levels. The reduction in SOX4 protein was mediated by increased levels of miR-129-5p
and the binding of miR-129-5p to Sox4 3′UTR, not to the increased degradation of SOX4.
Moreover, we found that SOX4 regulates the expression of enhancer zeste homolog 2
(EZH2) in NPCs. EZH2 is a methyltransferase that modifies H3 histones at lysine 27
(H3K27me3), thereby controlling the balance between the self-renewal and differentiation
of NPCs in the cerebral cortex [27–29]. NPCs with an LC status have reduced expression
of EZH2, demonstrating a reduction in SOX4 transcriptional output, which corresponds
with its lower protein levels in the nucleus. Additionally, we confirmed a specific reduction
in H3K27me3 in the cerebral cortex of LC fetuses. These findings provide additional
insights through which choline influences microRNAs, transcription factor expression, and
ultimately brain development.

2. Materials and Methods
2.1. Animals

Nestin-CFPnuc transgenic mice were generously provided by Dr. Grigori Enikolopov
(Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA), and were maintained
in a C57BL/6J (The Jackson laboratory) background. All mice were bred and maintained
at the David H. Murdock Research Institute (DHMRI), Center for Laboratory Animal Sci-
ence Facilities. All animal protocols were approved by the David H. Murdock Research
Institute, Institutional Animal Care and Use Committee (IACUC). Genotyping was per-
formed according to the providers’ protocols [30]. Mice were kept in a temperature control
environment at 24 ◦C and exposed to 12 h light and dark cycles.

2.2. Diets

All animals were maintained on a medium choline diet (MC; modified AIN93G
diet with 1.4 g/kg choline chloride; Research Diets Inc., New Brunswick, NJ, USA; cat#
D16040703, Table S1) for at least two weeks before mating. Following timed mating, all
dams remained on the MC diet until E11.5. At E11.5, the time-mated dams were randomly
assigned one of three feeding groups: low choline (LC; modified AIN93G diet with 0 g/kg
choline chloride D16040705; see Table S1), MC, or high choline (HC; modified AIN93G diet
with 6.3 g/kg choline chloride D16040706; see Table S1). Mice remained in the assigned
diets until E17.5.
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2.3. In Vitro Neural Progenitor Cell Culture

NPCs were isolated from E14.5 cerebral cortices as previously described [19]. In brief,
E14.5 cerebral cortices were collected, originating from different dams, and dissociated
into a single-cell suspension using Accutase (Thermo, Waltham, MA, USA; cat# 00-4555-
56). The cells were maintained in a neurobasal media (Gibco, Waltham, MA, USA; cat#
21103049) supplemented with a B27 supplement without vitamin A (Gibco, cat# 1087889),
recombinant human fibroblast growth factor (Gibco, cat# PHG0023), and recombinant
human epidermal growth factor (Gibco, cat# PHG0313). Cells derived from male and
female embryos were kept as separate cultures and remained separate for all experiments.
All experiments were conducted in custom choline-free neurobasal media, supplemented
with 2 Mm L-glutamine (Gibco, cat# 25030149), recombinant human fibroblast growth
factor (Gibco, cat# PHG0023), recombinant human epidermal growth factor (Gibco, cat#
PHG0313), and B27 supplement without vitamin A (Gibco, cat# 1087889). A choline
chloride (Millipore Sigma, Burlington, MA, USA; cat# C7017) solution was made with
phosphate buffer saline, which was filter sterilized and added to the choline-free custom
neurobasal media to achieve the following final concentrations: LC (5 µm), MC (70 µm),
and HC (315 µm). These choline concentrations are based on choline metabolites quantified
in mice tissues and choline dose-response curves in NPCs, which were performed in our
laboratory in conjunction with our published data [14,17,19,31,32]. To expand the NPC
culture, NPCs were maintained in a proliferative, neurosphere culture and attachment was
avoided by gently rocking the plates every day. The neurospheres were expanded over
4 passages and all the experiments were conducted at passage #5, with the NPCs grown in
a monolayer in either 6-well plates (Celltreat, Pepperell, MA, USA; cat# 229105) or 24-well
plates (Corning, Glendale, AZ, USA; cat# 3524), precoated with poly-ornithine (Sigma, cat#
A-004-C) and fibronectin (Millipore Sigma, cat# F1141).

2.4. Cycloheximide Treatment in Cultured Neural Progenitor Cells

NPCs were isolated and cultured as described above. NPCs were plated and treated
for 24 h with a custom choline-free media, as described prior, with varying concentrations
of choline chloride: LC (5 µm), MC (70 µm), and HC (315 µm). At 24 h, NPCs were
treated with 540 nm cycloheximide (Selleck chemical, Houston, TX, USA; cat# S7418) and
collected at the following time points: 0, 15 min, 30 min, 45 min, and 60 min. For collection,
NPCs were washed using phosphate buffer saline and chemically dissociated using TrypLE
(Thermo, cat# 12605010). The cells were then transferred to a 1.5 mL Eppendorf tube and
pelleted at 4 ◦C via centrifugation, flash-frozen in liquid nitrogen, and stored at −80 ◦C.

