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Abstract: Mushrooms with edible and medicinal potential have received widespread attention be-
cause of their diverse biological functions, nutritional value, and delicious taste, which are closely
related to their rich active components. To date, many bioactive substances have been identified
and purified from mushrooms, including proteins, carbohydrates, phenols, and vitamins. More
importantly, molecules derived from mushrooms show great potential to alleviate the pathological
manifestations of Alzheimer’s disease (AD), which seriously affects the health of elderly people.
Compared with current therapeutic strategies aimed at symptomatic improvement, it is particularly
important to identify natural products from resource-rich mushrooms that can modify the progression
of AD. This review summarizes recent investigations of multiple constituents (carbohydrates, pep-
tides, phenols, etc.) isolated from mushrooms to combat AD. In addition, the underlying molecular
mechanisms of mushroom metabolites against AD are discussed. The various mechanisms involved
in the antiAD activities of mushroom metabolites include antioxidant and anti-neuroinflammatory
effects, apoptosis inhibition, and stimulation of neurite outgrowth, etc. This information will facilitate
the application of mushroom-derived products in the treatment of AD. However, isolation of new
metabolites from multiple types of mushrooms and further in vivo exploration of the molecular
mechanisms underlying their antiAD effect are still required.

Keywords: mushrooms; Alzheimer’s disease (AD); neurodegenerative diseases (NDs); metabolites;
oxidation

1. Introduction

During the past two hundred years, as food quality, medical care, and lifestyles
have continually improved, the elderly population has proportionally increased [1]. It is
reported that 9% of the global population is older than 65, and this number is estimated to
reach 17% by 2050 [2]. The health problems of elderly people cannot be ignored. Today,
Alzheimer’s disease (AD) is one of the neurodegenerative diseases (NDs) with a high
incidence rate; these are disorders characterized by progressive dysfunction and death of
neurons that seriously affect the health of many elderly people [3–5]. It is reported that
the number of patients suffering from NDs was approximately 50 million in 2019, and it
is estimated that this number will continue to increase to 152 million by 2060 [6]. If no
effective prevention and treatment strategy is proposed, the number of Americans over
65 years old with AD is estimated to increase from 6.5 million to 13.8 million between 2022
and 2060 [7]. Furthermore, it is worth noting that a systematic analysis of the widespread
corona virus disease of 2019 (COVID-19) and AD has been recently carried out. An
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increasing amount of data reveal that Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2) infections seriously damage the central nervous system (CNS) of patients,
and this may further increase the incidence rate and severity of AD [8,9]. It is evident
that AD is closely related to disability, motor dysfunction, dementia, and even death, thus
representing a huge challenge, in particular for the elderly [10–12].

In recent years, as technology has developed and improved, many drug development
and innovative treatment strategies for AD have emerged. However, although great
efforts have been made to treat this disease, the currently available medical measures and
medicines to halt its progression remain a source of frustration [10,13]. The majority of
medications are targeted at the transient relief of the symptoms of AD rather than the
underlying source of the disease [14]. Therefore, research on the prevention and treatment
of AD is considered a global health issue. In this regard, natural functional ingredients
isolated from mushrooms have been highlighted as potential innovative drugs [15,16].

Mushrooms are macroscopic fungi belonging to the Basidiomycota or Ascomycota
phyla [17]. Historically, many wild mushrooms, such as Ganoderma lucidum and Cordyceps,
have a wide range of edible and medicinal potential because of their diverse biological
functions, nutritional value, and delicious taste, and these applications can be traced back
to prehistoric times, particularly in Asian cultures [18–22]. Although some mushrooms
have been found to be toxic, the beneficial activities of many mushrooms, including their
antimicrobial, anticancer, and antioxidant properties, have been widely studied [23,24].
Additionally, mushroom resources are abundant in the world. Today, there may be as many
as 140,000–160,000 mushroom species, and these diverse resources mean that mushrooms
have great application potential in food, medicine, cosmetics, and other fields. However,
to date, only a few species of mushrooms have been explored, accounting for only about
10% of all types of mushrooms, and of these, about 700 mushroom species have been found
to be beneficial in the treatment of diseases [24,25]. Thus, there remains a large number of
mushroom resources requiring further investigation.

Meanwhile, the number of articles recording the effects and molecular mechanisms of
mushrooms in the treatment of NDs, and AD in particular, has gradually increased. The
number of publications between 2010 and 2023 covering the potential of mushrooms to
alleviate AD is shown in Figure 1. Including 2010, overall, about 86 research articles were
found from the searches of the ScienceDirect database using the keywords “mushrooms”
and “Alzheimer’s disease”. This review aims to summarize the beneficial roles of various
mushroom metabolites for neuroprotection revealed in recent years, with an emphasis
on AD.
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2. The Main Targets for Treating Alzheimer’s Disease

Analysis of pathophysiological mechanisms is crucial for selecting a novel drug for
AD control. However, the etiology of this disease has unfortunately yet to be fully clarified,
and this is a limiting factor in its prevention and control [26]. Nevertheless, the following
cellular and molecular events associated with the occurrence and progression of AD are
widely accepted (Figure 2) [13,27].
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2.1. Deposition of Aggregated Proteins

As essential biological macromolecules, the precise folding of proteins is particularly
important for the execution of their function. Once the normal folding of proteins is broken,
the sticky surface can be exposed and eventually aggregate into nonfunctional and toxic
fibers [28]. In terms of pathological changes, neurotic plaques formed by amyloid beta
peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau
proteins are widely found in AD patients, which ultimately induce the loss of neurons
as well as synapses in patients [29,30]. The amyloid fibrils or toxic oligomers aggregated
by misfolded proteins (prion protein, TAR DNA-binding protein, microtubule-associated
protein tau, Aβ, etc.) are deposited in specific neuron cells or tissues to form insoluble
extracellular plaques and intracellular inclusions [31–33]. Misfolded or aggregated proteins
increase the risk of AD because they cause protein dysfunction and even enhance toxic
functions, which further leads to a reduction in neurons [34–36]. Aβ can cause multiple toxic
reactions, such as the disruption of the intracellular calcium balance, abnormal membrane
potential, and acceleration of cell apoptosis and synaptic loss [37]. An increasing number
of attempts have been made to prevent the formation of protein aggregates, in addition to
their elimination and regulation [38].

