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Abstract: Non-Alcoholic Fatty Liver Disease (NAFLD) is a highly prevalent condition affecting
approximately a quarter of the global population. It is associated with increased morbidity, mortality,
economic burden, and healthcare costs. The disease is characterized by the accumulation of lipids
in the liver, known as steatosis, which can progress to more severe stages such as steatohepatitis,
fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). This review focuses on the mechanisms
that contribute to the development of diet-induced steatosis in an insulin-resistant liver. Specifically,
it discusses the existing literature on carbon flux through glycolysis, ketogenesis, TCA (Tricarboxylic
Acid Cycle), and fatty acid synthesis pathways in NAFLD, as well as the altered canonical insulin
signaling and genetic predispositions that lead to the accumulation of diet-induced hepatic fat.
Finally, the review discusses the current therapeutic efforts that aim to ameliorate various pathologies
associated with NAFLD.

Keywords: lipid metabolism; substrate flux; insulin resistance; type II diabetes; NAFLD

1. Introduction

Non-Alcoholic Fatty Liver Disease (NAFLD) currently affects over 25% of the adult
population globally [1,2]. If left untreated, the fatty liver can progress to more severe stages
such as steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma, and an
increased risk of developing type II diabetes and cardiovascular diseases. This is primarily
due to the malfunctioning of the liver affecting flux through glucose and lipid metabolic
pathways, thereby affecting the regulation of lipid and glucose levels in the body.

Recent studies have shown that patients with NAFLD have a greater than two-fold risk
of developing type II diabetes [3], and those with type II diabetes have a 75% prevalence
of NAFLD [1,2,4]. Both NAFLD and type II diabetes are associated with an increased risk
of cardiovascular diseases [5]. These findings suggest the need for increased surveillance
of NAFLD in patients with cardiovascular diseases and type II diabetes, and vice versa.
Therapies developed for treating type II diabetes or cardiovascular diseases may also
help reduce cardiovascular complications in patients with NAFLD, and vice versa where
patients with NAFLD could benefit from therapies against type II diabetes. Moreover,
NAFLD has also become one of the most common liver diseases in the pediatric population,
with a 5–10% prevalence globally [6–9]. These patients are also susceptible to developing
cardiovascular diseases and type II diabetes, making it important to carry out prospective
follow-ups to prevent serious outcomes. Hence, there is an urgent need to develop novel
therapies and investigate their efficacies in ongoing and prospective clinical trials.

1.1. Altered Carbon Flux in NAFLD

The liver plays a crucial role in regulating lipid homeostasis. After digestion, triglyc-
erides (TGs) are transported in lipoprotein particles called chylomicrons. These TGs are
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broken down by lipoprotein lipase in the capillaries, releasing fatty acids that are taken
up by adipose and skeletal muscle tissues. The remaining chylomicron remnants are then
taken up by the liver. The liver also synthesizes lipids from dietary sugars through de
novo lipogenesis (DNL). Hepatic TGs are packaged and secreted along with free and es-
terified cholesterol as very low-density lipoprotein particles (VLDL). Through lipolysis of
triglycerides and exchange of apolipoproteins, VLDL transforms into intermediate-density
lipoprotein particles (IDL) and low-density lipoprotein particles (LDL) [10]. Furthermore,
the liver receives free fatty acids through lipolysis of TGs in the adipose tissue, particularly
during fasting or insulin resistance states [11]. In this review, we examine how carbon
from lipids and carbohydrates flows through various metabolic pathways in the liver and
how this flux becomes disrupted in cases of over-nutrition. This is a complex condition
since energy flux through multiple pathways is intertwined with signaling from endocrine
hormones such as insulin, glucagon, adipokines, cytokines, and myokines.

The pathological response to an excess of carbon flux from energy-rich nutrients, such
as sugars and lipids, suggests that metabolic pathways are vulnerable to managing excess
nutrients. This vulnerability largely arises due to systemic insulin resistance, which is one
of the first predictors of dysregulated lipid and glucose metabolism [1,2,12–16]. Insulin
resistance, along with visceral adiposity, elevated triglycerides, and reduced high-density
lipoproteins (HDL), are common clinical characteristics of NASH patients, including
women with gestational diabetes [1,2,12–16].

