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Abstract: The term neuronutrition has been proposed as part of nutritional neuroscience, studying
the effects of various dietary components on behavior and cognition. Other researchers underline
that neuronutrition includes the use of various nutrients and diets to prevent and treat neurological
disorders. The aim of this narrative review was to explore the current understanding of the term
neuronutrition as the key concept for brain health, its potential molecular targets, and perspectives of
its nutritional approach to the prevention and treatment of Alzheimer’s and Parkinson’s diseases,
multiple sclerosis, anxiety, depressive disorders, migraine, and chronic pain. Neuronutrition can
be defined as a part of neuroscience that studies the influence of various aspects of nutrition (nu-
trients, diet, eating behavior, food environment, etc.) on the development of nervous disorders
and includes nutrition, clinical dietetics, and neurology. There is evidence that the neuronutritional
approach can influence neuroepigenetic modifications, immunological regulation, metabolic control,
and behavioral patterns. The main molecular targets in neuronutrition include neuroinflamma-
tion, oxidative/nitrosative stress and mitochondrial dysfunction, gut–brain axis disturbance, and
neurotransmitter imbalance. To effectively apply neuronutrition for maintaining brain health, a
personalized approach is needed, which includes the adaptation of the scientific findings to the
genetic, biochemical, psycho-physiological, and environmental features of each individual.

Keywords: neuronutrition; neurological disorders; neuronutrients; brain health

1. Introduction

Chronic non-infectious diseases remain the leading causes of death and disability
worldwide despite the extensive development of innovative pharmaceutical technolo-
gies that are generally increasing in frequency and, in many cases, decreasing in latency.
Modifiable lifestyle factors play a significant role in the prevention and therapy of these
disorders, among which diet and nutritional behavior occupy a special place [1]. Dietary
recommendations for corrective eating behavior and nutrient status for gastroenterological
and cardiovascular diseases have been developed already [2,3]. Numerous studies show
that both neuronutrients and eating behavior, in general, could impact the pathogenesis of
neurological disorders and also the cognitive and emotional states of the patients [4,5].

At the same time, researchers note that nutrition in neurology has always been con-
sidered narrowly in the context of managing neurological patients with malnutrition,
dysphagia [6], and alcohol-related neurological disorders [7]. Additionally, micronutrient
deficiencies, particularly B2 and B12 [8,9], iron [10], and copper deficiencies [11], may result
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in the onset of different neurological symptoms. On the other hand, an excess of micronu-
trients, such as copper, can lead to the development of other neurological disorders, such as
Wilson’s disease [12]. One more notable domain of clinical nutrition in neurology pertains
to the application of a ketogenic diet for the management of refractory epilepsy [13] and
Glucose transporter type 1 (GLUT1) deficiency syndrome [14].

Another important and well-discussed nutritional aspect in neurology is ischemic
stroke prevention, as it has a lot of common risk factors with other cardiovascular disorders,
which is not the subject of this review and can be read elsewhere [15,16].

Although research in nutrition science has demonstrated the potential for beneficial
effects of selected nutrients and diets on such conditions as depression, anxiety, cognitive
decline, and neurodevelopmental disorders [17–19], these findings often remain theoretical
and have little application in clinical practice. Moreover, there is now an identified need for
research to develop practical recommendations on nutrition and the use of neuronutrients
in the prevention and treatment of various neurological disorders.

The aim of the narrative review was to explore the state of the art of the term neuronu-
trition as the key concept for brain health, potential neuronutritional molecular targets,
and interventions as an interdisciplinary approach to the prevention and treatment of
Alzheimer’s diseases, multiple sclerosis, anxiety and depressive disorders, migraine, and
chronic pain.

2. Neuronutrition

Nutrition has traditionally been viewed as a supplier of elements for building and
maintaining the human body and as a source of energy for the body’s vital functions.
Research in psychoneuroendocrinoimmunology (PNEI) has broadened the horizons of
the role of nutrition. According to the PNEI concept, nutrition is a tool with which the
environment methodically shapes the metabolome and epigenome, and various nutrients
and eating behaviors have a multifaceted effect on self-regulation, metabolism, immune
system, and brain function [20].

A new scientific field, nutritional neuroscience, which studies the effects of dietary
components, such as proteins, carbohydrates, fats, and supplements, including phytonutri-
ents, on the central and peripheral nervous system, neurochemistry, neurobiology, behavior,
and cognition, has recently emerged [21]. Some researchers suggest using the term neu-
ronutrition as part of the nutritional neuroscience of maintaining brain health and cognitive
function through dietary influence [22]. Other researchers have defined neuronutrition as
not only the use of diet but also the use of various nutrients to prevent and treat disorders
of the central and peripheral nervous system [23]. The first references to neuronutrition
were mentioned in the context of dietary patterns influence on Alzheimer’s disease devel-
opment [24]. In a broader sense, neuronutrition is an interdisciplinary area that studies
the influence of various aspects of nutrition (nutrients, diet, food behavior, food environ-
ment, etc.) on brain health [25], prevention, and treatment of neurological disorders across
the lifespan (Figure 1).