2.2. Modulation of Oxidative Stress

Once the balance between the generation and detoxified ability of oxidants is broken,
oxidative stress is formed, which is usually characterized by an obvious increase in free
radicals such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) [39–41].
Generally, appropriate concentrations of ROS and RNS are particularly important for
maintaining the normal function of living organisms as secondary messengers and can
be scavenged by endogenous antioxidant systems, such as superoxide dismutase (SOD),
glutathione peroxidase (GSH-Px), etc. [39,42–45]. However, oxidative stress can cause
interference with the cell membrane function, irreversible damage to various functional
cell components, including neuronal cell components (proteins, lipids, DNA, etc.), and
even cell death. Additionally, there are reports concerning the deleterious effects of RNS

Biorender.com
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on neurons [39,46,47]. Hence, oxidative stress undoubtedly poses a certain threat to many
diseases (cardiovascular disease, diabetes, cancer, etc.) [48–50]. Because of its high oxygen
demand, low antioxidant capacity, and large quantity of oxidizable unsaturated fatty
acids, brain tissue is extremely susceptible to oxidative damage [51]. There is a significant
amount of evidence to indicate that elevated oxidative stress is also closely associated
with events including neuronal injury, aging and apoptosis, and inflammatory response,
further accelerating the pathological changes and cell demise associated with AD and
many other NDs [52,53]. Some studies have shown that Aβ plaque is able to reduce
mitochondrial redox activity and further trigger ROS accumulation. Others consider that
ROS contributes to the accumulation of Aβ in individuals with AD [54–56]. These findings
support antioxidants as popular screening targets for antiAD drugs.

2.3. Alleviation of Neuroinflammation

There is emerging evidence that neuroinflammation is an important early event in
AD [57]. Neuroinflammation, the defensive response of CNS to a range of adverse stimuli
such as infection, brain injury, and toxins, is a key protective strategy for the body [58,59].
However, high-level and persistent neuroinflammation also has negative effects on nervous
tissue [60]. Two types of CNS glial cells, namely, microglia and astrocytes, are considered to
characterize neuroinflammation [58]. Overactivated CNS glial cells can lead to the release
of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α,
etc.), superoxide, free radicals, and cytotoxic mediators (nitric oxide, etc.), which may
further induce neuronal death and synaptic dysfunction, inhibit neurogenesis, and worsen
CNS damage through different pathways [38,61,62]. Furthermore, the production and
deposition of Aβ are promoted by the cytokines and activated microglia [63–65].

2.4. Mitochondrial Dysfunction

Sufficient energy is particularly important for maintaining the survival and excitability
of neurons, which mainly depend on the appropriate function of mitochondria. Mitochon-
dria are widely involved in different physiological processes, including cell respiration,
metabolism, energy generation through oxidative phosphorylation, intracellular signaling,
cell survival and death, etc., [66,67]. In addition, ROS are generated and accumulated as
by-products of the synthesis of ATP with the help of mitochondria and further destroy a
variety of molecules [67,68]. Modern research shows that the accumulation of mitochon-
drial DNA deficiencies and mutant proteins in mitochondria, the decline of mitochondrial
membrane potential (MMP), and calcium influx disorder are significant changes in delayed
NDs. These pathological changes contribute to the regulation of neurotransmission and
reduction in the survival of neurons [67,69]. Impaired mitochondrial biogenesis and traf-
ficking, dysfunctional electron transport chains, imbalances in the concentration of calcium
ions, and altered mitochondrial dynamics are all considered to be important pathways that
participate in the occurrence and development of AD [70,71]. As a result, it is recognized
that improving mitochondrial function is a potential treatment strategy to alleviate AD.

2.5. Cell Apoptosis, Necrosis, and Autophagy

Apoptosis, necrosis, and autophagy are all reported to play roles in neuronal cell
death [72]. With regard to apoptosis, there is increasing evidence to confirm that neural cells
with typical characteristics of apoptosis (DNA fragmentation, chromatin condensation, etc.)
are present in AD and other NDs [73,74]. Apoptosis, an important process of programmed
cell death (PCD), is thought to be the pathway of neuron loss in all NDs [75,76]. For example,
overexpression of proapoptotic protein and downregulated antiapoptotic protein were
detected in the brains of individuals with AD [73]. In addition, necrosis and autophagy
are also reported to play critical roles in AD. Necrosis is mainly mediated by RIPK1
(receptor-interacting protein kinase 1), RIPK3 (receptor-interacting protein kinase 3), and
MLKL (mixed lineage kinase domain-like protein), which form a complex called necrotic
corpuscles, leading to necrosis [77]. It is reported that increased RIPK1 and MLKL levels
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are observed in AD patients. Additionally, it is widely accepted that autophagy as an
intracellular degradation process is beneficial for eliminating misfolded proteins, and its
relationship with NDs has received increasing attention [72]. It is also reported that a
disorder of the autophagy process can promote the formation of Aβ plaque and NFTs,
which further promote the release of proinflammatory factors, generation of ROS, and
nerve cell death [78].

2.6. Other Factors

To date, excitotoxicity [79], dysregulation of neuronal calcium homeostasis [80], gut
microbiota [81], cholinergic deficit heredity [82], and virus infection [83], etc. have also
been reported to be related to NDs.

3. Diversity of Mushroom-Derived Metabolites Beneficial to AD and Their
Possible Mechanisms

Many bioactive substances have been identified and purified from mushrooms, such
as easily digested proteins, carbohydrates, terpenes, vitamins, etc. [84,85]. The diverse
metabolites of mushrooms also demonstrate potential neuroprotective properties [86]. In
this section, we will briefly discuss recent investigations and the possible mechanisms of
important mushroom bioactive constituents for the alleviation of the pathological manifes-
tations of AD.

3.1. Carbohydrates

Carbohydrates, particularly polysaccharides, are the main nutrients in mushrooms.
Polysaccharides, which are polymers composed of monosaccharides, have been found
extensively in the hyphae of mushrooms [21]. Because of their advantages of low toxicity,
biodegradability, stability, and low price, various polysaccharides derived from mushrooms
have been increasingly valued for their neuroprotective properties [14,87,88]. To date,
numerous researchers have provided a significant amount of evidence for the application
of crude or purified polysaccharides in the treatment of AD. Typical polysaccharides and
oligosaccharides isolated from mushrooms, together with their protective actions against
AD, are listed in Table 1. Research has also been conducted to identify the neuroprotective
mechanism of mushroom polysaccharides. To date, the neuroprotective mechanisms of
mushroom polysaccharides have been primarily identified as the prevention of neuronal
apoptosis [89] and oxidative damage [90], the reduction of Aβ deposition [91], the inhibition
of acetylcholinesterase (AChE) [92], and the regulation of neuroinflammation [93] (Figure 3).