Insulin resistance leads to dysregulation of both anabolic (de novo synthesis and
lipid accumulation) and catabolic (oxidation and secretion) processes of lipid and glucose
metabolism (Figure 1). One of the immediate effects of insulin resistance is impaired
glucose disposal in peripheral skeletal muscle [17–19]. Normally, insulin binding and
phosphorylation of insulin receptors activate a downstream cascade of reactions that
culminate in the translocation of glucose transporter Glut4 to the plasma membrane,
facilitating glucose uptake by the skeletal muscle [17–20]. In an insulin-resistant state,
the Glut4 receptor fails to translocate to the membrane in the skeletal muscles, hindering
the uptake of plasma glucose. As a consequence, the glycogen stores of the muscle are
depleted, which is one of the first manifestations of insulin resistance [21–23]. The lack
of energy stores in the skeletal muscle leads to wasting and sarcopenia in type II diabetic
patients [24]. Persistently higher levels of plasma glucose cause increased insulin secretion
from the beta cells of the pancreas [13,19,25–29]. The resulting hyperinsulinemia is one
of the defining features of dysregulated glucose metabolism and NAFLD. Continued
hyperinsulinemia appears to desensitize insulin signaling in skeletal muscle, hepatocytes,
and adipocytes, further exacerbating systemic insulin resistance [17–19]. The mechanisms
causing this desensitization are only beginning to be understood (see below, structure of
insulin receptor) [11,30–34].
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kinase (G3K). The increased flux of glycerol to the liver increases gluconeogenic flux, 
leading to hyperglycemia [32,35,36] (Figure 2). In NAFLD, G3P is increasingly diverted 
toward the glycolysis/TCA cycle [37] and gets oxidized to generate oxaloacetate (OAA), 
which is then converted to phosphoenolpyruvate (PEP) by mitochondrial 
phosphoenolpyruvate carboxykinase (PEPCK), the rate-limiting enzyme in the 
gluconeogenesis pathway. This results in increased glucose production from the liver 
(Figure 2). Moreover, the reductive equivalents generated in the TCA cycle and their 
subsequent oxidation lead to endoplasmic reticulum (ER) stress [31,38] and reactive 
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Under normal conditions, insulin suppresses lipolysis of TGs from the adipose tissue
and suppresses glucose production from the liver. Insulin resistance causes increased
lipolysis of TGs from adipose tissue and increased glucose production in the liver. The
increased lipolysis of TGs in the adipose tissue increases plasma levels of non-esterified
fatty acids (NEFA) and glycerol [11,30–34]. Upon entry into hepatocytes, NEFA is ester-
ified into TGs by the action of Glycerol 3-phosphate acyltransferase3 (GPAT) and Dia-
cylglycerol O-transferase1 (DGAT). The other product of adipose tissue lipolysis is Glyc-
erol, which is converted into glycerol-3-phosphate (G3P) in the liver by Glycerol-3 kinase
(G3K). The increased flux of glycerol to the liver increases gluconeogenic flux, leading to
hyperglycemia [32,35,36] (Figure 2). In NAFLD, G3P is increasingly diverted toward the
glycolysis/TCA cycle [37] and gets oxidized to generate oxaloacetate (OAA), which is
then converted to phosphoenolpyruvate (PEP) by mitochondrial phosphoenolpyruvate
carboxykinase (PEPCK), the rate-limiting enzyme in the gluconeogenesis pathway. This
results in increased glucose production from the liver (Figure 2). Moreover, the reductive
equivalents generated in the TCA cycle and their subsequent oxidation lead to endoplas-
mic reticulum (ER) stress [31,38] and reactive oxygen species production, resulting in
steatohepatitis [39]. In addition to providing carbons for gluconeogenesis, G3P also serves
as a carbon backbone for the esterification of acyl chains by the actions of GPAT and DGAT,
thereby contributing to lipid synthesis [37,40].