2.5. Western Blot Analysis

Whole-cell lysates were prepared using RIPA buffer with added protease (Sigma,
St. Louis, MO, USA; cat# 05892970001) and phosphatase inhibitor cocktails (Sigma, cat#
4906845001) for in vitro and in vivo experiments. Following the addition of the RIPA buffer,
the whole-cell lysates were sonicated for 5 min. Protein quantification for all samples was
conducted using a Bradford assay (Bio-Rad, Hercules, CA, USA; cat# 5000006) following
the manufactures protocol. Laemmli buffer was added to each protein sample followed
by boiling, for 5 min, using a heating block. Protein sample preparation for nuclear
fractionation experiments were conducted using the Abcam nuclear extraction kit (Abcam,
Cambridge, UK; cat# ab113474) and histone extraction were conducted using the Histone
Extraction Kit (Abcam, Cambridge, UK; cat# ab113476). Proteins were loaded into SDS-
PAGE gels and blotted on nitrocellulose membranes (Cytiva, Marlborough, MA, USA;
cat# 10600003). Prior to immunolabeling, the nitrocellulose membranes were treated with
Revert 700 total protein stain (LI-COR, Lincoln, NE, USA; cat# 926-11010) following the
manufacturers protocol, to assess successful protein transfer. Following the total protein
stain protocol, nitrocellulose membranes were blocked in a 5% bovine serum albumin in a
tris-buffered saline (0.1% tween-20) solution for 1 h. Immunolabelling was accomplished
with the following antibodies: SOX4 1:500 (Santacruz, Dallas, TX, USA; cat# sc-518016),
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SDCBP 1:500 (Santacruz, cat# sc-515538), EZH2 1:1000 (Abcam cat# ab186006), Alpha
Tubulin 1:1000 (Santacruz, cat# sc-8035), Lamin B1 1:1000 (Abcam, cat# ab16048), H3K27me3
1:1000 (Abcam, cat#6002), H3K9me3 1:1000 (Abcam, cat#8898) and total Histone 3 (H3)
1:1000 (Cell Signaling, cat# D1GH2). All antibodies were diluted in the 5% bovine serum
albumin blocking solution, as described prior, and the membranes were incubated in their
respective antibody overnight. Secondary antibodies were goat anti-rabbit 1:1000 (LI-COR,
cat# 926-68071), anti-mouse fluorescent antibodies 1:1000 (LI-COR, cat# 926-32210), or
anti-chicken (LI-COR, cat# 926-32218). The membranes were imaged in a LICOR Odyssey®

imaging system.

2.6. miR Bioinformatics

miR bioinformatics were carried out using two different databases: TargetScan and
miRDB [33–35]. TargetScan (http://www.targetscan.org; accessed on 11 December 2018)
predicts binding patterns with miRs of interest using a few different parameters, including
site type, supplementary pairing, local AU, minimum distance, 3′ untranslated region, and
others. These parameters are scored and aggregated into a score denoted as a context++
score. The more negative the context++ score is, the greater the probability of the miR
targeting the gene product of interest. MiRDB (http://mirdb.org; accessed on 11 December
2018) uses a similar approach via their target score. The target score is a composition
of miRNA overexpression and subsequent RNA-sequencing data in conjunction with
public CLIP-sequencing data, which are funneled into a support vector machine that
identifies similarities between miR-binding to 3′-untranslated regions of mRNA and the
subsequent downregulation of pathways associated with the mRNA in question. The closer
the target score is to 100, the greater the probability that the miR of interest binds to a
respective mRNA.

2.7. RT-PCR Analysis

Total RNA was isolated from in vitro NPCs, treated with either LC, MC, or HC, using
an miRNeasy mini kit (Invitrogen, Waltham, MA, USA; cat# 12183018A), while total RNA
from cerebral cortices was isolated using an RNeasy Plus Universal mini kit (Qiagen,
Hilden, Germany; cat# 73404), both of which were used following the manufacturers’
protocols. For mRNA, complementary DNA (cDNA) synthesis was completed using an
Applied Biosystems High-Capacity cDNA Reverse Transcription kit (Thermo, cat# 4368814)
following the manufacturers’ instructions. Reverse transcriptase polymerase chain reaction
(RT-PCR) was conducted using SsoAdvanced Universal SYBR Green Supermix (Biorad
Laboratories, Hercules, CA, USA; cat# 1725274) following the manufacturers’ protocol. All
experiments were run on a Roche Light 480 (Roche Applied Science, Mannhelm, Germany).
The primers used include Sox4, Sdcbp, Ezh2 and TATA box binding protein (Tbp) (for
sequences please see Table S2) [36,37]. miR RT-PCR was conducted by isolating RNA, as
described above, and subsequently using Applied Biosystems reverse transcriptase for
miRs (Thermo, cat# 4366596), following the manufacturers’ protocol. This was completed
in conjunction with Taqman primers for the following miRs and normalizers: miR-129-5p
and small nucleolar RNAs (SNORD)-234. Values for both mRNA and miR RT-PCR were
normalized using the delta cycle time method [38].

2.8. Transfection of Neural Progenitor Cells

Neural progenitor cells were plated as monolayers (as described above) and were
transfected after 24 h, as previously described [19]. Briefly, cells were transfected using
Lipofectamine RNAiMAX (Life technologies, cat#13778-150) with miR-129-5p mimics (In-
vitrogen, cat#4464066) or scrambled control (Invitrogen, cat#4464058). For experiments
where we inhibited miR-129-5p, NPCs were transfected with locked nucleic acid-modified
oligonucleotide miR-129-5p inhibitor (Qiagen, cat# Y104102971-DDC) or scrambled in-
hibitor control (Qiagen, cat# Y100199006-DDB).

http://www.targetscan.org
http://mirdb.org
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2.9. miR-Pulldown