Polysaccharides extracted from Dictyophora indusia, Pleurotus ostreatus, and Flammulina
velutipes have been proven to exhibit neuroprotective effects, which are related to their
ability to alleviate the increase in ROS and peroxide products levels and enhance the
activity of antioxidant enzymes [90,94,95]. Amanita caesarea is a nutritional mushroom
widely grown in China, and the potential use of its isolated polysaccharides has been
investigated. Li et al. purified polysaccharides called ACPS from a water extract of A.
caesarea. They found that pretreatment of the hippocampal neuron cell line (HT22) with
ACPS before exposure to L glutamic acid (L Glu) clearly improved the decline in cell viability,
apoptosis rate, intracellular ROS level, and changes in MMP. Furthermore, improvements
in abnormal behaviors were observed in AD model mice, together with reduced Aβ

deposition and oxidative stress in the brain. They also found that this action of ACPS
was attributed to its improvement of Nrf2-mediated oxidative stress [96]. Additionally,
the polysaccharides from A. caesarea exhibit an anti-inflammatory effect and improve the
cholinergic system function in vivo [97]. Similarly, Hericium erinaceus polysaccharide (HEP)
reduced the neurotoxicity of pheochromocytoma cells (PC12) induced by L Glu treatment,
which was reported to be related to inducing cell differentiation, blocking overload of
intracellular calcium, inhibiting ROS production, and preventing mitochondrial membrane
depolarization. Furthermore, it was demonstrated that HEP improved memory impairment
and behavior abnormality in mice with AD established by treatment with D-galactose and
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AlCl3 [98]. The study by Zhang et al. mentioned that a neutral polysaccharide (SCP-1)
composed of a basic skeleton and branches was purified from an edible and medical
mushroom, Sparassis crispa. It is noteworthy that the role of SCP-1 in the treatment of AD
has also been observed in vivo. Using 16S rRNA sequencing technology, the growth of
intestinal inflammation-related bacteria has been detected in AD mice treated with SCP-
1, suggesting that this polysaccharide may alleviate the symptoms of AD by regulating
intestinal microbiota and further inhibiting inflammation [99,100]. Additionally, as shown
in Table 1, multiple polysaccharides isolated from various mushrooms, including Grifola
frondosa [101], G. lucidum [102], Armillaria mellea [103], Cordyceps cicadae [104], Pleurotus
eryngii [91], Inonotus obliquus [105], and Tremella fuciformis [106], are considered potential
candidates for the management of AD.
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In addition to polysaccharides, oligosaccharides also receive attention in terms of
neuroprotection. Tello and coworkers attempted to assess the neuroprotective potential
of the oligosaccharide fraction obtained from G. lucidum. They found that the changes in
behavior and histopathology in rats treated with kainic acid were relieved [107]. Collec-
tively, the above findings suggest that mushroom carbohydrates are promising candidates
as therapeutic drugs for the treatment of AD.

Biorender.com
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Table 1. The studies of beneficial effect of mushroom carbohydrates on Alzheimer’s diseases in vivo and in vitro (Increase, ↑; Decrease, ↓).

Mushroom
Species Name Molecule

Weight (kDa)
Experimental

Models Dose and Periods Effect Potential Mechanism Ref.

Amanita
caesarea

Polysaccharide
(ACPS) 18.620, 33.500

HT22 cells exposed
to L-Glu, AD
mouse model
established by
D-galactose plus
aluminum
trichloride

In vitro test: 2.5 or
5 µg/mL for 3 h.
In vivo test: 2.5 or
5 mg/kg for
42 days

In vitro test: Cell viability, MMP ↑
Apoptotic rate, ROS levels, intracellular Ca2+ ↓
The expression of Bcl-2, HO-1, SOD1, GCLC and
the Nrf2 levels in nucleus ↑
The expression of Bax, cleaved caspase-3, Keap-1,
cytochrome C and the Nrf2 levels in cytoplasm ↓
In vivo test:
AD-like behavior, Aβ1-42 level in brain, Aβ

plaque, Ach and choline ChAT, SOD ↓
Aβ1-42 level in serum, AChE, GSH-Px, SOD ↑

Modulation of
Nrf2-mediated oxidative
stress

[96]

Polysaccharide
(ACPS2) 16.6 APP/PS1 mice 6 weeks

Cognition ability and anxious behavior ↑
Tumor necrosis factor-α, interleukin-1β ↓
Brain injury, Aβ deposition, tau
hyperphosphorylation↓

Regulation of
Nrf2-mediated oxidative
stress and further
inhibiting endoplasmic
reticulum stress and
nuclear factor-kappa B
(NF-κB) activation

[97]

Armillaria
mellea

Mycelium
polysaccha-
rides
(AMPS)

HT22 cells exposed
to L-Glu, AD
mouse model
established using
AlCl3 coupled with
D-galactos

In vitro test: 10, 20,
40, and 80 µg/mL
for 3 h
In vivo test: 25,
100 mg/kg/day,
4 weeks

In vitro test:
Cell viability, Mitochondrial membrane potential
(MMP) depolarization ↑
Nuclear apoptosis, ROS, Caspase-3 activity ↓
In vivo test:
AD-like behavior, TUNEL-positive apoptotic
neurons, AchE level, ROS, the expression of Aβ

in the hippocampus, 4-NHE levels, and p-Tau
aggregation ↓
Ach level, ChAT level, SOD and GSH-Px level,
serum Aβ1-42 concentrations ↑

Modulation of oxidative
stress and antiapoptosis [103]

Cantharellus
cibarius

Polysaccharide
fractions (CC2a,
CC3)

Different in vitro
assays

10, 25, 50,
100 µg/mL, 48 h

Neurons viability and neurite outgrowth ↑
LDH level in cell culture medium ↓
Mitochondrial dehydrogenase activity ↑
Lactate dehydrogenase activity ↓
Neurite outgrowth ↑
DCF ↓

Antioxidant capacity [108]
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Table 1. Cont.

Mushroom
Species Name Molecule

Weight (kDa)
Experimental

Models Dose and Periods Effect Potential Mechanism Ref.

