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Abstract: The increasing incidence of pregnancy complications, particularly gestational diabetes
mellitus (GDM) and preeclampsia (PE), is a cause for concern, as they can result in serious health
consequences for both mothers and infants. The pathogenesis of these complications is still not fully
understood, although it is known that the pathologic placenta plays a crucial role. Studies have
shown that PPARγ, a transcription factor involved in glucose and lipid metabolism, may have a
critical role in the etiology of these complications. While PPARγ agonists are FDA-approved drugs for
Type 2 Diabetes Mellitus, their safety during pregnancy is not yet established. Nevertheless, there is
growing evidence for the therapeutic potential of PPARγ in the treatment of PE using mouse models
and in cell cultures. This review aims to summarize the current understanding of the mechanism
of PPARγ in placental pathophysiology and to explore the possibility of using PPARγ ligands as a
treatment option for pregnancy complications. Overall, this topic is of great significance for improving
maternal and fetal health outcomes and warrants further investigation.

Keywords: PPARγ; rosiglitazone; trophoblast; placenta; gestational diabetes mellitus; preeclampsia;
pregnancy

1. Introduction

Pregnancy can lead to complications that pose serious risks to both the mother and
infant during pregnancy, labor, and postpartum. These complications typically arise from
conditions unique to pregnancy. Alarmingly, there has been a 16.4% increase in the in-
cidence of pregnancy complications between 2014 and 2018, with gestational diabetes
mellitus (GDM) increasing by 16.6% and preeclampsia (PE) increasing by 19% [1]. Al-
though it is recognized that the pathologic placenta is the root cause of many pregnancy
complications, the exact mechanism is not yet fully understood. Recent clinical studies
have suggested that genetic analysis, such as Peroxisome proliferator-activated receptor-γ
(PPARγ) as a transcription factor, can offer a novel approach to diagnosis and predic-
tion [2]. PPARγ is crucial for metabolism homeostasis, adipocyte differentiation, and the
immune system. Research has revealed significant associations between certain PPARγ
gene variations and PE, underscoring the importance of PPARγ in the development of this
condition. Notably, PE is more prevalent in women with hyperglycemia, a well-known risk
factor [3–5]. Women with diabetes are at least twice as likely to develop PE, with around
50% of diabetic pregnancies experiencing hypertensive disorders of pregnancy (HDP),
particularly those with pre-existing diabetes and poor glycemic control [6–9]. Considering
the therapeutic potential of PPARγ agonists, which are FDA-approved for Type 2 Diabetes
Mellitus, it becomes evident that these agents hold promise for preeclampsia treatment,
particularly in patients with risk factors such as hyperglycemia. Therefore, this review aims
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to provide a comprehensive overview of the current research on the mechanisms of PPARγ
and the effects of PPARγ agonists on placenta pathophysiology. Such understanding paves
the way for precision medicine strategies to prevent or mitigate the risk of PE, taking into
account individual factors such as race, genetics, and maternal risk factors.

To examine the role of PPARγ in GDM and PE, with a particular focus on placen-
tal pathophysiology, this review conducted a comprehensive search using the PubMed
database. Only original research and scientific abstracts published between 2005 and 2022
that investigated the role of PPARγ in GDM and PE were included. The search terms used
were “peroxisome proliferator-activated receptor-gamma”, “PPARγ”, “PPAR gamma”,
“gestational diabetes mellitus” and “preeclampsia”. Studies involving other PPARs and
other pregnancy complications such as infertility, hypertensive pregnancy, and polycystic
ovarian syndrome were excluded (Figure 1).
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2. Peroxisome Proliferator-Activated Receptor-γ

The Peroxisome Proliferator-Activated Receptor-γ (PPARγ) is a PPAR subfamily mem-
ber consisting of two isoforms. PPARγ1 is encoded by mRNA PPARγ1, PPARγ3, and
PPARγ4, while PPARγ2 is translated from mRNA PPARγ2 [10]. PPARγ1 is broadly ex-
pressed in various tissues including adipose tissue, the liver, colon, heart, epithelial cells,
and skeletal muscle, and is also found in immune cells such as monocytes/macrophages,
dendritic cells, and T lymphocytes [11]. On the other hand, PPARγ2 contains 28 additional
amino acids and is primarily found in adipose tissue. Both isoforms are highly expressed
in reproductive organs such as the placenta, testis, and ovary [12].