Despite resistance to insulin action in adipose tissue, de-novo lipogenesis (DNL), an
insulin-dependent process, is stimulated during insulin resistance in the liver. During
DNL, excess sugars are diverted towards fatty acid synthesis pathways in hepatocytes as
demonstrated by stable isotope studies [11]. While glucose and fructose-rich diets stimulate
DNL in the liver [11,41,42], labeled tracers of these sugars do not proportionally convert to
fatty acids, indicating that they do not directly convert to fatty acids [43]. The gluconeogenic
precursors such as alanine, lactate, and glutamine were found to be direct contributors
to carbon in fatty acid synthesis through the DNL pathway [44,45]. Furthermore, gut
microbiota-derived acetate has recently been shown to increase DNL in response to dietary
fructose [46]. The acetyl-CoA generated by lipogenic substrates is released from the
mitochondria as citrate, which is converted to acetyl-CoA and oxaloacetate (OAA) in the
cytoplasm by citrate lyase [47]. The cytoplasmic acetyl-CoA is directed toward fatty acid
synthesis via the DNL pathway, while OAA is converted to phosphoenolpyruvate (PEP) by
cytoplasmic PEPCK for gluconeogenesis. The fatty acids generated by the DNL pathway
(Figure 2) are esterified by glycerol released from adipose tissue. Therefore, the pathways
of gluconeogenesis and lipogenesis are intricately linked and are simultaneously fueled by
carbons from glycerol and NEFA released by adipose tissue, acetate from gut microbiota,
and circulating acetate, lactate, and alanine.

The contribution of altered beta-oxidation towards the development of NAFLD is likely
context-dependent. While some studies report decreased mitochondrial oxidation of fatty
acids in NAFLD [48], others indicate a compensatory increase in beta-oxidation [31,38,39,41,49].
A recent report suggested the presence of increased flux through the TCA cycle and reduced
ketogenesis without any change in beta-oxidation per se in patients with NAFLD [49].
These discrepancies are likely due to differences in underlying disease mechanisms and/or
adaptive mechanisms that counter disease states [48,50]. In conclusion, the altered flux of
glycerol, NEFA, and fatty acids increases lipid synthesis and glucose production in the liver,
leading to a vicious cycle of hyperlipidemia and hyperglycemia and fatty liver disease.
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regulates the flux through lipid synthesis and glucose-producing pathways in the hepatocytes. The 
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Figure 2. A review of carbon flux through glycolysis, the Krebs cycle, and lipid, amino, and nucleic
acid synthesis pathways in NAFLD. The glucose enters the hepatocytes through Glut2 transporters
independently of insulin and undergoes phosphorylation by hexokinases, trapping glucose intracel-
lularly. Glucose 6-phosphate can be metabolized in three ways: by being stored as glycogen typically
after a meal, by being metabolized into nucleic acids, amino acids, and NADPH through the pentose
phosphate pathway, or by being broken down into glyceraldehyde 3-phosphate (GAP) and DHAP
(di-hydroxy acetone phosphate) in glycolysis. Other contributors to the GAP pool are fructose and
glycerol, the latter being released as a byproduct of lipolysis from adipose tissue. Fructose is readily
taken up by the liver and broken down by fructose 1-P aldolase into GAP. GAP is a major contributor
to the pyruvate pool and serves as a backbone for triglycerides. The pyruvate pool receives major
contributions from lactate, alanine, and glutamine released by the muscle. The pyruvate pool, in
equilibrium with lactate, can be converted to acetate or contribute to acetyl coA or oxaloacetate
(OAA). Acetyl CoA contributes to ketogenesis and acetate production or is cycled through the Kreb’s
cycle. The acetyl-CoA combines with OAA to produce citrate, which can be shuttled out of mito-
chondria and reconverted to acetyl CoA and OAA. Acetyl CoA can generate ketones, especially
during fasting, and/or serve as a precursor for triglycerides and cholesterol synthesis. The OAA is
exported out through a malate shuttle and is converted to phosphoenol pyruvate (PEP) through the
action of the gluconeogenic enzyme PEPCK (phosphor enol pyruvate carboxy kinase). Carbon flux
through the various anabolic (lipid, glucose, nucleic, and protein synthesis) and catabolic (glycolysis,
beta-oxidation, and Krebs–Electron transport chain) pathways is influenced by the overall nutritional
load and the status of insulin sensitivity. Insulin sensitivity regulates the flux through lipid synthesis
and glucose-producing pathways in the hepatocytes. The pathways highlighted in red are increased
in NAFLD.