Cordyceps
cicadae

Polysaccharides
(CPA-1, CPB-2)

PC12 (pheochromo-
cytoma) cells
treated with
glutamate

25, 50, 100, and
200 µg/mL, 24 h

Cell viability, GSH-Px activity, SOD activity ↑
LDH breakage, ROS production, intracellular
Ca2+ level, MDA level ↓

Antioxidant [104]

Cordyceps
sinensis

Polysaccharide
(CSP-1) 210 PC12 cells treated

with H2O2
25, 50, 100 µg/mL Survival of cells, the activity of SOD and GSH-P ↑

MDA level ↓ [109]

Dictyophora
indusiata

Polysaccharides
(DiPS)

Neurodegenerative
C. elegans model

0.5–4.0 mg/mL,
various times

Survival rate, SOD activity, mitochondrial
membrane potential, and ATP content ↑
ROS and MDA levels ↓
DAF-16/FOXO ↑
polyQ- and Aβ-mediated behavior disorders ↓

Antioxidant [90]

Flammulina
velutipes

Polysaccharide
(FVP)

D-galactose-
induced AD
model

400 mg/kg/d,
30 days

Cognitive ability ↑
SOD, CAT, and GSH-Px activities, Bcl-2
expression ↑
Apoptosis rate, Bax, cytochrome C, caspase-3,
caspase-9, apoptosis-inducing factor expression
levels, MDA level ↓

Anti-oxidant and
anti-apoptosis [95]

Hericium
erinaceus

Polysaccharide
(PHEB) 36.1

B6C3-Tg
(APPswePSEN1d
E9)/Nju double
transgenic mice

25 and 100 mg/kg
body weight,
6 weeks

Cognitive behavior, ChAT, and Ach level, serum
levels of Aβ1-42, SOD and GSH-Px activity, the
levels of Nrf2, the expression of mTOR, SHANK3,
Akt, GABBR1, PKA, GluT1, Neurogranin ↑
Inflammation in brains, AChE, Aβ plaque area,
phosphorylated tau plaques, and neurofibrillary
tangles in hippocampus, MDA and ROS levels,
the levels of Keap1 ↓
P-Ca2+/calmodulin-dependent kinase IV
(CaMKIV), P-CaMK II, ERK 1/2, Ras, P-GluR2 ↓

Modulation of the
oxidative stress-related
calcium homeostasis via
regulating the CaMK II/IV

[110]

Ganoderma
atrum

Polysaccharide
(PSG-1) 1013 Mice treated with

D-galactose

50, 100, or
150 mg/kg body
weight, 4 weeks,
once a day

SOD, CAT, GPx, and GSH-Rd activities, GSH
content ↑
GSSG and MDA level, apoptosis, ROS
production, and calcium levels ↓

Protecting the brain
against oxidative damage
via modulation of the
redox system and
maintenance of calcium
homeostasis

[111,112]
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Table 1. Cont.

Mushroom
Species Name Molecule

Weight (kDa)
Experimental

Models Dose and Periods Effect Potential Mechanism Ref.

Ganoderma
lucidum

Polysaccharide
(GLP) 15

Neural progenitor
cell (NPC) and
transgenic AD mice

In vivo test:
30 mg/kg body
weight, once per
day, 90 days;
In vitro test: 10, 30,
100, 300 µg/mL

Cognitive function ↑
Double-positive cells (BrdU/NeuN) number in
the hippocampus ↑
The number of Ki67 and SOX2 double-positive
proliferation NPC, Phosphorylation of FGFR1,
ERK, AKT ↑
6E10-postitive Aβ area ↓

GLP is capable of
improving the activation
of fibroblast growth factor
receptor 1 (FGFR1)
signaling to promote
neurogenesis

[102]

BV2 microglia and
primary mouse
microglia, zebrafish

In vitro assays: 2 h,
1–1000 ng/mL for
BV2, 0.3–100
ng/mL for primary
microglia
In Zebrafish,
1 µg/mL, 12 h-5 d
postfertilisation

IL-1β, IL-6 and iNOS expression ↓
The expression of TGFβ ↑
MCP-1 and C1q expressions ↓
Microglial migration, morphological alterations,
and phagocytosis probabilities ↓

The modulation effect of
GLP on microglial
inflammatory and
behavioral responses
might be involved in the
neuroprotective effect of
GLP

[93]

Oligosaccharide
fraction (GLOS) 0.8–1.3

Rats treated
intraperitoneally
with kainic acid
(10 mg/kg body
weight)

10, 40, 80 mg/kg
body weight

Mortality, neuronal loss, staining for (GFAP), the
expression of IL-1β and TNF-α ↓

Inhibiting the production
of glia-derived toxic
factors (IL-1β and TNF-α)

[107]

Grifola
frondosa

Proteo-β-
glucan
(PGM)

APPswe/PS1∆E9
(APP/PS1)
transgenic mice
(AD model)

intraperitoneal
injection of PGM (5,
10, 20 mg/kg body
weight per day) for
3 months

Learning and memory capability, the number of
Nissl bodies and neurons, the expression of
astrocyte marker (GFAP) and microglial marker
(Iba1), microglial recruitment to the Aβ plaques,
Aβ phagocytosis ↑
Histopathological abnormalities and necrotic
neurons, the mean area containing
Aβ1-42-positive plaques ↓

PGM could improve
memory impairment via
immunomodulatory action

[101]
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Table 1. Cont.

Mushroom
Species Name Molecule

Weight (kDa)
Experimental

Models Dose and Periods Effect Potential Mechanism Ref.

Inonotus
obliquus

Polysaccharide
(IOPS) 111.9

L-glutamic acid
(L-Glu)-injured
HT22 cells and
amyloid precursor
protein/presenilin
1 (APP/PS1)
transgenic mice

In vitro test: 5 or
10 µg/mL for 3 h
In vivo test: 25 or
50 mg/kg/d (i.g.),
once daily, 8 weeks

In vitro test:
Cell viability ↑
Apoptosis, caspase-3 activity, release of LDH,
ROS, the levels of Bax and Keap1↓
MMP, Bcl-2, Nrf2, HO-1, SOD-1 and cysteine
ligase catalytic subunit (GCLC) ↑
In vivo test:
Memory and cognition ability ↑
Aβ1-42 deposition, the number of neuronal fiber
tangles, 4-HNE, and Keap1 levels in brain↓
SOD and GSH-Px level, Nrf2, HO-1, GCLC and
SOD-1↑

Modulation of oxidative
stress and mitochondrial
apoptosis

[105]

Lentinula
edodes

(1, 3)/(1,
6)-β-glucan

High-fat
diet-induced mice

Mice supplemented
with β-glucan from
I. edodes
(500 mg/kg food)
for 7 days or
15 weeks

The abundance of Proteobacteria, energy intake,
the order Clostridiales, class Clostridia, family
Lachnospiracease, and family Ruminococcaceae
in mice short-term supplemented with
β-glucan. ↑
The proportion of Firmicutes, Proteobacteria,
Actinobacteria in mice long-term supplemented
with β-glucan. ↓
Discrimination index, body weight ↑
Cognitive decline, serum LPS, macrophage
marker F4/80 positive cells, the expression of
IL-6, TNF-α and IL-1β, microglial number, the
proliferation of microglia, the expression of
BDNF and PSD-95 ↓
The expression of occludin ↑

The protective effect
against cognitive
impairments of sample
was demonstrated via
colon–brain axis
improvement in mice
induced by the HF diet

[113]

C57BL/6J mice
aged 9 weeks

60 mg/kg body
weight, 15 weeks

The discrimination index, brain-derived
neurotrophic factor (BDNF), the CD206+ cell
number in colon, IL-10 expression ↑
The number of Ibal1 positive cells, the expression
of complement C3, IL-6, IL-1 β and TNF-α ↓

Promoting M2
macrophage polarization
and increasing IL-10 in the
colon, activation of
microglia, and influencing
the complement C3 and
cytokines expression

[114]
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Table 1. Cont.