The future of neuronutrition, as a part of personalized and preventive medicine, is to
apply neuronutritional interventions to prevent and treat brain disorders (both neurological
and psychiatric), including migraine, chronic pain syndrome, epilepsy, amyotrophic lateral
sclerosis, anxiety, and depressive disorders, neurodegenerative diseases (Alzheimer’s,
Parkinson’s), autoimmune conditions (multiple sclerosis), and others.
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in the prevention and ancillary treatment of various somatic pathological conditions [31]. 
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in supradietary doses), for the prevention and treatment of neurological and psychiatric 
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As practice shows, the nervous system state, as well as whole body function, depend 
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ture. Hence, studying and forming healthy dietary habits, optimal eating behavior, and a 
healthy food environment are also among the areas of neuronutrition as a science (Figure 
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Figure 1. Neuronutrition definition. Neuronutrition includes a subset of nutritional neuroscience
(approach to improving eating behavior [26], mental health [27], and cognitive functions [28] in
healthy and sick individuals), nutrition (approach to detect nutritional status and dietary patterns in
patients with neurological disorders [29]), and neurology (approach to prevent and treat neurological
disorders with nutritional interventions) [30]).

Since brain dysfunction (maladaptive response to stress) contributes to the forma-
tion/progression of other chronic diseases (metabolic syndrome, arterial hypertension,
irritable bowel syndrome, etc.), the neuronutritional approach may also find applications
in the prevention and ancillary treatment of various somatic pathological conditions [31].

3. Neuronutritional Interventions

Neuronutrition includes the use of diets, functional foods (food products with specific
nutritional properties), food supplements/nutraceuticals, and medications (nutrients in
supradietary doses), for the prevention and treatment of neurological and psychiatric
disorders [23].

As practice shows, the nervous system state, as well as whole body function, depend
on the effect of individual nutrients and diets, which is largely determined by food culture.
Hence, studying and forming healthy dietary habits, optimal eating behavior, and a healthy
food environment are also among the areas of neuronutrition as a science (Figure 2).
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3.1. Nutrient Interactions

Brain health preservation and neurological disorder prevention are largely associated
with the suppression of signaling pathways associated with aging. Phytonutrients, such
as the polyphenols apigenin, quercetin, and proanthocyanidins, have been shown to
modulate and suppress many of these signaling pathways [32]. Other neuronutrients
affect neuroinflammation and oxidative/nitrosative stress and/or modify neurotransmitter
chemistry [33,34]

Food is a complex combination of multiple nutrients and anti-nutrients, many of which
have been shown to modulate inter alia gene expression and metabolic pathways [35].

Nutraceuticals are food and/or herbal extracts utilized to ameliorate health, delay
senescence, prevent diseases, and support the proper functioning of the human body [36].
This definition leads to a partial overlap with the definition of a food supplement; however,
while nutraceuticals are made from food or part of a food, food supplements are single
substances used alone or in mixtures with the scope of adding micronutrients when the
body needs them [37].

Many food supplements and nutraceuticals have been studied in relation to nervous
disease treatment and prevention. Magnesium, coenzyme Q10, feverfew, riboflavin, and
phycocyanins have shown modest efficacy but a very good safety and tolerability profile
in migraine treatment [38]. Diets with a low nutrient density are linked to a higher risk of
cognitive decline [39]. Conversely, diets with a higher nutrient density are associated with
a nutraceutical component in the Mediterranean diet and are associated with a degree of
neuroprotection [40].

Food supplements were initially used to prevent and/or treat deficiencies in some
essential micronutrients, thus reducing their adverse health consequences. Nowadays, this
practice is more widespread, meaning that adding supplements not only covers the deficit
but also helps gain a positive effect on health [41]. Many studies on food supplements’ role
in the prevention and treatment of various nervous diseases are being conducted as they
are safe but, at the same time, can be efficient in some areas where pharmaceutical phar-
macology has been unproductive. Nicotinamide riboside supplementation, for example,
was shown to augment the NAD metabolome and induced transcriptional upregulation
of processes related to mitochondrial, lysosomal, and proteasomal function in blood cells
and/or skeletal muscle and improve some clinical symptoms in patients with Parkinson’s
disease [42]. Pro/prebiotics can be useful in Alzheimer’s disease prevention [43].

3.2. Dietary Pattern

A dietary pattern is defined as the amount, proportion, variety, or combination of
different foods, drinks, and nutrients in the diet and the frequency of their consumption [44].

Neuronutrition’s aim is to replace maladaptive, unhealthy dietary patterns that in-
crease chronic disease risk development with healthy dietary patterns that promote brain
health [45].

According to the neuronutrition concept, the dietary pattern includes functional
foods, foods with certain nutritional properties, and specialized diets that have shown
effectiveness in maintaining brain health and in the prevention and treatment of neurologi-
cal disorders.