To test in NPCs if miR-129-5p were binding to the 3′UTR of Sox4, we performed a
targeted capture experiment, as previously described [39,40]. Briefly, neural progenitor
cells were transfected with biotin-tagged miR-129-5p or biotin-tagged scramble miR du-
plexes using Lipofectamine RNAiMAX (Life technologies, cat#13778-150) according to
the manufacturer’s protocol. After 24 h, cells were harvested and lysed in a 10 mM KCl,
1.5 mM MgCl2, 60 U/mL RnaseOut, 0.5% IGEPAL CA-630, 5 mM DTT, and 1 × Complete
Mini EDTA-free protease inhibitor cocktail. Samples were frozen on dry ice and thawed
at room temperature (22 ◦C), followed by centrifugation at 13,000 rpm at 4 ◦C for 2 min.
The cleared lysates were transferred to a new tube and NaCl was added to a final concen-
tration of 1M. Samples were combined with Dynabeads MyOne Streptavidin (Invitrogen,
cat# 650-01); the beads were previously blocked overnight with 1µg/µL BSA, 1µg/µL
Yeast tRNA, and put on a rotating mixer at room temperature (22 ◦C) for 30 min. After
incubation, Dynabeads were washed three times with wash buffer: 10 mM Tris-Cl pH 7.5,
10 mM KCl, 1.5 mM MgCl2, 0.5% IGEPAL CA-630, 1 M NaCl, 5 mM DTT, 60 U/mL Rnase-
Out, and 1 × Complete Mini EDTA-free protease inhibitor cocktail, to remove molecules
non-specifically bound to the beads.

After washing, beads were resuspended in 100 µL of RNAse-/DNAse-free water and
total RNA was purified using the Pure Link RNA Mini Kit (Invitrogen cat#12183018A)
according to the manufacturer’s instructions. Target transcript Sox4 was evaluated by qPCR
as described above.

2.10. Targeted NextGen Bisulfite Sequencing for the miR-129 Gene

Neural progenitor cells were plated as monolayers and treated with LC (5 µm) and MC
(70 µm) for 48 h. Cells were harvested and kept at−80 ◦C until processing. NPCs Digestion:
Cell pellets were lysed using M-digesting Buffer (ZymoResearch; Irvine, Ca; cat# D5021-9)
and 5–10 µL of protease K (20 mg/mL), with a final M-digestion concentration of 2X. The
samples were incubated at 65 ◦C for at least 2 h. Bisulfite Modification: 20 µL of supernatant
from the sample’s extracts was bisulfite-modified using the EZ-96 DNA Methylation-Direct
Kit (ZymoResearch; Irvine, CA, USA; cat# D5023) as per the manufacturer’s instructions.
The bisulfite-modified DNA samples were eluted using M-elution Buffer in 46 µL. Multiplex
PCR: All bisulfite-modified DNA samples were amplified using separate multiplex or
simplex PCRs. PCRs included 0.5 units of HotStarTaq (Qiagen; Hilden, Germany; cat#
203205), 0.2 µM primers, and 3 µL of bisulfite-treated DNA in a 20 µL reaction. All PCR
products were verified using the Qiagen QIAxcel Advanced System (v1.0.6). Prior to
library preparation, PCR products from the same sample were pooled and then purified
using the QIAquick PCR Purification Kit columns or plates (cat# 28106). Samples were
run alongside established reference DNA samples with a range of methylations. They
were created by mixing high- and low-methylated DNA to obtain samples with 0, 5, 10,
25, 50, 75, and 100% methylation [41]. The high-methylated DNA is in vitro enzymatically
methylated genomic DNA with >85% methylation. The low-methylated DNA is chemically
and enzymatically treated with <5% methylation. Library Preparation and Sequencing
Libraries: We used a custom library preparation method created by EpigenDx. Next, library
molecules were purified using Agencourt AMPure XP beads (Beckman Coulter; Brea, CA,
USA; cat# A63882). Barcoded samples were then pooled in an equimolar fashion before
template preparation and enrichment were performed on the Ion Chef™ system using Ion
520™ and Ion 530™ ExT Chef reagents (Thermo Fisher; Waltham, MA, USA; cat# A30670).
Following this, enriched, template-positive library molecules were sequenced on the Ion
S5™ sequencer using an Ion 530™ sequencing chip (cat# A27764). Data Analysis: FASTQ
files from the Ion Torrent S5 server were aligned to a local reference database using the
open-source Bismark Bisulfite Read Mapper program (v0.12.2) with the Bowtie2 alignment
algorithm (v2.2.3). Methylation levels were calculated in Bismark by dividing the number
of methylated reads by the total number of reads. An R-squared value (RSQ) was calculated
from the controls set at known methylation levels, to test for PCR bias.
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2.11. Immunofluorescence, Microscopy, and Data Analysis

Immunofluorescence was conducted as previously described [19]. In brief, E17.5 brains
were fixed in 4% paraformaldehyde, cryoprotected in a sucrose gradient from 10–30%,
and subsequently frozen. Coronal sections (20 µm) via cryosectioning were prepared for
immunostaining with a blocking solution constituting of 5% goat serum and 0.1% TritionX-
100. The coronal sections were subsequently incubated with the following antibodies:
SOX4 1:500 (Santa Cruz, Dallas, TX, USA; cat# sc-518016); H3K27me3 1:1000 (Cell Signaling,
Boston, MA; cat# C36B11) and RNA pol-II 1:500 (Abcam, cat# ab252855). The antibodies
were diluted in the blocking solution and incubated overnight. The next day, slides
were washed with blocking solution and incubated with the secondary antibodies, which
included goat anti-mouse Alexa-Fluor 488 1:500 (Jackson ImmunoResearch, West Grove, PA,
USA; cat# 111-545-003), goat anti-rabbit Alexa-Fluor 488 1:1000 (Jackson ImmunoResearch,
West Grove, PA, USA; cat# A11034), goat anti-mouse Alexa-Fluor 555 1:1000 (Jackson
ImmunoResearch, West Grove, PA, USA; cat# A21434), and 4′,6-diamidino-2-phenylindole
(DAPI) 1:2000 (Thermo, cat# D1306), which were all diluted in the blocking solution for 1 h.
Following incubation, slides were washed with the blocking solution and mounted using
fluormount (Sigma; cat# F4680). Images were captured using a Zeiss LSM 710 confocal
microscope (Zeiss GmbH, Oberkochen, Germany). Z-stacks were acquired for each coronal
section with 40× objectives. Cell counts and tissue measurements were obtained with
ImageJ version 1.54c (NIH; Bethesda, MD, USA) and LSM Browser (Zeiss GmbH) software,
version 4.2.0.121. All quantifications were blinded to the Research Technician.