Mushroom
Species Name Molecule

Weight (kDa)
Experimental

Models Dose and Periods Effect Potential Mechanism Ref.

Phellinus ribis Polysaccharide
(PRG) 5.16

PC12 (pheochromo-
cytoma)
cells

10, 50, 150 µg/mL Mean neurite lengths of NGF-stimulated PC12
cells ↑

Promoting the neurite
outgrowth [115]

Pleurotus
ostreatus

Polysaccharide
(POP) 24

D-galactose and
AlCl3-induced AD
rats

400 mg/kg body
weight, 30 days

Learning and memory capability ↑
SOD, GSH-Px, and CAT activities in
hippocampus, liver, and serum ↑
MDA level in hippocampus, liver, and serum and
hippocampal AchE activity ↓
Protein phosphatase 2A (PP2A) ↑
The expression of amyloid precursor protein
(APP), Aβ, β-site APP clearing enzyme1
(BACE1), p-tau, and glycogen synthase kinase
3beta (GSK-3β) ↓

Relieving the Aβ

formation and tau
phosphorylation

[94,116]

Polysaccharide
(POP-W) 3.034 × 103 PC12 cells

damaged by H2O2

0.1, 0.2, 0.4, 0.8, 1.6,
3.2 mg/mL, 24 h

Cell viability, SOD activity, GSH level, the ratio of
Bcl-2/BAX, the p-Akt/Akt ratio, and PI3K
expression ↑
LDH, MDA levels, Caspase-3 level ↓

POP-W pretreatment was
able to protect PC12 cells
against H2O2 damage due
to its capacity of
antioxidant and
anti-apoptosis via
regulating the PI3K/AKT
signaling pathway and
apoptosis-related pathway
proteins

[117]

Pleurotus
eryngii

Polysaccharide
(PEP)

Aging rats and
PC12 cells

In vitro test: 0.5, 1,
1.5 µM, 24 h.
In vivo test:
administered with
PEP for 28 weeks

Cell viability ↑
Intracellular calcium, apoptosis, APP production
in brain, iNOS, and COX-2 level ↓

Modulation of calcium
channels or inflammation [91]
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Table 1. Cont.

Mushroom
Species Name Molecule

Weight (kDa)
Experimental

Models Dose and Periods Effect Potential Mechanism Ref.

Pleurotus
sajor-caju

Polysaccharide
(PSP2-1) 44.9

Neuronal cell HT22
induced by H2O2
and aging mice
induced by
D-galactose

In vitro test: 50, 100
to 150 µg/mL for
24 h
In vivo test: 100,
200, and
400 mg/kg/d for
42 days

In vitro test:
Cell viability, Mitochondrial membrane potential
(MMP), and the expression ratio of bcl-2/bax ↑
LDH release and cytochrome c release, apoptosis
rate, ROS level, and the expression of cleaved
caspase-3, cleaved PARP, Erk1/2, JNK, p38 ↓
In vivo test:
Learning and memory ability, CAT, and SOD ↑
MDA and ROS ↓

The protective actions of
PSP2-1 on nerve cells
against oxidative damage
and apoptosis induced by
hydrogen peroxide were
attributed to its regulating
the MAPK signaling
pathway

[118]

Sparassis
crispa

Polysaccharides
(SCP-1) 13.68

C57BL/6J mice
treated with
D-galactose and
AlCl3

25 and
100 mg/kg/d,
4 weeks

Learning and recognition, GABA and Ach levels
in brain ↑
Aβ deposition and Aβ1-42, Glu ↓
IL-6, TNF-α, IL-1β, serum LPS ↓
Iba1-positive microglia and GFAP-positive
astrocytes in hippocampal CA1 and DG area ↓
The expression of TLR4, NF-κB, and
phosphorylation of NF-κB ↓
Altering the gut microbiota

Modulation of gut
microbiota and
suppression of
inflammation

[100]

HT22 cells treated
by H2O2

10, 25, 50, 100, 200,
400, 800 µg/mL,
12 h

Cell viability, SOD, and GSH-Px activities ↑
ROS, MDA, chromatin condensation and
apoptotic bodies, apoptotic rate ↓

Antioxidant and inhibiting
apoptosis [99]

Tremella
fuciformis

Polysaccharide
(TL04) 2.033

Glutamate-
induced
neurotoxicity in
DPC12 cells

5 and 20 µg, 3 h

Cell viability ↑
LDH release, ROS, apoptotic nuclei ↓
Bcl-2 level and Cyto C level ↑
Bax expression, the levels of cleaved caspase-8,
caspase-9 and caspase-3 ↓

The underlying
mechanism for protective
effect of TL04 against
glutamate-induced
neurotoxicity was proved
to be associated with the
caspase-dependent
mitochondrial pathway

[106]
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3.2. Proteins and Peptides

Because of their diverse biological functions, high affinity with specific targets, high
membrane permeability, and many other special properties, peptides are considered im-
portant screening targets by the pharmaceutical industry [119,120]. The protein content
in mushrooms is relatively high, with an average of approximately 23.80 ± 9.82 g of
protein per 100 g of mushroom dry weight (d.w.) [121]. As a consequence, many re-
searchers have sought to use a variety of mushroom peptide resources in the treatment
of NDs. Furthermore, there is mounting evidence that natural bioactive peptides have
great antioxidant and inflammatory inhibition potential, suggesting them as promising
candidates for a role in neuroprotection [122,123]. For instance, the neuroprotective ac-
tivity of protein hydrolysates obtained from Pleurotus geesteranus in H2O2-injured PC12
cells was investigated by Wu et al. The data indicated the presence of a large quantity of
hydrophobic amino acids in the test hydrolysates, and samples exerted a clear neuropro-
tective effect by reducing the ROS level and improving the antioxidant properties [121].
Another peptide (10,906 Da) called cordymin was isolated from Cordyces sinensis and Cordy-
ceps militaris [124,125]. This peptide was first noticed for its antifungal activity, and its
neuroprotective potential was subsequently discovered. Research carried out by Wang
et al. demonstrated that cordymin was capable of protecting against nerve damage in the
ischemic brain through anti-inflammation and improved antioxidant capacity [124]. Addi-
tionally, Wu et al. demonstrated the neuroprotective action of two novel selenium peptides
(Se-P1 and Se-P2) derived from selenium-enriched C. militaris, which was attributed to
their ability to modulate oxidant stress, inflammation, and gut microflora [126].

