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Abstract: Breast cancer has become the most common malignancy among women, posing a severe 
health risk to women worldwide and creating a heavy social burden. Based on current observational 
studies, the dietary factor may have a causal relationship with breast cancer. Therefore, exploring 
how dietary composition affects breast cancer incidence will provide nutrition strategies for clini-
cians and women. We performed a two-sample Mendelian randomization (MR) analysis to find the 
causal effect of four kinds of relative macronutrient intake (protein, carbohydrate, sugar, and fat) on 
the risk of breast cancer and its subtypes [Luminal A, Luminal B, Luminal B HER2-negative, HER2-
positive, Triple-negative, Estrogen receptor (ER) positive, and ER-negative breast cancer]. The Men-
delian randomization pleiotropy residual sum and outlier (MR-PRESSO) test, MR-Egger intercept 
test, Cochran’s Q statistic, funnel plot, and leave-one-out (Loo) analysis were all used in a sensitivity 
analysis to test the robustness of MR. Genetically, a higher relative protein intake was found as a 
protective factor for Luminal A and overall breast cancer, which was inconsistent with recent find-
ings. A higher relative sugar intake could genetically promote the risk of Luminal B and HER2-
positive breast cancer. Conclusions: A higher protein proportion in diet genetically reduces the risk 
of breast cancer, while higher relative sugar intake does the opposite. 
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1. Introduction 
Breast cancer in women has overtaken lung cancer as the most commonly diagnosed 

cancer worldwide. Approximately 2.3 million new cases of female breast cancer were di-
agnosed, which represents almost 12% of all cancer cases globally [1]. Furthermore, ac-
cording to the GLOBOCAN Tomorrow Cancer prediction tool, the incidence of breast 
cancer is expected to increase by more than 46% by 2040, meaning breast cancer will bring 
a huge burden to society [2]. Meanwhile, compared to other malignancies, breast cancer 
leads to more disability-adjusted life years lost by women [3]. 

Dietary paĴern has been testified as being associated with different diseases. Previ-
ous studies have also suggested that dietary factors could influence the risk of breast can-
cer in different ways [4–6]. For example, a higher dairy and total sugar intake could pro-
mote the risk of female breast cancer and other malignancies [7–9]. Furthermore, healthy 
dietary paĴerns, such as a higher vegetable, fruit, and soy product intake, can help reduce 
breast cancer risk [8,10]. Long-term observational studies have found an inverse associa-
tion between breast cancer and the Mediterranean diet, characterized by a dietary paĴern 
with abundant vegetables, fruits, fish, and olive oil [11,12]. As for the causal effect of die-
tary factors on breast cancer, the Global Cancer Update Programme has claimed that no 
causality can be inferred from current statistical correlations [6]. Therefore, figuring out 
the causal effect is a helpful measurement in conducting dietary intervention studies for 
women. 
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Randomized controlled trials (RCTs) are still the gold standard for identifying causal 
relationships [13]. Randomization enables studies to eliminate differences between sub-
groups to reduce bias. However, RCTs can neither eliminate all the confounders nor avoid 
the “reverse causation” that may influence the outcomes [14,15]. Mendelian randomiza-
tion uses genetic variation as an instrumental variable (IV) to testify to the potential causal 
effects between exposures and outcomes [16]. It is important to note that the causality of 
genetic variation and traits is the foundation of MR. Because genetic variants are randomly 
assigned at conception, MR is not influenced by confounders that observational studies 
find difficult to avoid, making them a good proxy for cause-and-effect relationships [17]. 