The antidepressant food rating was developed to identify individual foods with the
highest nutrient density for depressive disorder prevention and treatment. The highest-
ranking foods were oysters, mussels, leafy greens, peppers, and cruciferous vegetables [46].

Functional foods are novel foods that have been formulated so that they contain sub-
stances or live microorganisms that have possible health-enhancing or disease-preventing
values and at a concentration that is both safe and sufficiently high to achieve the intended
benefit. The added ingredients may include nutrients, dietary fiber, phytochemicals, fatty
acids, or probiotics [47]. In Japan, a functional product in the form of yogurt based on beta
lactoline that improves memory has been developed. Taking beta-lactoline for 6 weeks
improved brain blood circulation, increased concentration, and memory [48].
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A growing body of evidence has been accumulated on the protective effects of the
Mediterranean diet in neurodegenerative disease prevention [49,50]. Adherence to a calorie-
restricted diet was found to improve the quality of life and emotional state of patients with
multiple sclerosis [51].

3.3. Food Culture

Food culture is what we do, think, and feel around food as an individual or group
within contemporary social and environmental constructs [52]. This part of neuronutri-
tion includes aspects of dietary habits, food behavior, and food environment that affect
neurological disorders prevention and treatment.

Dietary habits are habitual decisions of a person or a group of people ranging from the
selection of individual foods to methods of cooking and eating [53]. Dietary habit formation
involves the reward system of the brain and the nucleus accumbens and other hypothalamic
nuclei, which are involved in food consumption motivation, pleasure from food intake,
appetite, and satiety [54]. Unhealthy dietary habits, such as regular excessive consumption
of refined carbohydrates and inadequate fiber intake, that contribute to hypothalamic
dysregulation and damage [55] are risk factors for Alzheimer’s disease [56], Parkinson’s
disease [57], and depression [58].

Food behavior is a complex interplay of physiological, psychological, social, and
genetic factors that influence meal timing, amount of food consumed, food preferences,
and food choices [59]. Regulation of hunger and satiety is controlled by hypothalamic
neurons. Their signals are converted into motivated behavior to meet the homeostatic
needs of a person [60]. Eating disorders contribute not only to metabolic dysregulation and
obesity [61] but also to chronic pain [62] and dementia patients’ condition worsening [63].
Eating disorders, for example, have also been found in patients with migraines, and
skipping meals may be an early symptom of an attack rather than a migraine trigger [64].

The food environment includes both urban and domestic environments, in which
a person makes the decision about nutrition, as well as healthy and unhealthy foods
available in it [65]. The environment has a great influence on food choices, which are
largely determined by the context in which they are made. There is evidence that higher
access to fast food restaurants near a person’s home has been associated with a higher body
mass index [66]. Higher grocery shopping and lower fast food restaurant availability, as
well as higher income and college education, have also been found to be independently
associated with higher consumption of fresh fruits and vegetables, lower consumption of
fast food and soda, and lower risk of being overweight and obese. [67].

Another part of food culture is chrononutrition, a branch of nutritional science focused
on studying how nutrients or mealtimes themselves can influence the circadian rhythm
system in health and disease [68]. A growing body of evidence suggests that nutrient and
food consumption timing can affect circadian rhythms functioning, and circadian rhythms
desynchronization can negatively affect the timing and choice of food [69]. Eating at
inappropriate times can disrupt circadian rhythm organization and contribute to metabolic
dysregulation and chronic disease development [70]; there is a close relationship between
human personality, chrononutrition, and cardiometabolic health [71]. Data have also been
published on the possibilities of chrononutrition use in medicine, with intermittent fasting
improving chronic pain as an example [72].

4. The Molecular Targets of Neuronutrition

The mechanisms underlying the effects of nutrition on the nervous system and neuro-
logical diseases are still poorly understood. There is evidence for the effects of such aspects
of nutrition as vitamin and mineral intake on the synthesis of neurotrophic factors and
neurotransmitters, neuroplasticity, myelination, and microglia activity [73,74].

At the moment, it is assumed that neuronutritional interventions can also influence
neuroepigenetics modifications, immune regulation, metabolic control, and eating behavior
of patients with neurological disorders and brain health [30] (Figure 3).
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and neurotransmitters imbalance [75,76].

There are also disease-specific neuronal targets; for example, in migraine, it is the
calcitonin gene-related peptide (CGRP) and its receptors [77]; in chronic neuropathic pain—
central sensitization, and in nociplastic pain—fatty acid amines [78].

4.1. Neuroepigenetics Modifications

Interactions between nutrition and genes are involved in brain development and
function, affecting cell membranes, neurotransmitters, neurogenesis, synaptic plasticity,
and metabolism in neurons [79]. Results from studies in the field of neuroepigenetics
of nutrition show that diets high in sugar, trans-fats, and methionine cause changes in
DNA methylation and histone modifications in brain regions, such as the hypothalamus,
hippocampus, striatum, and cortex [80]. Overeating or malnutrition contributes to a chronic
stressful environment and leads to neuroepigenetic reprogramming that contributes to
cognitive disorders and other degenerative condition development [81]. Nutrition, being
a powerful epigenetic regulator, plays an important role in preserving brain health and
preventing neurological disorders through gene modification.