The biosynthesis of ergothioneine, a thiol derivative of histidine found in many mush-
rooms, has been extensively described [127]. The accumulated evidence confirms the
therapeutic activity of ergothioneine against various diseases [128,129]. More importantly,
some studies have revealed that a low ergothioneine level in the blood is one serious threat
factor for AD [130]. Wu et al. found that a low plasma ergothioneine level can be used to
predict the decline of cognition in elderly subjects [131]. Furthermore, with the help of a
unique transporter called organic cation transporter 1, ergothioneine can easily cross the
blood–brain barrier, which is conducive to its activity. Recent studies have demonstrated
that ergothioneine is effective in resisting the negative influences of neurotoxic substances
on neurons and cognitive function [132,133]. The neuroprotective effect of ergothioneine
was shown to be associated with its capabilities of antineuroinflammatory, antioxidant, neu-
rogenesis promoting, and neurotrophic factor induction capabilities [134–136]. With regard
to AD, the potential application of ergothioneine has been explored in different models. In a
transgenic Caenorhabditis elegans overexpressing the human AD Aβ peptide, ergothioneine
reduced Aβ deposition [137]. The protective activity of ergothioneine against AD was
further assessed by Whitmore et al. In 5XFAD model mice administered with ergothioneine,
they found that amyloid plaques and oxidative stress were markedly decreased, and glu-
cose metabolism was enhanced [138]. Thus, dietary supplementation is a way to enhance
ergothioneine levels and, thereby, improve the clinical symptoms of AD. Fortunately, some
mushrooms are rich in ergothioneine with amounts of 0.21–2.60 mg/g d.w., a prerequisite
for dietary supplementation with ergothioneine [127]. In summary, mushrooms are a valu-
able resource pool of peptides that can be used to target the pathological manifestations
of AD.

3.3. Phenolic Compounds

A common nutrient in mushrooms, phenolic compounds, have received extensive
attention recently. These compounds can be classified into multiple classes: flavonoids,
phenolic acids, tannins, coumarins, etc. [139]. There is a large amount of evidence to suggest
that mushroom phenolic compounds have a wide range of health benefits, including
antitumor, antioxidant, and antimicrobial properties, which were reviewed by Abdelshfy
et al. [140]. However, there has been little discussion of the protective ability of mushroom
phenols against NDs. Modern research suggests that there are various phenolic substances
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in mushrooms. It is documented that flavonoids with the contents of 6.646, 6.854, and
9.187 mg quercetin/g were found in Macrocybe gigantea J124, Lactifluus leptomerus J201,
and Ramaria thindii J470, respectively [141]. Additionally, 4-hydroxybenzoic acid, gentisic
acid, and 4-coumaric acid were the main phenolic acids identified in T. fuciformis, and their
contents were 323, 174, and 30 mg per kilogram of dried mushrooms, respectively [142].
The amount of total polyphenol in P. ostreatus was determined to be 487.12 mg gallic
acid equivalent/100 g d.w. [143]. The fact that various mushroom phenolic compounds
control the pathogenesis of neuronal disease has attracted the attention of many researchers.
Ethanol extract from Stereum hirsutum was found to be potent in inhibiting AChE (enzyme
hydrolysis, the key neurotransmitter acetylcholine), which may be thanks to the phenolics
within it [144]. Hispidin, a polyphenolic nutrient identified from the medicinal mushrooms
Phellinus linteus [145], Phellinus igniarius [146], Phaeolus schweinitzii [147], etc., was first
taken as an example. In the past few years, there have been attempts to increase the yield
of mushroom hispidin. In a study by Liang et al., after strain screening and culture process
optimization, the maximum hispidin production per gram of mycelium by P. linteus 04
was increased to 1.107 mg [148]. To elucidate the biosynthetic mechanism of hispidin in P.
igniarius, Guo et al. used iTRAQ proteomic analysis in their study [146]. It was found that
hispidin was able to alleviate the neuroinflammation in BV-2 microglial cells induced by
nitric oxide via ROS-dependent mitogen-activated protein kinase (MAPK) signaling [149].
Others demonstrated that hispidin from Phellinus linteus is capable of inhibiting β-secretase
(BACE1) competitively, thereby reducing the formation of β-amyloid, amyloid precursor
protein cleavage products [150].

In addition to hispidin, hericenones, which are phenolic derivatives identified in the
fruiting bodies of Hericium erinaceum [151], also demonstrate neuroprotective capability. In
recent years, the beneficial potential of H. erinaceum on NDs has been widely investigated. It
was demonstrated that the expression level of the nerve growth factor (NGF) gene, secretion
of NGF protein, and neurite outgrowth in 1321N1 human astrocytoma cells treated with
ethanol extracts of H. erinaceum were all enhanced. Furthermore, enhanced expression of
NGF was also detected in the hippocampus of ddY mice administrated with H. erinaceum
extracts, and this was related to c-Jun N-terminal kinase (JNK) signaling [152]. After taking
supplements containing H. erinaceum for 12 weeks, the cognitive functions of subjects
undergoing clinical testing clearly improved [153]. In addition, during an investigation
of isolating the metabolites of H. erinaceum, multiple hericenones and their analogs were
obtained, such as hericenones C and D [154]. Phan and coworkers purified hericenones B–E
from the basidiocarps of H. erinaceum and discovered that NGF secretion was stimulated by
hericenone E via the MEK/ERK and PI3K/Akt pathways [155]. Additionally, it is widely
known that protection against endoplasmic reticulum stress-induced apoptosis on neural
cells is a key target for AD treatment. An analog of hericenone F, 3-hydroxyhericenone F
purified from H. erinaceum was found to have a protective capacity against endoplasmic
reticulum stress-dependent Neuro2a cell death [156].

A large number of phenols were also identified from mushrooms, such as gallic
acid, ferulic acid, chlorogenic acid, caffeic acid, and anthraquinone [157]. Some of these
plant-derived phenolic compounds were documented to have antiND potential [158–162].
Whether the administration of these phenolic compounds from mushrooms can also effec-
tively alleviate the clinical symptoms of AD remains to be explored in vitro and in vivo.