PPARγ is a ligand-dependent transcription factor, meaning it can be regulated by
agonists and antagonists. It acts as a sensor for different fatty acid types, also known as
a lipid sensor. In addition to endogenous ligands, synthetic ligands are widely used in
clinical practice and in vitro studies to modulate PPARγ [13,14]. A summary of reported
PPARγ ligands is provided in Table 1.
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Table 1. Natural and synthetic ligands of PPARγ *.

Agonists Antagonists

Natural Ligand Synthetic Ligand Natural Ligand Synthetic Ligand

Unsaturated fatty acid ** [15] GW1929 [16] Betulinic acid [17] SR-202 [18]

Oxidized LDL [19] TZD *** NFκB [20] BADGE [21]

EETs [22] FMOC-L-Leucine [23] Fetuin A [20] LG100641 [24]

15d-PGJ2 [25] INT131 [26] PD068235 [27]

Azelaoyl phosphatidylcholine [28] Farglitazar (GI262570) [29] T0070907 [30]

9-oxoODE [31] S26948 [32] GW9662 [33]

13-oxoODE [34] AZ 242 [35]

15-HETE [36] LG100754 [37]

13-HODE [36]

* Partial ligands of PPARγ such as telmisartan [38], Irbesartan [39], metaglidasen [40], and non-TZD partial agonist
(nTZDpa) [41] are not included. ** poly-unsaturated FAs γ-linolenic (18:3), eicosatrienoic acid (C20:3), dihomo-
γ-linolenic (20:3), arachidonic acid (C20:4), and eicosapentaenoic acid (C20:5). *** rosiglitazone, pioglitazone,
troglitazone, ciglitazone [21], RWJ-241947 [42], NC-2100 [43], and KRP-297 [44].

PPARγ, in addition to its well-established roles in lipid metabolism and adipocyte
differentiation, has also been shown to be essential in regulating insulin resistance, glucose
metabolism, immunity, as well as cell biology, including cell differentiation [45–47]. The
TZD family comprises FDA-approved drugs used for treating Type 2 Diabetes Mellitus [13].
Beyond its function in immunology and maintaining energy homeostasis, PPARγ is also
indispensable for the early development of the conceptus as early as E10. Its critical role in
development seems to be particularly important in the placenta [48]. This review primarily
focuses on the function of PPARγ in trophoblast differentiation and invasion, as well as its
relationship with pregnancy complications, including GDM and PE.

3. PPARγ Functions in the Placenta and Trophoblasts

PPARγ is highly expressed in human placentas, particularly in syncytiotrophoblasts,
cytotrophoblasts, and extravillous trophoblasts (EVTs) [49,50]. Its expression in the placenta
is associated with infant birth weight. Placentas from small-for-gestational-age (SGA)
infants were found to have lower expression of PPARγ, whereas placentas from average-
for-gestational-age and large-for-gestational-age infants showed a nearly 2-fold higher
expression of PPARγ compared with that from SGA infants [51]. These findings suggest
that PPARγ may play a role in regulating fetal growth and development in the placenta.

Recent in vitro studies have shown that PPARγ is associated with trophoblast mi-
gration and invasion, although its exact role in these processes appears to be paradox-
ical. Some studies have reported that PPARγ inhibits trophoblast invasion in human
primary cultures of EVTs [52–54]. One proposed mechanism is through the repression of
pregnancy-associated plasma protein A, which reduces insulin-like growth factor (IGF)
availability and limits trophoblast invasion [55,56]. Additionally, heme oxygenase-1 (HO-1)
has been reported to negatively regulate trophoblast motility through the up-regulation
of PPARγ [57]. Furthermore, PPARγ has been shown to inhibit trophoblast migration
through its interaction with endocrine gland-derived vascular endothelial growth factor
(EG-VEGF), a placental angiogenic factor [58]. Some studies have also reported that rosigli-
tazone, a PPARγ agonist, blocked lipopolysaccharide (LPS)-induced invasion in human
first-trimester trophoblast cell lines [59].