Environmental and genetic factors can influence dietary habits [18,19]. In addition, 
the surrounding environment, including social and cultural factors, home and work envi-
ronments, economic factors, and social support, can affect an individual’s sensitivity and 
preference for particular tastes, thereby influencing their dietary choices. In genetics, pol-
ymorphisms of some specific genes, such as fat mass and obesity-associated (FTO), mela-
nocortin 4 receptor (MC4R), leptin receptor (LEPR), peroxisome proliferator-activated re-
ceptor-gamma (PPARG), and Adiponectin, have shown effects on weight gain, suppres-
sion of appetite, and oncogenesis [20–25]. The FTO gene displayed the most robust genetic 
correlation with polygenic obesity. FTO is commonly dysregulated and exerts significant 
effects on different categories of cancer. Meanwhile, FTO has the ability to stimulate can-
cer cell proliferation, enhance the self-renewal of cancer stem cells, and alter the immune 
and metabolic characteristics of cancer cells by eliminating the m6A modification from its 
target mRNAs and regulating their stability [24,26]. Based on the above facts, MR analysis 
can effectively analyze the causal relationship between dietary paĴerns and breast cancer 
risk from a genetic perspective. Several studies have already assessed the causal relation-
ship between micronutrients (vitamin D, vitamin C, and vitamin E) and cancers [27–29], 
showing that dietary factors may contribute to the development of breast cancer. In com-
parison, there have been recent developments in the field of nutrition science indicating 
that the impact of diet on non-communicable diseases can be beĴer explained by consid-
ering overall food consumption and dietary paĴerns rather than focusing solely on indi-
vidual nutrients [30]. In this study, we have used the MR to investigate the potential causal 
relationship between the risk of breast cancer and four macronutrients in order to find 
robust genetic and phenotypic associations (Figure 1), giving some valuable suggestions 
for nutritional policies in the clinic. 

 
Figure 1. Study design overview and the hypothetical relationship between genetic variant, expo-
sure, and outcome of the Mendelian randomization design. Allowed relationships between the var-
iables are indicated by solid arrows, while dashed lines and red cross indicate relationships that are 
not permiĴed for G to qualify as a valid instrumental variable. The G–X and X–Y arrows are param-
eterized by γ and β, with the laĴer denoting the causal effect of X on Y. 
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2. Methods and Materials 
2.1. Breast Cancer Data 

We obtained the breast cancer risk genome-wide association studies (GWASs) sum-
mary data from the Breast Cancer Association Consortium (BCAC), which recruited over 
100 groups with data on more than 200,000 individuals. Summary data on breast cancer 
risk came from these GWASs, including 133,384 breast cancer cases and 113,789 controls 
of European ancestry. In one GWAS, Zhang et al. used a novel two-stage polytomous re-
gression method to characterize tumor heterogeneity by ER, progesterone receptor (PR), 
and human epidermal growth factor receptor 2 (HER2) status and tumor grade [31]. More-
over, the summary data for overall breast cancer and subtype-specific breast cancer (in-
cluding Luminal A, Luminal B, Luminal B HER2-negative, HER2-positive, and Triple-
negative breast cancer) risk were downloaded for free from the BCAC data resource 
[hĴps://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-
summary-result/gwas-summary-associations-breast-cancer-risk-2020/ (accessed on 13 
February 2023)]. As for ER status, we used the summary data obtained from the GWAS 
conducted by Michailidou et al., including 21,468 ER-negative cases, 69,501 ER-positive 
cases, and 105,974 controls [32]. In addition, summary data with different ER statuses were 
also obtained from BCAC [hĴps://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/on-
coarray-and-combined-summary-result/gwas-summary-results-breast-cancer-risk-2017/ 
(accessed on 13 February 2023)]. 

2.2. Relative Intake of Macronutrients Data 
The IVs for the relative intake of the macronutrient data were obtained from the lead 

single-nucleotide polymorphisms (SNPs) of the GWAS conducted by Meddens et al. [33], 
which was performed on more than 235,000 individuals of European ancestry. Research-
ers got all participants’ dietary habits according to self-reports from the 24 h dietary recall 
(24HDR) questionnaire and food-frequency questionnaire (FFQ) [34,35]. In the discovery 
analyses, all the dietary information of the United Kingdom biobank (UKB) cohort was 
from the 24HDR. All participants with a verified email address were sent the question-
naire via email. They were requested to complete the questionnaire four times over a pe-
riod of approximately one year (February 2011–April 2012) (hĴps://bi-
obank.ctsu.ox.ac.uk/crystal/refer.cgi?id=118240, accessed on 19 February 2023). In con-
trast, FFQ was used by all replication cohorts. The “macronutrient densities” are acquired 
by dividing the macronutrient intake by total energy intake. However, suppose the rela-
tive intake of macronutrients does not increase linearly with the total energy intake. In 
that case, the simple construction of macronutrient proportions may not be the optimal 
correction for total energy intake. As a result, the macronutrient intakes may need to be 
properly corrected for total energy intake, leading to residual correlations between mac-
ronutrient and total energy intake, which may vary by macronutrient. Meddens et al. [33] 
adopted corrected “macronutrient densities” (௘௡௘௥௚௬ ௙௥௢௠ ௠௔௖௥௢௡௨௧௥௜௘௡௧

௧௢௧௔௟ ௘௡௘௥௚௬ഁ ) with the correction 
factor 𝛽 to measure the relative intake of macronutrient fat, protein, carbohydrates, and 
sugar. 