2.12. Statistical Analyses

Statistical analyses were performed using Prism 9 (GraphPad Software, La Jolla, CA,
USA) and power analysis was conducted using G*Power 3 [42]. The distribution of data was
tested for normality and the Brown–Forsythe test (F test) was used to compare variances
amongst experimental groups. Outliers were determined using ROUT test with a Q = 1%.
Groups that had non-significant variances were compared using One-way ANOVA or t-test.
Groups with significant variances were compared using non-parametric Kruskal–Wallis
test or Mann–Whitney test. Data are presented as mean ± standard error.

3. Results
3.1. miR-129-5p Is Predicted to Bind to SOX4 mRNA and SOX4 Protein Is Reduced in the SVZ of
E17.5 Cortices under an LC Status

We previously found in sorted NPCs that LC intake during neurogenesis led to the
overexpression of miR-129-5p [19]. This miR is expressed primarily in the subventricular
zone (SVZ) and ventricular zone (VZ) of the cortex over the course of neurogenesis, and its
expression is elevated in the later stages of neurogenesis (E16.5–E17.5) [43]. Using the miR
databases TargetScan and miRDB, we found that miR-129-5p was predicted to target Sox4
in four different binding sites in the 3′ untranslated region (UTR) (Figure S1A). However,
binding between miR-129-5p and Sox4 had not been determined in NPCs. Since SOX4 is also
expressed in the SVZ and, to a lesser degree, the VZ during the same period of neurogenesis
as miR-129-5p, this suggested to us that miR-129-5p could bind to Sox4 in NPCs [25]. First,
we evaluated protein levels of SOX4 in the SVZ. To achieve this, we collected E17.5 cortices
from dams fed either an LC, MC, or HC diet and subsequently conducted immunostaining
for SOX4 protein in the SVZ of E17.5 fetuses. From the immunostainings, we found a
reduction in SOX4-positive cells in the SVZ of the LC brains when compared with MC
and HC, and no differences in SOX4-positive cells were observed between MC and HC.
(Figure 1a,b). This led us to confirm that SOX4-positive cells are reduced under maternal
low choline availability in the SVZ of the developing brain.
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Figure 1. Low choline availability results in reduced SOX4 protein levels in NPCs isolated from
E17.5 brains and in fetal cerebral cortex. Time-mated dams were placed on either a low, medium, or
high choline diet from E11.5 to E17.5. (a) The quantification of the SVZ in E17.5 embryos showed
a reduction in SOX4-positive cells under low-choline conditions (n = 5 dams per condition, 2 pups
per dam) (p = 0.0006, ns = not significant). (b) Immunostaining was used to visualize the cells of
the SVZ under low-choline conditions, showing reduced numbers of SOX4-positive (seen in green)
compared to cells under LC, MC, or HC conditions (n = 5 dams per condition, 2 pups per dam) (scale
bar: 50 µm). (c) mRNA levels of Sox4 in NPCs were determined using RT-PCR and demonstrated no
change in Sox4 mRNA under any choline condition (n = 5 dams per condition, 1–4 pups per dam)
(ns = not significant). (d) Quantification of SOX4 shows a reduction in protein levels in NPCs under
low-choline conditions relative to medium- and high-choline conditions (n = 6 dams per condition,
1–4 pups per dam) conditions (HC vs. LC p = 0.0008, MC vs. LC p = 0.0003, ns = not significant).
(e) Representative Western blot of SOX4 expression LC, MC, and HC conditions, showing a reduction
in SOX4 in LC. Data are mean ± SEM. All data were tested for normality by Brown–Forsythe test and
analyzed by One-way ANOVA. LC = low choline, MC = medium choline.

3.2. SOX4 Protein, but Not mRNA, Is Reduced in NPCs In Vitro at 48 h with an LC Status

We reasoned that reduction in SOX4-positive cells in the SVZ was probably driven
by its low protein levels in NPCs in LC condition. To test this, we used an in vitro model
by culturing NPCs in either LC, MC, or HC media. We initially used qPCR to assess
mRNA levels of Sox4 and found no changes in its mRNA under any choline condition at
48 h (Figure 1c). However, we found around a ~40% reduction in SOX4 protein level by
Western blot in NPCs under LC availability for 48 h (Figure 1d,e). This further suggested
to us that Sox4 was prospectively targeted post-transcriptionally via miR-129-5p. This
also recapitulates our findings in vivo, validating our in vitro model. Since we found
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no differences between MC and HC in Sox4 mRNA or SOX4 protein expression, this
substantiated to us that MC was a sufficient level of choline to compare against low choline
availability to test the rest of our hypothesis. Together, these results demonstrated that LC
availability in vivo and in vitro significantly reduces the protein levels of SOX4 in NPCs.