However, more recent studies have suggested that PPARγ may promote trophoblast
migration. Activated PPARγ/RXRα heterodimer by IL-17 was found to promote prolifera-
tion, migration, and invasion in HTR8/SVneo, a trophoblast cell line [60]. Furthermore,
pioglitazone, which increases PPARγ expression, was shown to stimulate EVT migration
by promoting IGF signaling [56]. In addition, mutations on the ligand-binding domain
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of PPARγ have been found to significantly suppress migration in the primary villous
cytotrophoblasts [61]. These findings suggest that the role of PPARγ in trophoblast migra-
tion and invasion may be complex, and further research is needed to fully understand its
mechanisms and effects in these processes.

PPARγ has also been identified as a regulator of trophoblast differentiation. In the
BeWo cell model, blocking PPARγ activity has been shown to induce cell proliferation but
suppress the differentiation [62]. In human placenta explants, PPARγ/RXRα heterodimers
have been found to promote cytotrophoblast differentiation into syncytiotrophoblasts [63],
which is a key event in placental development. In PPARγ-deficient mouse placentas, dimin-
ished expression of several trophoblast differentiation markers, such as Tpbpα and Mash2,
as well as the abnormal spatial expression of glial cell missing 1 (GCM1), a transcription
factor important for syncytiotrophoblast differentiation, were observed [64]. In addition,
oral administration of troglitazone, a PPARγ agonist, was found to enhance cytotrophoblast
differentiation into syncytiotrophoblasts [65]. PPARγ also promotes the differentiation of
syncytiotrophoblasts, but not trophoblast giant cells (TGCs) in the mouse labyrinth, which
is the region of the placenta where nutrient exchange occurs [66]. On the other hand, rosigli-
tazone, another PPARγ agonist, has been reported to reduce TGC differentiation while
inducing GCM1 expression [67], suggesting that the role of PPARγ in trophoblast differen-
tiation may be complex and dependent on the specific cell type. Further research is needed
to fully elucidate the mechanisms and effects of PPARγ in trophoblast differentiation.

4. Genome-Wide Association Studies (GWAS) Suggested That PPARγ Is Associated
with Preeclampsia and Gestational Diabetes Mellitus

PPARγ single nucleotide polymorphisms (SNPs) are associated with increased suscep-
tibility to pregnancy-related diseases, including GDM and PE. The rs201018 and C1431T
variants of PPARγ have been reported to be significantly associated with susceptibility to
PE in different populations [54,55], with the rs201018 polymorphism showing a correlation
with the incidence of PE in the Chinese population [55], and the C1431T polymorphism is
associated with PE occurrence in the French population [54].

In addition to PE, PPARγ SNPs have also been associated with the incidence of GDM.
The Pro12Ala polymorphism of PPARγ is one of the dominant variants associated with
GDM susceptibility, as reported in several meta-analyses [56–58]. However, there are
conflicting findings regarding the role of Pro12Ala in GDM, with some studies suggesting
a protective role against GDM in certain populations, such as the Filipino population,
while others suggest that it may exacerbate insulin resistance by elevating serum resistin
levels [59]. Besides Pro12Ala, the rs1801282 variant of PPARγ is associated with increased
GDM incidence in Russian [60] and Asian [61] populations, but not in the Brazilian pop-
ulation [62]. Recent studies have also suggested that the PPARΓ (rs1801282) variant may
be a significant risk factor for the development of PE in women with GDM in the Russian
population [63]. These findings highlight the potential role of PPARγ SNPs in modulat-
ing the risk of pregnancy-related diseases, although further research is needed to fully
understand the underlying mechanisms and implications of these genetic variants. Large
epidemiological studies of the population considering different demographic information
will be essential to establish a comprehensive understanding of PPARγ SNPs in modulating
the risk of pregnancy-related diseases.