2.3. Selection of Instrumental Variables 
We used R (version 4.2.2) with the “TwoSampleMR” (version 0.5.6) package to per-

form the two-sample MR analysis. In this study, the summary data of exposure (relative 
intake of macronutrients) and outcome (breast cancer risk) came from different GWASs, 
which helped to reduce bias and improve precision. IVs are the only bridge to communi-
cate exposure and outcome. Those SNPs regarded as IVs must satisfy the three following 
conditions: (i) they must exhibit strong associations with exposure (p < 5 × 10−8); (ii) they 
must only affect the outcome by exposure; (iii) they must have no relationship with the 
confounders [36]. According to the criteria mentioned above, IVs were clumped (p < 5 × 
10−8, linkage disequilibrium (LD) r2 < 0.001, window size = 10,000 kb) from the lead SNP 
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(Table S1), summarized by Meddens et al. [33,37]. Then, we harmonized the clumped data 
with the assistance of effect allele frequencies (EAF > 0.42), and palindromic variants 
would be deleted. Moreover, the outcome-related SNPs (P value of breast cancer risk < 5 
× 10−8) were also removed from MR analysis. The variance of exposure [R2 = 
∑ 2 × 𝛽ଶ × 𝐸𝐴𝐹 × (1 − 𝐸𝐴𝐹)] was explained by the IVs of each macronutrient and calcu-
lated with 𝛽 (genetic effect of each IV in exposure) and effect allele frequency (EAF). We 
calculated F statistics [ቀ

ேି௄ିଵ

௞
ቁ( ோమ

ଵିோమ)] with R2, sample size (N), and the number of instru-
ments (K) (Table S1), considered as the index used to measure IV strength for MR analysis 
[38]. We used the online tool to calculate MR power (hĴps://shiny.cnsge-
nomics.com/mRnd/, accessed on 13 February 2023). The power of MR analysis ranged 
from 5% to 94%, as shown in Table S2. The MR’s power values for relative protein intake 
between overall, Luminal A, and ER-positive breast cancer were 0.82, 0.20, and 0.94, re-
spectively. As for sugar, the power of HER2-positive breast cancer was 0.83, while for the 
Luminal B breast cancer, no specific value was conducted using the online tool (for possi-
ble reasons, see the Discussion). 

2.4. Mendelian Randomization Analysis 
To avoid the potential pleiotropic effect of the IVs, we performed different MR anal-

ysis methods to investigate the causal effect between the relative intake of four macronu-
trients and breast cancer risk in this study. Inverse variance weighted (IVW) estimates 
were considered as the primary methodology. IVW uses the Wald ratio from each variant 
to obtain the pooled causal effect. At the same time, there is the worry that it will under-
estimate the actual variation in the estimate, especially when the IV is weak [39]. Egger 
regression is used to detect bias from pleiotropy, and its slope coefficient estimates the 
causal effect. Egger regression can provide a consistent causal effect estimate even when 
IVs are invalid [40]. A weighted median estimator can combine data on multiple genetic 
variants into a single causal estimate and provide robust results, even with the number of 
invalid IVs being as high as 50% [41]. Moreover, the MR analysis flow chart is shown in 
Figure 2. 
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Figure 2. The flow chart of the MR analysis used in this study. Note: LD: linkage disequilibrium; 
ER: estrogen receptor; IV: instrumental variable; MR-PRESSO: Mendelian randomization pleiot-
ropy residual sum and outlier test; IVW: inverse variance weighted. 

2.5. Sensitivity Analysis 
Sensitivity analysis was performed to ensure the MR results’ robustness and reduce 

bias due to IV pleiotropy. Mendelian randomization pleiotropy residual sum and outlier 
(MR-PRESSO) test was used to test the horizontal pleiotropy (number of bootstrap repli-
cations = 10,000) and deleted the horizontal pleiotropic outliers to retest differences in the 
causal estimates of MR [42]. The intercept of Egger regression indicated the average plei-
otropic effect across the IVs, manifesting overall directional pleiotropy (if p value < 0.05) 
[40]. Furthermore, Cochran’s Q statistic, funnel plot, and leave-one-out (LOO) analyses 
were all conducted to detect the presence of pleiotropy and assess the robustness of the 
results. Heterogeneity was considered when the p value of Cochran’s Q statistic was 
smaller than 0.05. 