1.2. What Condition Comes First: Insulin Resistance or NAFLD?

The question of whether insulin resistance or NAFLD comes first has remained unan-
swered. Individuals with metabolic disorders, manifested as NAFLD, type II diabetes,
and metabolic syndrome, display a range of heterogenous traits: visceral adiposity, hyper-
lipidemia, hypertension, atherogenic dyslipidemia, glucose intolerance, prediabetes, and
insulin resistance. Several investigators have made attempts to simplify this heterogeneity
by classifying patients into different phenotypic classes [51–53]. This entails that the disease
is highly heterogenous, there is no single cure for all the metabolic defects, and hence, ther-
apeutic strategies have to become increasingly personalized. One factor that can advance
precision medicine is a comprehensive knowledge of the underlying genetic background
of the disease. While genome-wide association studies have linked many genetic loci to
various metabolic traits, common variants that underlie the association of these traits have
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remained vastly unidentified [51]. Apart from genetic background, the composition of con-
sumed nutrients by individuals can influence how metabolic dysfunction manifests. A diet
rich in high fructose corn syrup, used as an additive to processed foods, has been shown to
stimulate lipogenesis in the liver [46,54,55]. Similarly, a diet disproportionally enriched in
saturated fats may increase the atherogenic lipid particles in the plasma. It is likely that
there is not a single linear relationship between the development of insulin resistance and
hepatic steatosis, and the mechanistic studies detailed below further show this.

The mechanistic studies in rodents show that hepatic lipid accumulation suppresses
insulin signaling and, conversely, insulin resistance stimulates hepatic lipid accumulation.
This mutually stimulating cycle causes both hyperglycemia and hyperlipidemia, culmi-
nating in T2D and NAFLD. In support of hepatic lipid accumulation suppressing insulin
signaling, investigators have shown that lipid accumulation in the liver increases the pool
of sn-1,2-diacylglycerol (DAG) in the membrane, which recruits protein kinase C (PKC)
epsilon to the membrane. PKCepsilon then suppresses insulin-induced phosphorylation
of insulin receptor beta at Y1162 and promotes inhibitory phosphorylation of threonine at
residue 1160, suggesting that lipid accumulation inhibits insulin signaling [34,56–59]. As
discussed previously, insulin resistance increases hepatic lipid accumulation by reducing
peripheral lipid disposal, increasing adipose tissue lipolysis, and stimulating DNL in the
liver [1,11,15,18–20,27,41,42,60–63]. Another example showing the complex relationship
between hepatic lipogenesis and insulin resistance is illustrated by insulin-mediated ac-
tivation of the mammalian target of rapamycin-1 (mTORC1). The activation of canonical
insulin signaling results in a cascade of substrate phosphorylations, which inhibits Tumor
sclerosis complex 1 and 2 (TSC1/2). TSC1/2 inhibition leads to the activation of mTORC1
through the G-protein Rheb complex [64]. Previously, mTORC1 activation was believed
to be necessary for lipogenesis [65,66]. However, soon it was realized that the prolonged
activation of mTORC1 negatively feedbacks and dampens insulin signaling [67] by its
downstream targets such as S6K1 (Ribosomal Protein S6 Kinase beta 1). S6K1 promotes the
inhibitory serine phosphorylation of insulin receptor substrate 1 (IRS1) [68,69]. Therefore,
mTORC1 promotes lipogenesis in the liver in response to insulin, but then inhibits insulin
signaling upon prolonged activation.

The autonomous insulin signaling activation of hepatocytes is further augmented
by the resident macrophages in the liver known as Kupffer cells, which greatly influ-
ence overall glucose and lipid homeostasis [70,71]. From rodent studies, it is evident that
Kupffer cells are activated into a pro-inflammatory state when fed a high-fat diet. These
activated macrophages secrete chemokines that recruit monocytes from the plasma called
monocyte-derived macrophages (MoMF) [72,73] and together secrete pro-inflammatory
cytokines such as TNFalpha, IL-6, IL1-beta, which suppresses insulin signaling in the
hepatocytes [70,71,74–77] and activate hepatic stellate cells leading to fibrosis [78]. Con-
versely, other studies suggest that Kupffer cells modulate hepatic steatosis by secreting
anti-inflammatory cytokines that stimulate insulin signaling in the hepatocytes [74,79–81].
Taken together, these studies indicate a regulatory function of Kupffer cells on hepatic
insulin sensitivity and hepatic steatosis. One consistent observation in these different
studies is that a pro-inflammatory milieu worsens the phenotype of hepatic steatosis and
hence, the diets that reduce inflammation should be recommended for patients suffering
from metabolic dysfunction. Altogether, lipid accumulation and insulin resistance mutually
stimulate each other in the liver through autonomous and non-autonomous pathways
and cascade into progressively worsening conditions such as steatohepatitis and type II
diabetes. The key question is: “what is the leading condition in any given individual”.
Accordingly, the focus should be on the identification of unique biomarkers that can classify
patients based on these conditions and treating them in a personalized fashion.
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1.3. The Intersection of Metabolic Flux with the Activities and Transcript Levels of
Metabolic Enzymes