4.2. Neuroinflammation

Neuroinflammation is involved in most neurodegenerative processes [82] and pain
mechanisms [83] and represents one of the common mechanisms involved in brain ag-
ing. Neuroinflammation is characterized by hyperactivation of peripheral glia, including
Schwann cells, satellite glial cells in the posterior horn of the spinal cord, and trigeminal
nerve ganglia, and central glia, including microglia, astrocytes, and oligodendrocytes in
the spinal cord and brain [82]. A diet high in processed foods and saturated and trans fats
may contribute to the promotion of low-grade inflammation and increase the risk of the
development of non-communicable diseases, including neurological disorders [84].

A prospective cohort study of more than 70,000 participants shows that high consump-
tion of ultra-processed foods was associated with a higher risk of dementia [85].

The same association was found between having depressive symptoms and a high
intake of ultra-processed foods among young individuals [86]

Positive effects of nutrition on neuroinflammatory signaling pathways regulation
have been found with the consumption of whole plant foods, such as berries, mushrooms,
turmeric, and garlic [87]. Interactions between different components of whole foods and
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plant foods contribute to a synergistic effect for neuroinflammation regulation and possible
prevention of neurodegeneration.

4.3. Immunological Regulation: Vitamin D

Vitamin D plays a crucial role in immune system regulation and can impact various
neurological conditions via this mechanism. Research indicates that low levels of vitamin
D are linked to cognitive decline [88], Parkinson’s disease [89], depression, Alzheimer’s
disease [90], and other neurological disorders.

The connection between microbiome and vitamin D is also significant. Studies have
shown that vitamin D deficiency and the microbiome can contribute to systemic and
chronic inflammation, which, in turn, can increase the risk of neurological conditions
development [91].

Given these findings, there is potential for vitamin D supplementation to slow down
cognitive decline in Alzheimer’s disease, particularly in its early stages [92]. However,
more research is needed to determine the optimal dosage of vitamin D for preventing
and treating neurological disorders, as well as its mechanisms of action. Additionally,
individual patient characteristics, such as age, gender, presence of some medical conditions,
and other factors that may affect vitamin D levels and its impact on the body, must be taken
into account.

4.4. Gut–Brain Axis Disturbance

Many neurological diseases, namely, Parkinson’s disease, Alzheimer’s disease, mul-
tiple sclerosis, and chronic stress, can cause changes in the bidirectional gut–brain axis,
leading to abnormalities in both gut function, such as irritable bowel syndrome, and brain
function [76]. In addition, dietary regimens, antibiotic intake, and bacterial and viral in-
fections are often associated with altered gut bacterial composition and disruption of the
gut–brain axis, which may contribute to the development of neurological diseases [93].
There is evidence that pro-inflammatory gut bacteria, especially Salmonella, Bacillus,
Mycobacterium, E. coli, and Staphylococcus, mediated by dysbiosis, may contribute to
neuroinflammation in patients with Alzheimer’s disease [94].

Gut microbiota mediators can directly regulate the excitability of primary sensory
neurons of the dorsal ganglion of the spinal cord through activation or sensitization of
pain-related receptors or ion channels [95]. Consumption of fruits and vegetables stimulates
the production of butyrate produced by bacterial fermentation of dietary fiber in the colon,
which reduces mucosal inflammation [96]. Increased permeability of the intestinal barrier
is observed in the early stages of Parkinson’s disease [97]. A large database has been
accumulated on the effectiveness of probiotics in patients with Parkinson’s disease for the
treatment of constipation, and new studies on their positive effects on motor and cognitive
disorders in such patients are appearing [98].

4.5. Oxidative/Nitrosative Stress and Mitochondrial Dysfunction

In addition to the negative effects of ultra-processed foods on neuroinflammation, a
pro-inflammatory diet, including added sugar and saturated fats, may also contribute to
oxidative stress and mitochondrial dysfunction [99].

Metabolic changes in the brain are increasingly recognized as key risk factors for the
development of cognitive impairment as well as for the chronification of migraine [100]. The
main aspects of these changes are energy metabolism, reactive oxygen species metabolism,
and lipid metabolism [30]. Oxidative/nitrosative stress is implicated in trauma-induced
brain injury, which appears to be increasingly common in contact sports [101]. The preven-
tion and reduction in oxidative/nitrosative stress via inter alia omega-3 PUFA/amphiphilic
polyphenol combinations present an intriguing and potentially valuable way forward [102].

Decreased brain energy metabolism includes mitochondrial dysfunction and systemic
metabolic dysregulation, such as insulin resistance [103]. Polyphenol resveratrol can stimu-
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late mitochondrial biogenesis and enhance autophagy, contributing to ATP production and
restoration of neuronal function [104].