5. The Role of PPARγ in Preeclampsia

PE is a serious pregnancy complication that affects 5–7% of pregnancies worldwide [68]
and is responsible for over 500,000 maternal and fetal deaths each year [69]. PE is considered
the leading cause of maternal morbidity and mortality in the United States, accounting for
16% of maternal deaths [70]. Women diagnosed with PE are at increased risk of adverse
outcomes not only for themselves, but also for their babies in the future.

PE can have serious consequences for both the mother and the baby. If the placenta
is not implanted correctly, it can result in inadequate blood flow to the placenta, leading
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to fetal growth restriction or intrauterine growth restriction (IUGR) [71]. This can result
in babies being born with low birth weight and other health complications. Additionally,
women who have experienced PE have an increased risk of developing cardiovascular
disease later in life, as well as their children [72].

Diagnosis of PE typically involves measuring blood pressure, with systolic blood
pressure greater than 140 mmHg and diastolic blood pressure greater than 90 mmHg, along
with proteinuria [69]. PE is usually diagnosed after 20 weeks of pregnancy, but it can
occur in both early and late pregnancy. The development of PE is believed to involve two
interconnected stages. The first stage is usually asymptomatic and is initiated by inadequate
placental circulation due to abnormal placental implantation and/or reduced blood flow to
the placenta. This can result in placental ischemia, or reduced blood flow to the placenta,
due to aberrant failed remodeling of spiral arteries and impaired vascularization [73].
If placental perfusion remains compromised, it can progress to the second stage of PE,
which is characterized by clinical manifestations such as high blood pressure and other
symptoms [74]. Understanding the pathogenesis of PE is complex, and ongoing research is
needed to further elucidate the underlying mechanisms and develop effective prevention
and treatment strategies.

5.1. PAPRγ in the Pathogenesis of PE

The role of PPARγ in the pathogenesis of PE is still not fully understood, but studies
have shown conflicting results regarding its expression levels in PE placentas. While some
studies have reported increased expression of PPARγ in PE placentas [75,76], most studies
have found decreased expression of PPARγ in PE placentas [76–79], while the expression
of PPARγ increased in the blood serum of PE patients [80].

One mechanism that has been explored is the modulation of 11β-hydroxysteroid
dehydrogenase type 2 (11β-HSD2), a gene that helps in the maintenance of cortisol levels
in the placenta. PPARγ was found to positively correlate with 11β-HSD2 expression in PE
placentas, and treatment with rosiglitazone, a PPARγ agonist, increased the expression
of 11β-HSD2 in placental explants, while treatment with GW9662, a PPARγ antagonist,
decreased the expression of 11β-HSD2. Interestingly, the effect of PPARγ ligands was
blocked when specificity protein 1 (Sp-1) was knocked out [79]. Another transcription factor
that has been implicated in the pathogenesis of PE is GCM1, which regulates trophoblast
differentiation [81]. GCM1 expression is significantly downregulated in PE placentas, and
depletion of GCM1 in normal placental explants elevated the secretion of soluble Fms-
like tyrosine kinase 1 (sFlt-1), a marker for PE. Treatment with rosiglitazone increased
GCM1 expression, while treatment with T0070907, a PPARγ antagonist, reduced GCM1
expression [78].

PPARγ has also been shown to participate in regulating sFlt-1 secretion through
nuclear factor erythroid 2-related factor 2 (Nrf2) [82]. Procyanidin B2, a natural compound,
reduced sFlt-1 secretion and restored the migration capacity of trophoblasts in placental
explants from PE pregnancies by activating Nrf2, which bound to the promoter region of
PPARγ and enhanced its transcriptional activity.