3.4. Terpenes

Terpenes are another type of secondary metabolites of mushrooms which consist
of isoprene repeating units, and many terpenes such as cyathane diterpenoids, triter-
penoids, and sesquiterpenes have been identified or isolated from various genera of mush-
rooms [163–165]. Some of these terpenes have also been found to exhibit the potential to
improve the pathology of NDs. For example, after the application of tritepenoids from G.
lucidum for a long time, the decline in the physiological function of the brain in aging mice
was improved [166]. Furthermore, the antineuroinflammation capacity of ganoderic acid



Nutrients 2023, 15, 2758 15 of 27

A, the lanostane-type triterpenoid from G. lucidum, was assessed in lipopolysaccharide
(LPS)-treated BV2 microglial cells. They found that the proliferation and activation of cells
induced by LPS were markedly suppressed by ganoderic acid A. Furthermore, decreased
production of IL-1β, IL-6, and TNF-α and enhanced brain-derived neurotrophic factor
(BDNF) expression were detected in cells treated with ganoderic acid A. The antineu-
roinflammatory action of ganoderic acid A was also demonstrated by activation of the
farnesoid-X-receptor, a transcriptional factor involved in neuroprotective functions [167].
In AD mice, ganoderic acid A has also been proven to attenuate neuroinflammation by
modulating the imbalance of the Th17/Tregs [168]. Qi et al. further attempted to assess the
protective potential of ganoderic acid A in the management of AD. Their results demon-
strated that ganoderic acid A was capable of accelerating clearance of intracellular Aβ and
alleviating cognitive impairment in mice with AD, which were attributed to the autophagy
induced by ganoderic acid A via activation of Axl (a potential therapeutic target for the
central nervous system) [169]. According to the results provided by Shen et al., it was spec-
ulated that the autophagy promoted by ganoderic acid A might be related to its regulation
of PADI4, the peptidyl arginine deiminase type IV, which induces the autophagy in AD
cells via the Akt/mTOR pathway [170].

Recently, the protective capacity of erinacines-enriched H. erinaceus mycelia against
Parkinson’s disease (PD) [171], AD [172], spinocerebellar ataxia type 3 [173], age-related
cognitive decline [174,175], etc. were described in a series of studies. In addition, the
results of a study performed in 2020 showed that, compared with the control placebo
group, patients with AD who received three capsules containing H. erinaceus mycelia
(containing 5 mg/g erinacine A) showed significant neurocognition improvement [176].
The molecular mechanism of the positive activities of erinacine A may be attributed to
their up-regulation of NGF expression and antineuroinflammatory and antiapoptosis
effects. Following the detection of the expression of TNF-α and inducible nitric oxide
synthase (iNOS), it was found that erinacine A treatment clearly decreased the expression of
proinflammatory factors that activate glial cells and cell death induced by LPS. Furthermore,
a neuroinflammation improvement effect was also observed in PD animal models treated
with erinacine A [177]. Moreover, the iNOS/p38 MAPK- and TrkA/Erk1/2- mediated
pathways were reported to participate in the neuroprotective effect of erinacine A [178,179].

Similarly, oral administration of another rare sesterterpene from H. erinaceus, called
erinacine S, for 30 days alleviated the Aβ plaque phenomenon in APP/PS1 transgenic
mice [180]. Additionally, the neuroprotective effects of other terpenes were identified, in-
cluding cyrneines [181], scabronine M [182], sarcodonin [183], dictyophorines [184], lanos-
tanoid triterpenes [185], neocyathins [164], striatoids [186], and (±)-Spiroganoapplanin
A [187].

3.5. Vitamins

Recently, increasing evidence points to a correlation between vitamin deficiency and
nervous system diseases, including AD and PD [188]. By comparing healthy volunteers
with AD patients aged >64 years old, it was found that the serum vitamin D level of
participants with AD was clearly lower [189]. The contributions of vitamins K2, A, and E to
the pathogenesis of AD were also reported [190–192]. These findings suggest that vitamins
are potential candidates for relieving NDs.

Mushrooms are generally considered natural sources of various vitamins, in particular
vitamin D2 [193–195]. The fungi belonging to Basidiomycetes are rich in ergosterol, a
type of sterol, which can be further metabolized into vitamin D2 after ultra violet (UV)
irradiation. Huang et al. found that about 16.88 and 12.68 µg/g of Vitamin D2 and B2 were
present in the commercially dried fruiting bodies of mushrooms in China, respectively [196].
As well as in the fruiting bodies, the vitamins were detected in mycelium harvested after
liquid fermentation. Pleurotus sapidus was exposed to UV-B during liquid culture, and
up to 365 µg vitamin D2 was determined in one gram of dried mycelium [197]. It is
worth mentioning that mushroom powder containing 125–375 µg/g of vitamin D2 was



Nutrients 2023, 15, 2758 16 of 27

requested to be designated a novel food in 2020 [198]. Recognizing the rich vitamin
resources in mushrooms, ninety volunteers participated in the study by Stepien et al. to
investigate whether supplementing mushrooms with vitamin D2 can improve vitamin D
levels in adults. The data showed that intake of vitamin D2-enriched mushrooms markedly
increased serum 25(OH)D2 concentration [199]. Therefore, vitamins from mushrooms show
broad application prospects in the control of AD. The majority of studies have tried to
increase the vitamin D2 content via ultraviolet irradiation of mushroom fruiting bodies.
For example, the amount of vitamin D2 in the gills of shiitake mushrooms was increased
more than 20 times after exposure to UV-B [200]. However, there is little literature focusing
on the antiAD activities of vitamins in mushrooms, providing significant scope for future
research. For example, Bennett and coworkers proved the function of button mushrooms
(Agaricus bisporus) enriched with vitamin D2 on memory improvement in both wild and
AD transgenic mice (APPswe/PS1dE9 transgenic mice) [201].

3.6. Nucleosides

In addition to the active components described above, nucleosides are another main
ingredient of many mushrooms. Specifically, there are many studies on nucleosides in
Cordyceps, and adenosine is considered the quality maker for the commercial application of
Cordyceps extracts in Chinese Pharmacopoeia [202]. Various nucleosides, such as adenosine,
cytidine, and uridine, have also been isolated because of their role in the regulation of
various physiological processes (brain function, immunity, repair of gastrointestinal injury,
etc.) [203].