The development of metabolic flexibility for the prevention and therapy of neuro-
logical disorders is also promising. Several preclinical studies have already explored
the potential of metabolic reprogramming of microglia in diseases, such as Parkinson’s
disease, multiple sclerosis, Alzheimer’s disease, and brain aging, by affecting glucose,
amino acids, or fatty acids [105]. Clinical studies on the use of nutrients, such as L-
carnitine, alpha-lipoic acid, CoQ10, B vitamins, and riboflavin to correct mitochondrial
dysfunction have shown their effectiveness in reducing the number and duration of
attacks in migraine patients [100].

4.6. Neurotransmitter Imbalance

Neurotransmitter imbalance is observed in patients with Alzheimer’s disease, in
which the presence of intracellular neurofibrillary tangles and senile plaques are found,
including in neurons that synthesize and use acetylcholine [106]. A decrease in GABA ac-
tivity has been found in anxiety disorders [107]. In depressive disorders, often associated
with many neurological diseases, complex disorders of cholinergic, dopaminergic, and
serotonergic transmission have been shown [108]. It is also necessary to consider that
high levels of stress contribute to abnormalities in the neurotransmitter system, and as a
consequence, to cognitive disorders [109]. It has been shown that nutrition can influence
emotional state and cognitive functions depending on the presence of neurotransmitter
precursors contained in plant and animal foods [110]. Consumption of GABA-containing
tea was found to decrease stress levels in young people while increasing heart rate
variability [111].

5. Neuronutrition and Migraine

Recently, there has been growing evidence of neuronutritional interventions to address
pathogenetic mechanisms and comorbidity of migraine, a multifactorial disease that is one
of the main causes of disability in the adult population worldwide [112]. On the one hand,
the well-known tools of neuronutrition for migraine are the correction of eating behavior,
including compliance with regular meals, weight management, adequate hydration, and
elimination of common food triggers, such as alcohol, coffee, and chocolate. On the other
hand, personalization in migraine nutritional management consists of the identification and
correction of nutrient deficiencies and the impact of neuroinflammation and mitochondrial
dysfunction [113,114].

Correction of metabolic dysregulation in patients with migraine is possible via the
modern diagnostic methods of metabolomics and the targeted effect of nutraceuticals. A
forward-looking interdisciplinary approach is using continuous glucose monitoring for
patients with migraine to apply personal dietary patterns as the key step to developing
metabolic flexibility [115].

Current evidence also suggests that the gut–brain axis influences migraine through
changes in inflammatory mediators, gut microbiota profile and its metabolites, neu-
ropeptides and serotonin pathway, stress hormones, and nutrients [116]. In addition,
neuronutritional interventions have the potential to influence other links in migraine
pathogenesis, including serotonergic dysfunction, CGRP levels, nitric oxide, adiponectin
and leptin, hypothalamic function, and platelet aggregation [117]. In Table 1, we sum-
marized all relevant information on the neuronutritional approach to preventive mi-
graine management.



Nutrients 2023, 15, 2505 9 of 18

Table 1. Neuronutritional interventions for preventive migraine management.

The Molecular Target
of Neuronutrition

Neuronutritional Interventions

Dietary Patterns Nutrients

Mitochondrial
dysfunction

and metabolic control

Low Glycemic Index Diet [118]
Low-fat diet [119]

Ketogenic diet [120]
EPA 1 + DHA 2 (1.5 g/day) and

reduction in omega-6 in the
diet [121]

CoQ10 3 (400 mg/day) [122]
- CoQ10 (30 mg/day) +

L-carnitine (500 mg/day) [123]
Riboflavin (400 mg/day) [124]

CoQ10 (150 mg/day), riboflavin
(400 mg/day), magnesium

(600 mg/day) [125]
Omega-3 (EPA (400 mg/day) +

DHA (350 mg/day)) [126]

Gut–brain axis
disturbance

Elimination diet based on
immunological testing
(IgG+ products) [127]
Gluten-free diet [128]
Plant-based diet [129]

Multispecies probiotics
(Bifidobacterium and
Lactobacterium) [130]

Neuroepigenetics
modifications

Epigenetic diet
(a diet rich in methyl-donor

nutrients)
[131]

B6 (25 mg/day) + B9
(2 mg/day) + B12 (400 mcg/day)

[132]
Curcumin (1 g/day) [133]

CGRP 4 levels and
CGRP receptor activity MIND 5-diet [134]

Ginger extract (600 mg/day) [135]
Magnesium citrate
(600 mg/day) [136]

Vitamin D (2000 IU/day) [137]
Melatonin (3 mg/day) [138]

1 EPA—Eicosapentaenoic acid. 2 DHA—Docosahexaenoic acid. 3 CoQ10—Coenzyme Q10. 4 CGRP—calcitonin
gene-related peptide. 5 MIND—Mediterranean–DASH Intervention for Neurodegenerative Delay.