In addition, studies have shown that PPARγ and angiopoietin-like protein 4 (ANGPTL4),
which is associated with fat metabolism and vessel formation, are reduced in PE placen-
tas compared with control placentas [83]. Treatment with rosiglitazone upregulated the
expression and secretion of ANGPTL4 in placental explants [83], suggesting a potential
interaction between ANGPTL4 and PPARγ in the pathogenesis of PE.

PPARγ has been implicated in regulating epigenetic modifications in the placenta,
specifically histone methylation and acetylation. Epigenetic modifications play a crucial
role in regulating gene expression and can impact various cellular processes, including
trophoblast invasion and migration [84]. The co-expression of PPARγ with histone markers
such as H3K4me3 and H3K9ac is upregulated in preeclamptic placenta [85], suggesting
a potential involvement of PPARγ in placental epigenetic regulation in the context of PE.
Treatment with ciglitazone, a PPARγ agonist, has been shown to restore the levels of these
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histone modifications, while treatment with T0070907, a PPARγ antagonist, further induced
an increased level of H3K4me3 and H3K9ac [85]. This suggests that PPARγ may play a role
in modulating placental epigenetic modifications in PE, although the exact mechanisms
and implications of these epigenetic changes are still not fully understood and require
further research. One of the potential reasons is the variation in cell populations and
epigenetic profiles of placentas among individuals [86,87]. This requires large sample sizes
to comprehensively determine the effect of epigenetic-modified PPARγ.

Overall, the role of PPARγ in the pathogenesis of PE is complex and still not fully
understood, with conflicting findings in different studies. Further research is needed to
elucidate the exact mechanisms and potential therapeutic implications of PPARγ in PE.

5.2. Effect of PAPRγ Ligands on PE in Rodent Models

Although human placental tissue and explants can provide valuable information
about the function of PPARγ in PE, ethical concerns make it impossible to determine the
effect of its ligands in human studies. Therefore, rodent models, such as mice and rats,
have been widely used to study the molecular mechanisms of PE. One commonly used
rodent model is the reduced uterine perfusion pressure (RUPP) model in pregnant rats,
which involves creating an abdominal incision on E14.5 of gestation to mimic abnormal
uteroplacental blood flow [88]. RUPP rats exhibit characteristics of PE, including high
blood pressure, impaired vasorelaxation, and elevated ACR (albumin-to-creatinine ratio).
Treatment of RUPP rats with rosiglitazone, a PPARγ agonist, has been shown to ameliorate
hypertension, improve vasorelaxation, and reduce ACR [89]. Interestingly, this beneficial
effect is blocked by an HO-1 (heme oxygenase-1) inhibitor, SnPP [89], suggesting that the
regulatory role of PPARγ may be dependent on the HO-1 pathway.

On the other hand, treatment with T0070907, an antagonist of PPARγ, in mice has
been shown to induce hallmark symptoms of PE, including hypertension, proteinuria, and
fetal growth restriction [90,91]. These mice also displayed increased total placental sFlt-1,
increased HO-1, and decreased VEGF, as well as decreased overall labyrinth trophoblast
differentiation, which are parameters associated with PE [77].

Both animal models and human tissue studies have shown a decrease in PPARγ
expression in the pathogenesis of induced or diagnosed PE, respectively. This suggests
that PPARγ could be targeted by pharmacological interventions to potentially reduce the
severity of PE in pregnant women diagnosed with the disease.