In terms of neuroprotection, purine nucleosides from mushrooms may be promising
candidate drugs for the future. The typical representative of these is cordycepin. Cordy-
cepin, an analog of adenosine, is the natural constituent isolated from Cordyceps. It is
reported that the amounts of cordycepin in the fruiting body and mycelial biomass of C.
militaris stain CBS-132098 are 0.11%, and 0.182%, respectively [204]. Although the level
of cordycepin is low, it exhibits a wide range of health-promoting potential applications,
including neuroprotection. Evidence from the literature shows that cordycepin can regulate
synaptic plasticity and overexcitation of the CA1 region, has antineuroinflammatory, an-
tioxidation, and antiapoptosis effects, and can regulate mitochondrial dysfunction, thereby
delaying the pathological changes caused by NDs [205,206]. For example, according to
Olatunji et al., cordycepin alleviated the damage caused by 6-hydroxydopamine to PC12
cells, and this was attributed to its antioxidant properties and inhibition of cell apoptosis
and mitochondrial dysfunction [207]. In another study, the therapeutic potential of cordy-
cepin on neurological and cognitive impairments induced by intracerebral hemorrhage
was proven via the regulation of oxidative stress [208]. Similarly, cordycepin decreased
neural loss in mice with traumatic brain injuries. Furthermore, results from immunofluo-
rescence staining, flow cytometry, and quantitative PCR showed that cordycepin treatment
inhibited the proinflammatory microglia and macrophage in the cortex and striatum and
increased the expression of anti-inflammatory microglia and macrophage. These data
suggest that cordycepin alleviates long-term neuronal deficits [209]. Another similar study
also documented that the potential mechanism of the neuroprotective effect of cordycepin
is to relieve inflammatory response and nerve injury by inhibiting the release of NOD-like
receptor thermal protein domain-associated protein 3 (NLRP3) inflammasomes [210].

Similarly, there has been extensive research concerning adenosine, another key purine
nucleoside. Data showed that the viability of glutamate-induced PC12 cells pre-treated
with adenosine derived from C. cicadae clearly increased, while ROS and Ca2+ levels in cells
decreased. The authors mentioned that this protective property of adenosine was due to the
regulation of the Bcl-2 family and a decrease in the levels of JNK, ERK, and phosphorylation
of p38 [211]. In addition, the beneficial effect of other nucleosides and their derivatives
from mushrooms (uridine [212], N6-substituted adenosine [213]) on neuroprotection was
identified. Therefore, all studies indicate that mushroom nucleosides and their analogs
may also be considered promising as therapeutic drugs for the treatment of AD.
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3.7. Alkaloids

Alkaloids are nitrogen-containing compounds consisting of various subclasses. In
addition to being widely present in plants, there is evidence to indicate that alkaloids are
also important metabolites in mushrooms, with the most striking alkaloid being psilocy-
bin derived from psilocybin mushrooms [214,215]. With the improvement in separation
technology for natural products, various alkaloids were purified from mushrooms, some
of which, such as corallocins and infractopicrin, have been found to have the potential to
alleviate NDs [216]. The effect of the mushroom Hericium coralloides, famous in Chinese
medicine, to promote NGF biosynthesis has been proven both in vitro and in vivo. Subse-
quently, the indole alkaloid corallocins A–C were isolated from this mushroom and were all
capable of stimulating the expression of neurotrophin in human 1321N1 astrocytes [15,217].
Another pyrrole alkaloid (inotopyrrole B) was isolated from the mushroom Phelbopus
portentosus by Sun et al., and its ability of neuroprotection was proven in human neurob-
lastoma SH-SY5Y cells damaged with H2O2 [218]. Ryu et al. reported that isohericerinol
A, a new isoindolinone derivative isolated from H. erinaceus, accelerated the synthesis of
NGF and further stimulated the neurite outgrowth, suggesting that this substance may
be able to alleviate AD symptoms. Western blot detection revealed that the expression of
neurotrophins, including brain-derived neurotrophic factor (BDNF) and synaptophysin,
were both enhanced in C6-N2a neuronal cells treated with isohericerinol A [219]. In the
study performed by Lee et al., dictyoquinazol A–C isolated from D. indusiata was capable of
reducing the risk of neurotoxicity and cell death of primary mouse cortical neurons induced
by glutamate and N-methyl-D-aspartate at lower concentrations [220]. Additionally, there
have been reports on the ability of other mushroom alkaloids, such as ganocochlearine
A, infractopicrin, and 10-hydroxy-infractopicrin, to alleviate NDs [221,222]. Because of
the neuroprotective potential of these compounds, the synthesis of isohericerinol, dicty-
oquinazol, and related derivatives has been continuously explored [223,224]. However,
mushrooms remain the main sources of these compounds, and it is particularly important
to explore their neuroprotective mechanisms in vivo.

3.8. Sterols

Compared with other components, there are few reports on the neuroprotective effects
of mushroom sterols. In a study by Zhao et al., a novel sterol (matsutakone) and norsteroid
(matsutoic acid) were successfully obtained from the edible mushroom Tricholoma matsutake,
which is a delicious mushroom used in China. Furthermore, the AChE-inhibiting actions of
these two compounds at a concentration of 50 µM were observed [225]. Ergosterol peroxide,
a lipid-soluble steroid derivative, was isolated from a variety of mushrooms (G. lucidum, I.
obliquus, P. ostreatus, etc.), and the weak ability of ergosterol peroxide from H. erinaceus has
been demonstrated in PC12 cells [226–229]. However, although several in vitro experiments
have confirmed the neuroprotective effects of mushroom sterols, further work is needed to
assess the possibility and mechanisms of the aforementioned sterols in the treatment of AD
in vivo, as well as the identification of new mushroom sterols.

3.9. Other Constituents

In addition to the above components, other constituents of mushrooms, such as
essential oils, benzofuran derivatives, and cerebroside-A, were reported to have potential
therapeutic activities for NDs, and these are also worthy of further exploration [230–232].

4. Conclusions and Future Research Prospects

Diverse mushrooms can be regarded as treasure troves of active compounds which
have been widely used for both medical and food purposes. There are many research arti-
cles concerning the antiAD activity and molecular mechanisms of mushrooms. This review
summarizes information regarding the therapeutic potential of the diverse metabolites
from various mushrooms for neuroprotection, with particular emphasis on AD. Overall,
many types of mushrooms have shown beneficial effects in alleviating AD, and these are
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attributed to their large number of constituents, such as polysaccharides, phenols, and
peptides. The mechanisms involved in the antiAD activities of mushroom metabolites
include antioxidant and antineuroinflammatory activity, apoptosis inhibition, and stim-
ulation of neurite outgrowth, etc. The information collected in this review suggests that
mushrooms and their metabolites have broad application prospects in the management of
AD as well as NDs more widely. However, more work is required regarding the purifica-
tion of active compounds, elucidation of their antiAD capacity and mechanisms in vivo,
toxicity, improvement of their bioavailability and production, and development of related
products. Significant work remains to be carried out to explore the vast untapped resources
of mushrooms, including their cultivation and their medicinal and edible potential.
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