6. Neuronutrition and Alzheimer’s Disease

The pathogenesis of Alzheimer’s disease was found to be related to dietary factors;
in particular, excessive saturated fat intake and vitamin E deficiency may contribute to
neurodegeneration [139]. A diet low in omega-3 polyunsaturated fatty acids and antioxi-
dants supports neuroinflammation in patients with Alzheimer’s disease and contributes
to its progression [140]. In view of the lack of effective drug treatment for Alzheimer’s
disease, new therapeutic targets are being actively sought, and mitochondrial dysfunction
is one of the promising ones [141]. A ketogenic diet, previously used in the therapy of
epilepsy, and antioxidant nutrients can affect mitochondrial dysfunction and improve
the cognitive status of patients with Alzheimer’s disease [142]. Such neuronutriton inter-
ventions on the cholinergic system as vitamin B12 and folic acid supplementation, have
shown effectiveness in improving the cognitive performance of patients with Alzheimer’s
disease [143,144]. In Table 2, we have shown the relevant data on the neuronutritional
approach to Alzheimer’s disease.

Table 2. Neuronutritional interventions for treatment of Alzheimer’s disease.

The Molecular Target
of Neuronutrition

Neuronutritional Interventions

Dietary Patterns Nutrients

Neuroinflammation Mediterranean diet [145]

Omega-3 fatty acids
(2.3 g/day) [146]

Correction of vitamin D status [147]
Selenium (200 mcg/day) + probiotics

(Lactobacillus acidophilus,
Bifidobacterium bifidum, and
Bifidobacterium longum) [148]
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Table 2. Cont.

The Molecular Target
of Neuronutrition

Neuronutritional Interventions

Dietary Patterns Nutrients

Mitochondrial
dysfunction

Ketogenic diet [149]
Olive oil [150]

Thiamine (400 mg/day) [151]
Alpha-lipoic acid (600 mg/day) +

Omega-3 fatty acids (3 g/day) [152]

Neurotransmitter
imbalance

MIND 1 diet [153]
MCT 2 oil (42 g/day) [154]

Ginko biloba (240 mg/day) [155]
Saffron (30 mg/day) [156]
Correction of magnesium

deficiency [157]
1 MIND—Mediterranean–DASH Intervention for Neurodegenerative Delay. 2 MCT—Medium Chain Triglycerides.

7. Neuronutrition and Anxiety and Depressive Disorders

Anxiety and depression are very common disorders, which not only often coexist in
one patient but can be confounding factors in many other somatic disorders that can lead to
a poor prognosis for the patient [158]. Nutrition plays an important role in prevention and
treatment of both anxiety and depression. Diet is a modifiable risk factor for depression;
thus, improving diet can reduce the burden of depressive disorders [159]. It has been found
that the increase in depressive disorders in recent decades has been paralleled by a decrease
in healthy lifestyles, including a deterioration in the quality of diet [160]. Nutrients, in-
cluding tryptophan, vitamin B6, vitamin B12, folic acid, phenyl-alanine, tyrosine, histidine,
choline, and glutamic acid, are essential for the production of neurotransmitters, such as
serotonin, dopamine, and noradrenaline, which are involved in regulating neurotransmit-
ters that determine mood, appetite, and cognitive function [161]. Marine omega-3 fatty
acids regulate dopaminergic and serotonergic neurotransmission, which can reduce both
depression [162] and anxiety [163]. In Table 3, there is a summary of perspective dietary
patterns and nutrients that could affect the neuronutrition molecular targets involved in
anxiety and depression disorders.

Table 3. Neuronutritional interventions for management of anxiety and depressive disorders.

The Molecular Target
of Neuronutrition

Neuronutritional Interventions

Dietary Patterns Nutrients

Neurotransmitter i
mbalance

Modified
Mediterranean diet [164]

Diet rich in
tryptophan

(10 mg/kg/day) [165]

Correction of zinc deficiency [166]
Vitamin B6 (80 mg/day) [167]
L-theanine (200 mg/day) [168]

Magnesium (300 mg/day) +
vitamin B6 (30 mg/day) [169]

Neuroinflammation Calorie restriction [170]
Mediterranean diet [171]

Omega-3 fatty acids (DHA 2

(720 mg/day) + EPA 1

(480 mg/day) [172]
Correction of vitamin D

deficiency [173]

Gut–brain axis
disturbance

High intake of
dietary fiber [174]

Probiotics (Lactobacillus reuteri
NK33 and Bifidobacterium
adolescentis NK98) [175]
Galactooligosaccharides

(7.5 g/day) [176]
1 EPA—Eicosapentaenoic acid. 2 DHA—Docosahexaenoic acid.

8. Conclusions

Neuronutrition is at the intersection of neuronutrtional neuroscience, nutrition, and
neurology. In a broader context, it covers the impact of aspects of nutrition (food culture,
dietary patterns, nutrients) on brain health at different stages of the life span. Leading
molecular targets in neuronutrition are neuroinflammation, mitochondrial dysfunction,
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neurotransmitter imbalances, and gut–brain axis disturbance. Changing food culture, im-
proving dietary patterns, and the use of selected neuronutrients depending on the specific
neuronutritional target is a promising multidisciplinary approach to brain health, preven-
tion, and treatment of neurological disorders. Integrating a neuronutritional approach to
the management of migraine, Alzheimer’s disease, anxiety, and depressive disorders can
increase the patients’ quality of life and the burden of disease, as confirmed by random-
ized studies.