For the MR of the relative intake of macronutrients and risk of breast cancer, the pu-
tative causal effect would be considered if the P of MR met the Bonferroni correction (p < 
0.0125, set as 0.05/4), and p < 0.05 was considered as nominally significant. 

2.6. Sample Overlap 
There were two partially overlapped studies [European Prospective Investigation 

into Cancer and Nutrition (EPIC) and Women’s Health Initiative (WHI)] included in the 
macronutrient composition and breast cancer risk GWAS. We considered the smallest 
sample size as an overlap in the same study. The EPIC and WHI sample overlap was 3.03% 
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(7491/247,173) and 3.47% (8566/247,173) in the GWAS conducted by Zhang et al., respec-
tively. The EPIC and WHI sample overlap was 3.08% (7057/228,951) and 3.74% 
(8566/228,951) in the GWAS conducted by Michailidou et al., respectively. Moreover, the 
proportion of sample overlap for the breast cancer risk GWAS conducted by Zhang et al. 
and Michailidou et al. was 6.50% (16,057/247,173) and 6.82% (15,623/228,951), respectively. 
The cohort information of the three studies and the overlapped samples are all shown in 
Table S3. 

3. Results 
3.1. Causal Effects 

As for the risk of overall breast cancer, only relative intake of protein showed a strong 
genetically protective effect [Odds ratio (OR) = 0.64; 95% confidence interval (CI) = 0.45–
0.89; p = 8.46 × 10−3, Table 1 and Figure S1a]. In the subtype analysis, the relative intake of 
protein also showed a genetically pronounced causal effect on lower incidences of Lu-
minal A (OR = 0.50, 95% CI = 0.32–0.78, p = 2.21 × 10−3, Table 1 and Figure S1b) and ER-
positive breast cancer (OR = 0.49, 95% CI = 0.32–0.74, p = 7.91 × 10−4, Table 1 and Figure 
S1c). On the contrary, relative intake of sugar would genetically increase the incidences of 
Luminal B (OR = 8.72, 95% CI = 2.31–32.88, p = 1.4 × 10−3, Table 1 and Figure S2a) and HER2-
positive breast cancer (OR = 4.40, 95% CI = 1.44–13.43, p = 9.2 × 10−3, Table 1 and Figure 
S2b). Furthermore, the IVs for MR analysis were all shown in Figures S3d–f and S4c,d. 
Additionally, we observed that relative intake of carbohydrates can genetically promote 
the risk of breast cancer (OR = 1.61, 95% CI = 1.09–2.40, p = 1.79 × 10−2). However, the causal 
relationship cannot be testified via MR analysis because the P value failed to pass the Bon-
ferroni correction (p = 1.25 × 10−2). Further sensitivity analyses have found no pleiotropy 
and heterogeneity for the above estimates. In the subgroup MR analysis of the relative 
intake of protein and HER2-enriched breast cancer, the IVW showed a protective trend in 
breast cancer incidence (OR = 0.31, 95% CI = 0.11–0.90, p = 3.13 × 10−2), while MR-Egger 
manifested an inconsistent nonsignificant estimate. Therefore, we tightened the p value of 
IVs to 5 × 10−9, and SNP rs445551 was removed. Further analyses showed inconsistent but 
nonsignificant estimates using three methods (Table S4). Finally, the MR results from MR-
Egger and the weight median are shown in Table S5. 

Table 1. Mendelian randomization results derived from IVW for macronutrient composition and 
breast cancer. 