3.3. SOX4 Protein Is Reduced in Both the Cytoplasm and Nucleus In Vitro in NPCs with an
LC Status

One of the regulation steps of SOX transcription factors is the trafficking of the pro-
teins between cytoplasm and nucleus to balance the access to their target genes [44]. We
wondered if the reduction in SOX4 protein levels in NPCs was specific to a cellular com-
partment. To test this, we treated NPCs with LC or MC media for 48 h, followed by cellular
fractionation to separate cytoplasmic and nuclear SOX4 protein. Corresponding protein
levels were then determined through Western blot. We found a statistically significant
reduction in SOX4 in the cytoplasm of NPCs treated with LC, of ~40% (Figure 2a,b). When
we evaluated protein levels in the nucleus of NPCs, we found a more pronounced reduction
in SOX4, showing a ~50% decrease (Figure 2c,d). Moreover, the ratio between nuclear and
cytosolic SOX4 showed a significant reduction in SOX4 protein levels under LC conditions
(Figure 2e). Since SOX4 is a transcription factor that regulates many developmental pro-
cesses [45], our results strongly suggest that a reduction in SOX4 in the nucleus could have
an impact on their target genes, thus altering the cell fate of NPCs.
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Figure 2. SOX4 protein levels are reduced in both cytoplasm and nucleus in vitro under low-choline
conditions. Cortical NPCs were cultured in either LC (5 µM) or MC (70 µM) for 48 h. (a) Repre-
sentative Western blot of cytosolic SOX4 protein expression in LC and MC conditions. (b) Quan-
tification of SOX4 cytosolic protein levels shows a reduction in SOX4 in NPCs under low-choline
conditions compared to MC (cells derived from n = 5–6 dams per condition, 1–4 pups per dam)
(p = 0.0003). (c) Representative Western blot of nuclear SOX4 protein expression in LC and MC
conditions. (d) SOX4 protein quantification shows a reduction in SOX4 in the nucleus of NPCs under
LC conditions compared to MC, suggesting a reduction in SOX4 DNA binding capacity (cells derived
from n = 5–6 dams per condition, 1–4 pups per dam) (p < 0.0001). (e) SOX4 nuclear cytosolic ratio is
overall reduced under LC conditions (cells derived from n = 5–6 dams per condition, 1–4 pups per
dam) (p = 0.0273). Data are mean ± SEM. All data were tested for normality by Brown–Forsythe test
and analyzed by an unpaired t-test. LC = low choline, MC = medium choline.
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3.4. EZH2 Protein and mRNA Are Reduced In Vitro in NPCs with an LC Status

SOX4 is a transcriptional factor that regulates genes involved in the cell cycle and cell
migration. The promoter analysis of the SOX4 transcriptional network has been established
in different cell types, including cancer and neural crest cells [46,47]. One of these target
genes is enhancer of zeste homolog 2 (Ezh2). EZH2 is a major regulatory transcription
factor that modulates NPC and IPC differentiation [27,28,48]. Together, SOX4 and EZH2
act as a molecular switch that facilitates the transition of NPCs and IPCs from progenitor
cells to differentiated neurons [25,28,29]. To identify if the reduction in SOX4 we had found
in NPCs treated with LC (5 µM) influenced this molecular switch, we sought to assess
expression levels of EZH2. We first evaluated by qPCR the mRNA levels of Ezh2 and found
a 50% reduction in LC compared to MC (Figure 3a). Then, we performed a Western blot to
assess protein levels of EZH2, and we observed a reduction of ~65% of EZH2 protein in
NPCs exposed to LC (Figure 3b,c). The reduction in both SOX4 and EZH2 in NPCs, under
LC conditions, suggested changes to the NPC cell fate. The reduction in this SOX4/EZH2
switch in NPCs potentially helps to explain, in part, earlier observations made by our lab
showing that pups from dams fed an LC diet have a reduced number of late born neurons
in the cortex of their brain, yet, also have an increased number of early born neurons at
embryonic day 17.5 (E17.5), resulting in aberrant cortical layering [14].
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Figure 3. Low choline results in reduced expression of the SOX4 target Ezh2 at mRNA and protein
levels, in NPCs. Cortical NPCs were cultured in either low choline (5 µM) or medium choline (70 µM)
for 48 h. (a) mRNA levels of Ezh2 are reduced under LC conditions compared to MC conditions
demonstrating that SOX4 reduction has transcriptional effects on one of its targets (cells derived from
n = 6 dams per condition, 1–4 pups per dam) (p < 0.0001). (b) Quantification of EZH2 protein levels is
also reduced under low-choline conditions compared to medium choline, illustrating the downstream
consequences of reduced SOX4 transcriptional outputs (cells derived from n = 7 dams per condition,
1–4 pups per dam) (p < 0.0001). (c) Representative Western blot of EZH2 protein under LC and MC
conditions. Data are mean ± SEM. All data were tested for normality by Brown–Forsythe test and
statistical analysis was performed using an unpaired t-test. LC = low choline, MC = medium choline.