To effectively apply neuronutrition in clinical practice, a personalized approach is
needed that will cover the genetic, biochemical, psychophysiological, and environmental
factors of each patient. Additionally, more studies and clinical evidence are needed to
identify individual patient phenotypes, taking into account the neuronutritional targets
and such neuronutritional interventions as functional foods, diets, food supplements,
and nutraceuticals.

Author Contributions: Conceptualization, A.B.D. and A.V.B.; methodology, A.B.D. and P.C.;
writing—original draft preparation, A.V.B., Y.D.V. and V.N.N.; writing—review and editing, A.A.M.,
A.V.K. and A.F.T.; supervision, P.C.; visualization, V.N.N.; funding acquisition, A.B.D. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vodovotz, Y.; Barnard, N.; Hu, F.B.; Jakicic, J.; Lianov, L.; Loveland, D.; Buysse, D.; Szigethy, E.; Finkel, T.; Sowa, G.; et al.

Prioritized Research for the Prevention, Treatment, and Reversal of Chronic Disease: Recommendations From the Lifestyle
Medicine Research Summit. Front. Med. 2020, 7, 585744. [CrossRef]

2. Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van
Horn, L.; Wylie-Rosett, J.; et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement From the
American Heart Association. Circulation 2021, 144, e472–e487. [CrossRef] [PubMed]

3. Corsello, A.; Pugliese, D.; Gasbarrini, A.; Armuzzi, A. Diet and Nutrients in Gastrointestinal Chronic Diseases. Nutrients 2020,
12, 2693. [CrossRef] [PubMed]

4. Nogueira-De-Almeida, C.A.; Zotarelli-Filho, I.J.; Nogueira-De-Almeida, M.E.; Souza, C.G.; Kemp, V.L.; Ramos, W.S. Neuronutri-
ents And Central Nervous System: A Systematic Review. Central Nerv. Syst. Agents Med. Chem. 2022, 23, 1–12. [CrossRef]

5. Spencer, S.J.; Korosi, A.; Layé, S.; Shukitt-Hale, B.; Barrientos, R.M. Food for thought: How nutrition impacts cognition and
emotion. NPJ Sci. Food 2017, 1, 7. [CrossRef] [PubMed]

6. Burgos, R.; Bretón, I.; Cereda, E.; Desport, J.C.; Dziewas, R.; Genton, L.; Gomes, F.; Jésus, P.; Leischker, A.; Muscaritoli, M.; et al.
ESPEN guideline clinical nutrition in neurology. Clin. Nutr. 2018, 37, 354–396. [CrossRef]

7. De La Monte, S.M.; Kril, J.J. Human alcohol-related neuropathology. Acta Neuropathol. 2014, 127, 71–90. [CrossRef]
8. Chandrakumar, A.; Bhardwaj, A.; ‘t Jong, G.W. Review of thiamine deficiency disorders: Wernicke encephalopathy and Korsakoff

psychosis. J. Basic Clin. Physiol. Pharmacol. 2018, 30, 153–162. [CrossRef]
9. Calderón-Ospina, C.A.; Nava-Mesa, M.O. B Vitamins in the nervous system: Current knowledge of the biochemical modes of

action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci. Ther. 2020, 26, 5–13. [CrossRef]
10. Benkirane, A.; Warlop, T.; Ivanoiu, A.; Baret, P.; Wiame, E.; Haufroid, V.; Duprez, T.; Hantson, P. Case report: Motor neuron

disease phenotype associated with symptomatic copper deficiency: Challenging diagnosis and treatment. Front. Neurol. 2023, 13,
1063803. [CrossRef]

11. Vinke, J.S.J.; Ziengs, A.L.; Buunk, A.M.; van Sonderen, L.; Gomes-Neto, A.W.; Berger, S.P.; Bakker, S.J.L.; Eisenga, M.F.; Spikman,
J.M.; De Borst, M.H.; et al. Iron Deficiency and Cognitive Functioning in Kidney Transplant Recipients: Findings of the
TransplantLines Biobank and Cohort Study. In Nephrology, Dialysis, Transplantation: Official Publication of The European Dialysis and
Transplant Association; European Renal Association: Oxford, UK, 2023. [CrossRef]

12. Penning, L.C.; Berenguer, M.; Czlonkowska, A.; Double, K.L.; Dusek, P.; Espinós, C.; Lutsenko, S.; Medici, V.; Papenthin, W.;
Stremmel, W.; et al. A Century of Progress on Wilson Disease and the Enduring Challenges of Genetics, Diagnosis, and Treatment.
Biomedicines 2023, 11, 420. [CrossRef]

13. Spence, J.D. Nutrition and Risk of Stroke. Nutrients 2019, 11, 647. [CrossRef] [PubMed]
14. Zarnowska, I.M. Therapeutic Use of the Ketogenic Diet in Refractory Epilepsy: What We Know and What Still Needs to Be