Exposure 
Outcome 

(Breast Cancer) 
Number 

of IVs 
p OR (95%CI) 

Cochran’s Q 
Test 

MR-Egger Intercept 
Test 

Relative 
intake of 

carbohydrate 

Overall 6 0.19  1.26 (0.89–1.80) 0.16 0.41  
Luminal A 5 1.79 × 10−2 1.61 (1.09–2.40) 0.44 0.76  
Luminal B 7 0.14  2.07 (0.78–5.50) 0.14 0.04  

Luminal B HER2-negative 8 0.87  0.95 (0.49–1.83) 0.34 0.64  
HER2-positive 8 0.89  1.10 (0.27–4.55) 0.07 0.91  
Triple-negative 8 0.61  0.83 (0.41–1.69) 0.25 0.51  

ER-negative 6 0.38  0.79 (0.46–1.34) 0.78 0.45  
ER-positive 7 0.85  1.04 (0.72–1.51) 0.26 0.33  

Relative 
intake of fat 

Overall 4 0.68  0.91 (0.57–1.44) 0.13  0.13  
Luminal A 4 0.54  0.86 (0.52–1.40) 0.16  0.17  
Luminal B 4 0.83  1.17 (0.29–4.80) 0.47  0.15  

Luminal B HER2-negative 4 0.52  0.74 (0.29–1.87) 0.13  0.15  
HER2-positive 4 0.16  0.51 (0.20–1.30) 0.76  0.94  
Triple-negative 4 0.15  1.50 (0.87–2.58) 0.98  0.90  

ER-negative 4 0.12  1.40 (0.92–2.12) 0.95  0.80  
ER-positive 4 0.67  0.89 (0.50–1.57) 0.26  0.11  
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Relative 
intake of 
protein 

Overall 4 8.46 × 10−3 0.64 (0.45–0.89) 0.43  0.42  
Luminal A 4 2.21 × 10−3 0.50 (0.32–0.78) 1.00  0.96  
Luminal B 5 0.09  0.48 (0.21–1.13) 0.26  0.19  

Luminal B HER2-negative 6 0.99  1.00 (0.56–1.79) 0.56  0.32  
HER2-positive 6 0.06  0.31 (0.09–1.07) 0.16  0.42  
Triple-negative 5 0.87  0.94 (0.45–1.95) 0.79  0.95  

ER-negative 5 0.07  0.60 (0.35–1.04) 0.70  0.44  
ER-positive 4 7.91 × 10−4 0.49 (0.32–0.74) 0.54  0.34  

Relative 
intake of sugar 

Overall 3 0.27  1.36 (0.79–2.35) 0.17  0.31  
Luminal A 3 0.38  1.28 (0.74–2.18) 0.52  0.55  
Luminal B 4 1.39 × 10−3 8.72 (2.31–32.88) 0.06  1.00  

Luminal B HER2-negative 5 0.15  2.41 (0.72–8.03) 0.01  0.24  
HER2-positive 5 9.19 × 10−3 4.40 (1.44–13.43) 0.60  0.56  
Triple-negative 3 0.94  1.04 (0.37–2.89) 0.95  0.84  

ER-negative 4 0.90  0.96 (0.55–1.68) 0.73  0.62  
ER-positive 4 0.21  1.26 (0.88–1.82) 0.70  0.59  

Note: IVW: inverse variance weighted; 95%CI: 95% confidence interval; IVs: instrumental variables; 
p = p value; outcome = risk of breast cancer. 

3.2. Sensitivity Analysis 
To guarantee the robustness of causal estimates, we performed sensitivity analyses 

after each MR analysis (Table S5). Horizontal pleiotropy and outliers were found in the 
first MR-PRESSO test between the relative intake of protein and Luminal A as well as 
overall and ER-positive breast cancer (p < 1.00 × 10−4). When outliers (rs13146907, 
rs55872725, rs838133, as shown in Table S5) were removed, the pleiotropy was corrected. 
The same situation was also observed in the MR-PRESSO test between relative intake of 
sugar and Luminal B breast cancer. After outlier rs7012814 was deleted, no pleiotropy was 
detected. As for the HER2-positive breast cancer and relative intake of sugar, the first MR-
PRESSO did not find any outliers. All the p values of Cochran’s Q and MR-Egger intercept 
tests were greater than 0.05 in the five significant estimates mentioned above. Egger inter-
cepts did not detect any pleiotropy (Figures S1 and S2). Furthermore, the LOO analysis 
demonstrated that no SNP drove the findings (Figures S3d–f and S4c,d), and the funnel 
plots (Figures S3a–c and S4a,b) displayed a symmetrical distribution. 