3.5. SOX4 Is Not Degraded at an Increased Rate with an LC Status In Vitro

After confirming that SOX4 protein levels are reduced in vivo and in vitro, and that a
major transcriptional target of SOX4, EZH2, is reduced in NPCs, we sought to determine if
there were other mechanisms involved in SOX4 protein regulation. The post-transcriptional
regulation of SOX4 protein can be mediated via two possible mechanisms: (1) increased
rate or altered degradation of SOX4 protein or (2) a post-transcriptional mechanism, such as
miR-129-5p. Although both TargetScan and miRDB predicted the binding of miR-129-5p to
Sox4, we wanted to determine if miR binding was the sole mechanism of SOX4 degradation
in our NPC model. SOX4 post-transcriptional regulation is mediated by proteasomal
degradation by a ubiquitin- independent mechanism through Proline (p), glutamic acid (E),
serine (S) and threonine (PEST) motif [49]. This PEST region is located in the C-terminal of
SOX4 and is targeted by the proteasome, resulting in its degradation [50]. Hence, in order
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for SOX4 to translocate to the nucleus, function as a transcription factor, and to prevent
its degradation, it must bind to its primary binding partner syndecan binding protein
(SDCBP) [50]. Due to the importance of SDCBP, we wanted to determine if a reduction in
SDCBP was playing a role in the reduction in SOX4 protein. We found that at 48 h, with LC
or MC, there were no significant differences in Sdcbp mRNA by qPCR (Figure 4a). Then,
we proceeded to evaluate protein levels of SDCBP, by Western blot, between LC and MC
status and did not find significant differences (Figure 4b,c). This suggested that the lack of
a primary SOX4 binding partner is not contributing to the mechanism by which SOX4 is
reduced in NPCs.
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Figure 4. Sdcbp mRNA and protein are unchanged in NPCs in vitro. Cortical NPCs were cultured
in either LC (5 µM) or MC (70 µM) for 48 h. For half-life and protein degradation rate assays,
cortical NPCs were cultured in either LC (5 µM) or MC (70 µM) for 24 h and subsequently treated
with cycloheximide. (a) mRNA levels of Sdcbp are unchanged under low-choline conditions (cells
derived from n = 6 dams per condition, 1–4 pups per dam) (ns = not significant). (b) Protein levels of
SDCBP, determined by Western blot, between LC and MC. (c) SDCBP protein quantification is also
unchanged, suggesting SOX4 does not have increased degradation rates due to a reduction in its
binding partner SDCBP (ns = not significant). (d) Degradation rate of SOX4 protein is unchanged
between under low-choline conditions (cells derived from n = 3–4 dams per condition, 1–4 pups per
dam). (e,f) Half-life of SOX4 degradation is unchanged under low-choline conditions, indicating
SOX4 is not undergoing degradation more rapidly than medium choline; (cells derived from n = 3–4
dams per condition, 1–4 pups per dam) (ns = not significant). All data were tested for normality by
Brown–Forsythe test and analyzed by analyzed by Mann–Whitney test (a,c) or unpaired t-test (e,f).
LC = low choline, MC = medium choline.
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Alternatively, we hypothesized that the proteasomal degradation rate was increased
and, therefore, responsible for the reduction in SOX4 in NPCs with an LC status. To test
this hypothesis, we treated NPCs with cycloheximide, a ribosomal inhibitor that blocks the
translation of mRNA to protein, to determine the subsequent rate of SOX4 degradation over
time. We found that SOX4 rapidly degraded and is not apparent after 45 min, matching
previous findings [50]. Moreover, we found no differences in the rate of degradation
between LC and MC status (Figure 4d,e). The half-life for SOX4 was also found not to be
statistically significant between LC and MC status (Figure 4f). Since there was no change
to the SDCBP protein nor translation rate of SOX4, we concluded that the degradation
rate of SOX4 did not play a role in the reduction of its protein levels. Taken together,
these data demonstrate that a reduction in SOX4 protein in NPCs is not mediated by
proteasomal degradation. These findings then led us to further investigate the potential
role of miR-129-5p in the reduction in SOX4 protein.

3.6. MiR-129-5p Is Increased in NPCs with an LC Status In Vitro and Targets SOX4 mRNA

Our second hypothesis for the observed reduction in SOX4 protein was that the Sox4
3′UTR was targeted by a post-transcriptional mechanism, thereby inhibiting the translation
of Sox4 mRNA while not leading to a reduction in its RNA levels in the NPCs. Since we had
predicted miR-129-5p to bind to Sox4 mRNA, we wanted to determine that miR-129-5p was
increased in our in vitro model. Using qRT-PCR, we found that miR-129-5p was increased
~2.5-fold in NPC treated with LC in vitro (Figure 5a).
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Figure 5. miR-129-5p is upregulated in low choline and binds to Sox4 3′UTR in NPCs with an LC
status in vitro. Cortical NPCs were cultured in either LC (5 µM) or MC (70 µM) for 48 h. (a) miR-129-
5p is upregulated in NPCs under LC conditions (cells derived from n = 5 dams per condition, 1-4 pups
per dam) (p = 0.0025). (b) SOX4 is pulled-down with miR-129-5p demonstrating miR-129-5p binding
to SOX4 (cells derived from n = 4 dams per condition, 1–4 pups per dam) (miR-129-5p vs. scramble
miR p = 0.0024, miR-129-5p vs. mock p < 0.0001, scramble miR vs. mock p = 0.0059). (c) Transfections
of a miR-129-5p mimic on NPCs under MC conditions reduced the presence of SOX4 protein (cells
derived from n = 4–5 dams per condition, 1–4 pups per dam) (p = 0.001). (d) miR-129-5p inhibitor
resulted in the inability for miR-129-5p to bind to SOX4 mRNA, resulting in the increase in SOX4
protein (cells derived from n = 5 dams per condition, 1–4 pups per dam) (p = 0.0178). Data mean
± SEM. (e) SOX4 expression from NPCs transfected with either miR-129-5p inhibitor or scramble
miR inhibitor and treated the cells with MC or LC and (f) Quantification of SOX4 fold change in the
NPCs transfected with either miR-129-5p inhibitor or scramble miR inhibitor. All data were tested for
normality by Brown–Forsythe test and analyzed by analyzed by Mann–Whitney test (a) unpaired
t-test (b,d), or One-way ANOVA (f). LC = low choline, MC = medium choline.