5.3. Potential Treatments of Preeclampsia Targeting PPARγ

Potential treatments for PE can target PPARγ or genes associated with PPARγ, leading
to significant changes in PPARγ expression that positively impact women or result in
mice displaying hallmark signs of the disease. Treatment with the PPARγ antagonist
T0070907 induced PE-like symptoms in mice [91]. However, administration of aspirin
reversed T0070907-induced changes in VEGF, sFlt, and MMP2 in both maternal blood and
placental tissue, and increased the expression of PPARγ by inhibiting the cyclooxygenase
(COX) pathway [90]. Interestingly, different doses of aspirin showed varying impacts on
modulating PE, with a higher dose (20 mg/kg) exhibiting a more significant improvement
in maternal blood pressure compared with a lower dose (10 mg/kg) [92]. Angiotensin,
a vasodilator hypothesized to inhibit the COX-2 pathway [93], was also studied for its
effects on PE. In a study using a rat model of PE (RUPP rat), treatment with angiotensin
1–7 elevated the expression of PPARγ, leading to a significant decrease in systolic blood
pressure and other PE symptoms. The researchers speculated that angiotensin 1–7 may
increase PPARγ expression by enhancing the actions of the endothelial nitric oxide synthase
(eNOS) [94]. Overall, PPARγ appears to be a promising candidate for early diagnostic
biomarkers and treatment targets for PE, but further studies are needed to elucidate the
underlying mechanisms.
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6. PPARγ Functions in Placentas from GDM

Gestational diabetes mellitus (GDM), a form of glucose intolerance that arises during
pregnancy, affects approximately 7.6% of pregnancies in the US and is one of the most
common obstetric complications [95]. According to a 2020 report by BlueCross BlueShield,
the incidence of GDM has increased by 16.6% from 2014 to 2018 [1]. GDM can result in
short-term and long-term complications for both the mother and the fetus. Short-term
effects include fetal macrosomia (large birth weight), hypoglycemia, respiratory distress
syndrome, and preterm birth. Later in life, both the mother and the child are at increased
risk of developing Type 2 Diabetes Mellitus (T2DM) [96]. Additionally, GDM pregnancies
can also lead to high-risk pregnancy complications such as PE and miscarriage [97,98].
Alarmingly, at least 20% of GDM pregnancies were reported to develop pregnancy-induced
hypertension [8]. However, the diagnosis of GDM is challenging due to discrepant diagno-
sis criteria and a lack of noticeable symptoms [99].

As the intermediate transportation site between mother and fetus, placentas from
GDM also displayed a pathophysiological change in the spiral artery and vasculature [100].
While the placenta does not require insulin as a glucose regulator since glucose is the
primary energy source for both the placenta and the fetus, the placenta still expresses
insulin receptors, making it sensitive to maternal hyperglycemia. This sensitivity positively
correlates with fetal growth and macrosomia [101]. Currently, insulin, metformin, and
insulin detemir are the only FDA-approved drugs for the treatment of GDM [102]. Interest-
ingly, most gene expression alterations in GDM occur in the lipid pathway rather than the
glucose pathway, and are mostly associated with dyslipidemia and insulin resistance [15].
Dysregulation of PPARγ, which is involved in fatty acid storage, glucose storage, and
insulin sensitivity, has been implicated in GDM. Omega-3 supplements for women with
GDM have been shown to decrease PPARγ expression and fasting blood glucose levels
while increasing PPARγ expression in peripheral blood mononuclear cells (PBMCs) [103].

PPARγ agonists, such as rosiglitazone, are commonly used drugs to treat T2DM [14].
However, due to the inability of rosiglitazone to cross the placenta during early gesta-
tion [104] but potential transfer and metabolism by embryos during late gestation [105,106],
studies have been conducted to assess its safety during pregnancy. Although limited data
support its safety, several studies have shown that low doses of rosiglitazone do not have
adverse effects on fetal development [107–110]. However, some studies have demonstrated
that activation of PPARγ by rosiglitazone disrupts the vascularity and morphology of
murine placenta [111,112]. Meanwhile, only limited research demonstrated its benefit in
fetal development. One study showed that rosiglitazone ameliorated the adverse effects
caused by nicotine exposure including abnormal cell death and suppressed angiogenesis
in murine conceptus [113]. Therefore, it is crucial to further explore and understand the
impact of PPARγ and its ligands in GDM, particularly in the placenta.