4. Discussion 
In our study, we used MR analysis to explore the genetic causal relationship between 

the relative intake of four macronutrients and the risk of breast cancer. A higher relative 
intake of protein was found to be a protective factor against breast cancer. At the same 
time, a higher relative intake of sugar had shown a significant causal effect on breast can-
cer. As for the sensitivity analysis, MR-PRESSO was performed secondly, unless IVs were 
less than four or no outliers were detected (Table S5). Moreover, no IV pleiotropy and 
heterogeneity were found in the significant estimates after the correction of MR-PRESSO 
(Figures S3 and S4). Therefore, almost all the power values of the significant estimates 
were robust. As for the power calculation of sugar and HER2-positive breast cancer, there 
might be a limiting value instead of no value. Based on the original parameters, we have 
artificially set the ORs as 2.5, 3.5, 4.5, and 5.5, and the calculating power values as 0.37, 
0.82, 1.00, and 1.00, respectively. There was a trend that when the OR value was increasing, 
the power was infinitely close to 1.00. Therefore, when the OR was equal to 8.72, the power 
value was robust enough to support the MR analysis. 

Because the macronutrients are the primary energy source of the human body, there 
may be a possibility that the four macronutrients can influence the incidence of breast 
cancer through the pathway of obesity, which has been considered a risk factor for breast 
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cancer [43]. Dennis et al. found that a low relative carbohydrate proportion and a high 
intake of fat genetically contribute to higher body mass index (BMI) and a higher waist 
circumference (WC); they found that there was no causal relationship between relative 
intake of protein and sugar and BMI and WC [44]. 

In this study, dietary structure has been considered a form of oncogenesis [45]. Mac-
ronutrients, such as fat, protein, and carbohydrate, provide almost all the energy and es-
sential components required to satisfy human physiological activities. However, out-
comes derived from observational studies of meat consumption and the incidence of 
breast cancer were still controversial [46–48]. Our results are inconsistent with most ob-
servational studies and meta-analyses that the red or processed meat was believed to in-
duce breast cancer for the following reasons: (1) carcinogenic compounds, such as N-ni-
troso compounds, heterocyclic amines, and polycyclic aromatic hydrocarbons that can 
dose-dependently generate DNA adducts [49,50]; (2) inflammation and oxidative stress 
may arise from animal fat and iron-enriched red meat [51]. On the contrary, a recent meta-
analysis suggested that a higher soy food intake would help decrease the risk of breast 
cancer [52]. Furthermore, a long-time large-scale observational study has also found that 
a higher soy intake could reduce the risk of breast cancer in postmenopausal women [53]. 
Soy is an essential source of vegetable protein. Its positive effect on breast cancer risk and 
breast cancer survival was aĴributed to isoflavone, a phytoestrogen, and selective estro-
gen receptor modulator [54]. Given the relationship between soy consumption and the 
risk of breast cancer mentioned above, it somewhat validated our MR finding that women 
would benefit from a higher dietary protein proportion. 

A higher relative sugar intake is strongly associated with a higher risk of breast can-
cer in our MR analysis. Recently, a fasting-mimicking diet (FMD) has been testified to 
enhance the efficacy of standard cancer therapy. FMD, a dietary structure low in calories, 
sugars, and protein but relatively high in fat content, could strengthen endocrine thera-
peutics tamoxifen and fulvestrant by lowering circulating IGF1, insulin, and leptin by up-
regulating EGR1 and PTEN to inhibit the AKT–mTOR signal pathway [55]. Claudio et al. 
revealed that an FMD could lead to a consistent decrease in blood glucose and growth 
factor concentration, remodeling anticancer immunity via changes to peripheral and in-
tratumor cellular components [56]. Notably, a higher dietary proportion of sugar could 
result in high glucose levels and promote high insulin levels in parallel, leading to cancer 
growth [57]. As a subtype of carbohydrates, sugar can be more rapidly absorbed and affect 
plasma glucose levels than other sources of carbohydrates, such as starch and dietary fi-
ber. Potentially, it can lead to breast cancer via higher plasma glucose levels, which can, 
in turn, promote potential pathways. At the same time, the association between the risk of 
breast cancer and relative intake of carbohydrates was unclear in our study, which was 
consistent with current findings. In a prospectively observational study, the vegetable-
based, low-carbohydrate diet habit was inversely associated with a reduced risk of ER-
negative breast cancer [58]. Bahareh et al. have found that adherence to a low-carbohy-
drate diet may increase the risk of breast cancer in postmenopausal women. Long-term, 
large-cohort studies with a precise definition of a low-carbohydrate diet and scientific 
study design should be further performed. 