Next, we tested if we could detect the binding of mir-129-5p to the Sox4 3′UTR in
NPCs. We performed a miR pull-down in NPCs transfected with biotinylated miR-129-5p
or scramble miR-control and assessed by qPCR the abundance of Sox4 mRNA. We were able
to detect a two-fold increase in the abundance of Sox4 mRNA compared to the scramble
miR (Figure 5b). This confirmed that miR-129-5p binds to Sox4 3′UTR in NPCs.

Then, we wanted to evaluate if the overexpression of miR-129-5p in NPCs in MC
conditions decreased the protein levels of SOX4. To assess that, we transfected a miR-129-5p
mimic or a scramble miR and evaluated SOX4 protein levels by Western blot. We found
a ~35% reduction in SOX4 protein levels when we transfected miR-129-5p compared to
scramble miR (Figure 5c,d).

Conversely, we sought to determine if blocking miR-129-5p was sufficient to restore
SOX4 protein levels in our NPC model, in LC conditions. To accomplish this, we transfected
NPCs with either miR-129-5p inhibitor or scramble miR inhibitor and treated the cells with
MC or LC. We found that NPCs treated with LC status and transfected with miR-129-
5p inhibitor resulted in an increase in SOX4 protein levels when compared to scramble
inhibitor and MC (Figure 5e,f).

All taken together, these results demonstrated that choline regulates SOX4 expression
via miR-129-5p in NPC.

3.7. Low Choline Reduces the Trimethylated Histone H3 at Lysine 27 (H3K27me3) in Fetal Cortices

Next, we asked how choline directly, or indirectly, regulates miR-129-5p. Choline
can be used as a methyl donor, through S-adenosylmethionine [51], and we previously
demonstrated that LC alters the methylation potential in LC embryonic brains [19]. Hence,
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we hypothesized that a reduction in the methylation potential, via LC, in NPCs reduces
DNA methylation in the transcriptional regulatory elements of miR-129-5p. To test this
hypothesis, we performed targeted next-generation bisulfite sequencing in NPCs for the
miR-129 gene. In mice, miR-129-5p was transcribed from two genes—miR-129-1 and
miR-129-2, located in mouse chromosome 2 and chromosome 6 [52]. We evaluated DNA
methylation in both locations; however, we did not find significant differences when
comparing MC vs. LC (Tables S3 and S4).

Our alternative hypothesis was that a reduction in the methylation potential was
impacting histone methylation. Post-transcriptional modifications of histones during
neural development are fundamental to the regulation of transcription and the switch
between the maintenance of self-renewal and the differentiation into other cell types [53].
In the cerebral cortex, EZH2 is key for controlling cortical progenitor cell programming
through the regulation of the repressive mark of the trimethylated histone H3 at lysine
27 (H3K27me3) [28]. As mentioned above, we observed a reduction in the protein levels
of EZH2. This led us to investigate if the protein levels of H3K27me3 in cortices from
embryonic brains were different in LC or MC conditions. We observed in LC a 50%
reduction in the total levels of H2K27me3 (Figure 6a,b). To confirm that these changes
were specific for H3K27me3, we assessed the total levels of the trimethylated histone H3 at
lysine 9 (H3K9me3) and found no significant changes (Figure S1B,C).

Then, to further confirm our results, we performed immunostainings to detect levels
of H2K27me3 in the developing cortex of embryos from LC and MC. We found a ~40%
reduction in H3K27me3 in the developing cortical plate (CP) (Figure 6c–g) after quantifying
integrated density normalized by DAPI (Figure 6g). Moreover, we confirmed that global
transcription is not affected, since levels of phosphorylated RNA pol II remain the same
under MC vs. LC conditions (Figure S2A–C).

Overall, these results show that low choline decreases the levels of H3K27me3 in the
developing brain.
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Figure 6. Low choline availability reduces global H3K27me in fetal brains. Dams were placed on
either an LC or MC diet from E11.5 to E17.5. (a) Cerebral cortex of E17.5 embryos were dissociated
to extract total histones. Cell lysates were analyzed by Western blot with antibodies to H3K27me3
and Total Histone 3 (H3). We observed a reduction in the protein levels of H3K27me3 in LC brains.
(b) Quantifications of protein levels are normalized to H3 and presented as fold change. (n = 4 dams;
1 pup per dam) (p = 0.0415). (c) Representative immunostaining from an E17.5 cerebral cortex exposed
to low choline or (d) medium choline. Low-choline brains exhibit reduced levels of H3K27me3 when
compared to medium choline. (e) H3K27me3 staining in the CP in low-choline brains (f) H3K27me3
staining in the CP in medium choline brains. Cerebral cortex exposed to LC availability have lower
H3K27me3 expression compared to MC. (g) Quantification of H3K27me protein levels was performed
in LC and MC by detection of integrated density from immunofluorescence, levels were normalized
with DAPI. (n = 4–5 dams per condition, 1 pup per dam) (p = 0.0429). Data are mean ± SEM. All data
were tested for normality by Brown–Forsythe test and statistical analysis was performed using an
unpaired t-test.

4. Discussion

The crucial role of choline in brain development is firmly established [1,54,55]. How-
ever, the answers around the molecular mechanism by which maternal choline impacts
the developing fetal brain are still developing. Here, we report for the first time that low
choline availability reduces the transcription factor SOX4 during neurogenesis.