PPARγ Function in the Placentas of GDM Patients

The expression changes of PPARγ in the placentas of patients with GDM have yielded
inconsistent results across various studies. While some studies have reported downreg-
ulation of placental PPARγ, This can result in placental ischemia, or reduced blood flow
to the placenta, due to failed remodeling of spiral arteries and impaired vascularization
expression in GDM patients compared with healthy control groups [76,114,115], partic-
ularly in syncytiotrophoblasts and EVT [116]; other studies have found increased gene
expression of PPARγ in the placentas of GDM patients, including in Australian women with
GDM [117] and in the trophoblast choriocarcinoma BeWo cell line under hyperglycemic
conditions [118], which coincided with suppressed cell proliferation. Interestingly, PPARγ
was also found to be upregulated in PBMCs of women with GDM [103], and leukocyte
PPARγ mRNA levels were significantly higher in GDM patients compared with those of
healthy patients [119].

In vitro studies have demonstrated that hyperglycemic conditions can impair placen-
tal vascularity through the repression of migration and viability [120]. PPARγ has been
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studied as a pharmaceutical target for T2DM prevention or treatment in GDM, and several
pathways have been implicated in the PPARγ-mediated regulation of GDM from various as-
pects. For example, exogenous activation of PPARγ by 15dPGJ2 has been shown to prevent
nitric oxide overproduction in the placenta of pre-gestational diabetic women [121]. An-
other study found that C1q/tumor necrosis factor-related protein 6 (CTRP6) interacts with
PPARγ to regulate trophoblast function, with both CTRP6 and PPARγ being upregulated
in high glucose-induced HTR-8/SVneo cells [122]. Depletion of CTRP6 rescued viabil-
ity, invasion, and migration in HTR8/SVneo cells, while PPARγ overexpression blocked
the protective effects of CTRP6 downregulation [122]. Additionally, a novel adipokine
regulated by PPARγ in trophoblasts was discovered, with the administration of PPARγ
agonists rosiglitazone and GW1929 elevating the expression of Chemerin and activation of
the AKT/PI3K pathway [123]. Depletion of the chemerin receptor chemokine-like receptor
1 restrained this effect. Disulfide-bond A oxidoreductase-like protein (DsbA-L), an enzyme
that regulates fat deposition, was also identified as a downstream target of PPARγ [124].
Rosiglitazone was found to improve insulin sensitivity through interaction with DsbA-L in
the HTR-8/Svneo cell line, with upregulation of DsbA-L being crucial for the function of
rosiglitazone in the PI3K-PKB/AKT pathway [125].

7. Future Directions and Conclusions

Currently, there is substantial evidence supporting the critical role of PPARγ in pla-
cental biology. PPARγ is highly expressed in trophoblasts, and its expression is influenced
by maternal factors. While numerous in vitro studies have demonstrated that PPARγ
regulates trophoblast differentiation and migration, there is still limited in vivo information
that provides a comprehensive understanding of placental physiology and the complex
pathophysiology of pregnancy. Several genes and chemicals have been identified to in-
teract with PPARγ in trophoblasts, including COX, 11β-HSD2, angiotensin 1–7, HO-1,
GCM1, Nrf2, ANGPTL4, CTRP6, DsbA-L, and aspirin. These interactions offer potential
mechanistic insights into the function of PPARγ in the placenta. However, the current
conclusion of PPARγ in placentas affected by GDM remains inconsistent. Determining
whether PPARγ plays a protective role in the progression of GDM requires further in vivo
studies, as systematic hyperglycemia may differ from that observed in in vitro models.

Furthermore, the ability of PPARγ ligands to modulate trophoblast function under-
scores the promising potential of PPARγ as a therapeutic target in the treatment of condi-
tions. However, as depicted in Figure 2, apart from the extensively studied rosiglitazone,
the effects of other ligands on preeclampsia require additional information, as each ligand
may have distinct actions. Studies regarding the safety and effect of PPARγ ligands on treat-
ing GDM still need future attention. Continued research in this field holds great promise for
advancing our understanding of PPARγ function in the placenta and developing innovative
therapeutic strategies for managing complicated pregnancies.
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