Learned. Nutrients 2020, 12, 2616. [CrossRef] [PubMed]

https://doi.org/10.3389/fmed.2020.585744
https://doi.org/10.1161/CIR.0000000000001031
https://www.ncbi.nlm.nih.gov/pubmed/34724806
https://doi.org/10.3390/nu12092693
https://www.ncbi.nlm.nih.gov/pubmed/32899273
https://doi.org/10.2174/1871524923666221121123937
https://doi.org/10.1038/s41538-017-0008-y
https://www.ncbi.nlm.nih.gov/pubmed/31304249
https://doi.org/10.1016/j.clnu.2017.09.003
https://doi.org/10.1007/s00401-013-1233-3
https://doi.org/10.1515/jbcpp-2018-0075
https://doi.org/10.1111/cns.13207
https://doi.org/10.3389/fneur.2022.1063803
https://doi.org/10.1093/ndt/gfad013
https://doi.org/10.3390/biomedicines11020420
https://doi.org/10.3390/nu11030647
https://www.ncbi.nlm.nih.gov/pubmed/30884883
https://doi.org/10.3390/nu12092616
https://www.ncbi.nlm.nih.gov/pubmed/32867258


Nutrients 2023, 15, 2505 12 of 18

15. Schwantje, M.; Verhagen, L.M.; van Hasselt, P.M.; Fuchs, S.A. Glucose transporter type 1 deficiency syndrome and the ketogenic
diet. J. Inherit. Metab. Dis. 2020, 43, 216–222. [CrossRef]

16. Foroughi, M.; Akhavanzanjani, M.; Maghsoudi, Z.; Ghiasvand, R.; Khorvash, F.; Askari, G. Stroke and nutrition: A review of
studies. Int. J. Prev. Med. 2013, 4 (Suppl. 2), S165–S179.

17. Su, K.-P.; Tseng, P.-T.; Lin, P.-Y.; Okubo, R.; Chen, T.-Y.; Chen, Y.-W.; Matsuoka, Y.J. Association of Use of Omega-3 Polyunsaturated
Fatty Acids With Changes in Severity of Anxiety Symptoms: A Systematic Review and Meta-analysis. JAMA Netw. Open 2018,
1, e182327. [CrossRef]

18. Markun, S.; Gravestock, I.; Jäger, L.; Rosemann, T.; Pichierri, G.; Burgstaller, J.M. Effects of Vitamin B12 Supplementation on
Cognitive Function, Depressive Symptoms, and Fatigue: A Systematic Review, Meta-Analysis, and Meta-Regression. Nutrients
2021, 13, 923. [CrossRef]

19. Rudolph, M.; Graham, A.M.; Feczko, E.; Miranda-Dominguez, O.; Rasmussen, J.M.; Nardos, R.; Entringer, S.; Wadhwa, P.D.; Buss,
C.; Fair, D.A. Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working
memory in offspring. Nat. Neurosci. 2018, 21, 765–772. [CrossRef]

20. Bottaccioli, F.; Bottaccioli, A.G.; Marzola, E.; Longo, P.; Minelli, A.; Abbate-Daga, G. Nutrition, Exercise, and Stress Management
for Treatment and Prevention of Psychiatric Disorders. A Narrative Review Psychoneuroendocrineimmunology-Based. Endocrines
2021, 2, 226–240. [CrossRef]

21. Zamroziewicz, M.K.; Barbey, A.K. Nutritional Cognitive Neuroscience: Innovations for Healthy Brain Aging. Front. Neurosci.
2016, 10, 240. [CrossRef]

22. Devi, A.; Narayanan, R. A Review on Neuronutrition. Asian J. Dairy Food Res. 2019, 38, 128–133. [CrossRef]
23. Topcuoglu, M.A.; Arsava, E.M. Neuronutrition: An Emerging Concept. In Nutrition in Neurologic Disorders; Springer:

Berlin/Heidelberg, Germany, 2017; pp. 155–206. [CrossRef]
24. Ramesh, B.N.; Rao, T.S.; Prakasam, A.; Sambamurti, K.; Rao, K.S. Neuronutrition and Alzheimer’s Disease. NIH Public Access

2010, 19, 1123–1139. [CrossRef]
25. Chen, Y.; Demnitz, N.; Yamamoto, S.; Yaffe, K.; Lawlor, B.; Leroi, I. Defining brain health: A concept analysis. Int. J. Geriatr.

Psychiatry 2021, 37, 1–13. [CrossRef]
26. Giuliani, N.R.; Merchant, J.S.; Cosme, D.; Berkman, E.T. Neural predictors of eating behavior and dietary change. Ann. N. Y. Acad.

Sci. 2018, 1428, 208–220. [CrossRef] [PubMed]
27. Grajek, M.; Krupa-Kotara, K.; Białek-Dratwa, A.; Sobczyk, K.; Grot, M.; Kowalski, O.; Staśkiewicz, W. Nutrition and mental health:
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