SOX4 has critical developmental functions such as skeletal and heart development; a
lack of SOX4 is lethal in utero [56,57]. Additionally, the postnatal deletion of SOX4 in mice
causes sympathetic nervous system defects [58]. We show here that low choline availability
reduces SOX4 protein levels in the cortex and that its mRNA remains unchanged. Fur-
thermore, we found a whole-cell reduction in SOX4 protein; however, this reduction was
greater in the nucleus compared to that of the cytoplasm. This cell compartmentalization
difference in SOX4 is relevant considering the nucleus is where it functions as a transcrip-
tion factor. SOX4 has many transcriptional targets, including EZH2 [29]. Together, SOX4
and EZH2 act as a molecular switch that facilitates the transition of NPCs and IPCs from
progenitor cells to differentiated neurons [25,28,29]. In our study, we found that the reduc-
tion in SOX4 in the nucleus subsequently led to the reduction in Ezh2 mRNA and protein,
demonstrating that SOX4 alters EZH2 at the transcriptional level depending on choline
status. The reduction in both SOX4 and EZH2 in NPCs, under LC conditions, suggests
changes to NPC cell fate. EZH2 is required for cell identity through depositing the histone
mark H3K27me3, which controls the acquisition of neural fate [59,60]. In human neural
progenitor cells, EZH2 is required for proliferation and neural fate decision [61]. SOX4
and EZH2 aberrant expression in LC NPCs potentially helps to explain, in part, earlier
observations made by our lab. We showed that LC availability reduces the number of
late-born neurons, at embryonic day 17.5 (E17.5), resulting in altered cortical layering [14].
The observed phenotype is caused by nutrient stress, specifically low choline, and we
speculate that a compensating mechanism is turned on to modify the cell fate decision in
the developing brain.
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Transcriptional regulation is carefully orchestrated by synthesis and degradation to
maintain optimal levels. As mentioned before, mechanisms to maintain adequate SOX4
protein levels are mediated, in part, through its binding with SDCBP to prevent proteasomal
degradation [50]. However, we found no changes in Sdcbp mRNA or protein levels in NPCs
from MC vs. LC. Another potential mechanism for SOX4 degradation included choline in-
terfering with protein synthesis, and we did not find significant differences between LC and
MC protein synthesis levels. This informed us that the mechanism by which SOX4 protein
levels are regulated by choline are post-transcriptional and specifically miR-mediated.

miRs are small noncoding RNAs that regulate gene expression at a post-transcriptional
level. Specifically in the brain, miRs help to downregulate multiple genes to ensure proper
protein levels and function [62]. We previously showed that miR-129-5p is upregulated in
LC and targets Egfr, reducing NPC self-renewal capacity [19]. miRs can target multiple
genes, and miR-129 also targets Fragile X mental Retardation gene 1 (Fmr1) and influences
neuronal migration in the developing cortex, in a fragile X model [43]. Previously, we
showed that an overexpression of miR-129-5p, in vivo, under MC conditions alters neu-
ronal migration, and that inhibiting miR-129-5p in vivo, under LC conditions, rescued the
proliferation phenotype.

Here, we demonstrate that choline regulates SOX4 through miR-129-5p. We deter-
mined this thorough miR-129-5p gain of function and loss of function and its impact on
SOX4 protein levels. This is consistent with findings in other models, including a breast
cancer cell line and a melanoma cell line where miR-129-5p targets SOX4 [24,63]. In both
models, it was demonstrated that the expression of miR-129-5p was regulated, in part, by
promoter H3K27me3 methylation, mediated by EZH2 [24,63]. This seems highly likely
to also be the mechanism by which miR-129-5p is upregulated in NPCs under an LC
status, considering the lack of changes in CpG island methylation around the promoter
of miR-129-5p. Previously, we only evaluated H3K27me3 in NPCs in vitro and did not
find significant changes; however, since this histone mark is part of an epigenetic switch
towards differentiation, the analysis in the whole cortex, with different cell types, is a better
approach. Additionally, there is enough evidence of how choline decreases the methyla-
tion potential in the brain [19,64,65]. We speculate that choline epigenetically regulates
miR-129-5p by SOX4/EZH2/H3K27me3 by a feedback loop.

One of the limitations of this study is the reliance on indirect evidence that links
H3K27me3 as a regulator of miR-129-5p. Our future directions are focused on elucidating
the mechanism by which this histone mark directly impacts the expression of miR-129-5p
and, potentially, other genes. This may provide a comprehensive understanding of how
choline availability regulates gene expression involving transcription factors such as SOX4
and epigenetic modifications, specifically H3K27me3.

Our observations confirmed that the hippocampus and cerebral cortex development
depend on choline availability. Here, for the first time, we are linking choline availability
as a mechanism to regulate SOX4 expression.

Altogether, our findings are of interest to human health. Our preclinical data provide
evidence of the importance of adequate choline intake for cerebral cortex development.
According to the latest NHANES survey in the US, pregnant women are consuming below
the recommended choline intake (recommended intake of 425 mg/day) [9]. Additionally,
LC intake during pregnancy correlates with poor visual memory in children at 7 years
old [66], showing that in-utero LC availability has long-lasting effects. A recent meta-
analysis showed that women consuming an LC diet increased up to 2.5 times the risk of
neural tube defects [67]. Inadequate choline consumption is typical in women of repro-
ductive age, and efforts must be made to rethink recommendations on choline intake to
ensure proper brain development and function. Finally, choline availability may have an
outsized effect on perturbed fetal brain development, which may lead to the worsening of
neurodevelopmental disorders.
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