We have failed to find the causal relationship between the risk of breast cancer and 
the relative intake of fat. At the same time, a large-scale, case–control study has revealed 
that replacing fat intake with carbohydrates of equal calories could lower the risk of breast 
cancer. Moreover, the same association was also shown for fat and protein [59]. Sabina et 
al. found that high total and saturated fat intakes were associated with a greater risk of 
hormone-receptor-positive breast cancer. Meanwhile, a high saturated fat intake was sig-
nificantly associated with a greater risk of HER2-negative breast cancer [60]. Compared to 
protein and carbohydrates, fat can provide more energy per gram. Therefore, it means 
that a higher relative intake of fat is more likely to lead to obesity, which has already been 
considered a risk factor for breast cancer. 
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The strength of our study is that we, for the first time, investigated with the MR anal-
ysis the causal relationship between the relative intake of four macronutrients and the risk 
of breast cancer. In addition, the proportion of sample overlap in our study was small, 
guaranteeing the independence of exposure and outcome and making the estimates of 
MR more robust. Moreover, we used different methods to perform sensitivity analysis to 
detect outliers and correct potential pleiotropy and heterogeneity. On the other hand, 
most current diet-related research has concentrated on specific foods or ingredients, 
which may not offer comprehensive insights into the optimal diet for overall health. In-
stead, dietary paĴerns, which encompass a range of foods, nutrients, and beverages, can 
be valuable tools for assessing the overall impact of diet on health outcomes. The exposure 
information in our study is derived from large cohorts via dietary questionnaires, a pro-
cess that reflects, to the greatest extent, the dietary structure of the participants in the co-
horts. In addition, it indirectly describes the proportion of the four macronutrients in the 
dietary paĴern using energy density. 

Our study also had some limitations. Firstly, the original dietary information ob-
tained from UK Biobank was collected via a 24HDR questionnaire. Moreover, participants 
were asked to recall as accurately as possible how many portions of each food item they 
had consumed the previous day. Compared with the FFQ used by other cohorts, feedback 
from the 24HDR may have more random variation since the FFQ can obtain dietary in-
takes for a standard day in the previous week or month. Secondly, the IV numbers for 
relative fat, protein, and sugar intake were too small, potentially weakening the strength 
of the MR analysis due to the convergence bias. Thirdly, only European ancestry was 
tested in our study, so it is unreasonable to interpret our findings in other populations. 
Finally, the findings in our study are based on the current background of GWASs, which 
have identified the causal relationship between macronutrient intake and the risk of breast 
cancer in genetics. This can provide some reference for the formulation of clinical nutrition 
strategies but still requires large-scale clinical trials for validation. 

5. Conclusions 
This study utilized the genetic method to investigate the causal relationship between 

the relative intake of macronutrients and the risk of breast cancer. We found that a higher 
relative intake of protein was inversely associated with the risk of Luminal A and overall 
breast cancer. On the contrary, a higher relative intake of sugar would promote incidences 
of Lumina B and HER2-positive breast cancer. However, what we have found was par-
tially inconsistent with the current finding, so further validation needs to be performed 
via clinical trials. 

Supplementary Materials: The following supporting information can be downloaded at: 
hĴps://www.mdpi.com/article/10.3390/nu15112586/s1. Supplementary tables; Table S1: lead SNPs 
identified across diet composition GWAS; Table S2: the power of Mendelian randomization analysis 
in the study; Table S3: sample overlap of exposure and outcome genome-wide association studies; 
Table S4: details for Mendelian randomization studies with tightened instrument variables selection; 
Table S5: results of MR analysis and sensitivity analysis. Supplementary figures; Figure S1. scaĴer 
plots from genetically predicted protective effects assessed the relative intake of protein’s effect on 
breast cancer risk; Figure S2. scaĴer plots from genetically predicted protective effects assessed the 
relative intake of sugar on breast cancer risk; Figure S3. funnel plot and leave-one-out sensitivity 
analysis of MR estimate assessed the relative intake of protein and its effect on overall breast cancer 
risk; Figure S4. funnel plot and leave-one-out sensitivity analysis of MR estimate assessed the rela-
tive intake of sugar and its effect on overall breast cancer risk. 
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