The metabolic flux through different pathways is tightly regulated by the expression
and/or activity of key rate-limiting enzymes. These rate-limiting enzymes control the
flux through different pathways. The substrate flux in each pathway varies depending on
the metabolic needs (energy generation or energy conservation) and the metabolic state
(insulin-sensitive or insulin-resistant). In a metabolic pathway, there are critical flux-altering
nodes that determine whether a cell will be engaged in anabolic or catabolic processes.
An example of such a flux-altering node is when the cell decides whether to engage
the substrate pyruvate in a decarboxylation reaction towards acetyl-CoA by pyruvate
dehydrogenase and promote glucose oxidation or towards carboxylation by pyruvate
carboxylase to generate OAA. The latter is then converted to the gluconeogenic precursor
PEP (Figure 2). Likewise, acetyl-CoA can be directed towards oxidation in the TCA cycle
or exported out of the mitochondria as citrate for lipid synthesis depending upon the ATP
levels (Figure 2). Another example of a flux-altering critical node is whether acetyl-CoA is
diverted towards ketogenesis, which is a catabolic reaction, or towards cholesterol synthesis,
which is anabolic. Depending on the metabolic state, the HMG-CoA generated from
acetyl-CoA, can be diverted towards ketogenesis by 3-hydroxy-3-methylglutaryl-CoA lyase
(HMG-CoA lyase) or towards cholesterol biosynthesis by 3-hydroxy-3-methylglutaryl-CoA
reductase (HMGCR). In sum, whether a given substrate is used for an anabolic or catabolic
reaction is determined by the expression levels of key metabolic enzymes and the metabolic
state of the cells such as ATP content, nutrient availability, and insulin sensitivity. In
NAFLD, the flux is directed toward anabolic pathways. For instance, pyruvate is directed
toward gluconeogenesis [32] and acetyl-CoA is directed toward lipid [11] and cholesterol
synthesis [11,49].

The endocrine hormones insulin and glucagon exert a potent influence in determining
the choice between anabolic versus catabolic pathways. Insulin transcriptionally and post-
translationally activates sterol regulatory binding protein 1c (Srebp1-c), which upregulates
hepatic lipogenesis [82–89]. Insulin activates the mammalian target of rapamycin complex2
(mTORC2), protein kinase B (PKB), and liver X receptor (LXRa), which transcriptionally
activates the expression of Srebp1c [89–91]. The genetic mouse models reveal that Srebp-1c,
ChRebp1a, LXRa, and mTORC2, increase the expression of enzymes in the glycolytic path-
way concomitant with increasing the enzyme levels of the DNL pathway [89–91]. Increased
levels of glycolytic intermediates such as glucose 6-phosphate, fructose, and the pentose
phosphate pathway intermediate xylulose-5-phosphate activate the transcription factors car-
bohydrate response element binding protein 1a (ChRebp1a) and ChRebp1b [85,90,92–94].
ChRebp1a and ChRebp1b are phosphorylated and translocate to the nucleus where they
transcriptionally activate genes that promote lipogenesis. The increased glycolysis likely
diverts the carbon flux towards an increased lipogenesis [95,96]. However, detailed in vivo
flux studies using tracers are essential to confirm this hypothesis and how these processes
are disrupted in insulin-resistant conditions. This is especially important in light of obser-
vations that DNL, an insulin-dependent process, remains insulin sensitive despite systemic
insulin resistance [63]. In contrast to insulin signaling, glucagon–PKA signaling inactivates
Srebp-1c by inducing inhibitory phosphorylation [97,98], as well as blocking the nuclear
translocation of ChRebp1 by the glucagon-cAMP-PKA signaling pathway [94,99,100].

Previous studies from our group revealed that impaired Wnt signaling in a mouse
model of human LRP6R611C mutation results in the activation of the mTORC1-SREBP1c axis
and the development of NAFLD [101,102]. The genetic gain and loss of TCF4 (Transcription
Factor 4), an effector of Wnt signaling, further confirmed the protective action of Wnt
signaling against NAFLD [103]. TCF4 transcriptionally activates Fgf19 in the intestinal
epithelium, which suppresses bile synthesis in the liver, prevents dietary lipid uptake
from the intestine, and protects against diet-induced fatty liver [103]. Accordingly, an
independent study by Novartis reported that the loss of hepatic Wnt/β-catenin activity
by Lgr4/5 deletion led to impaired secretion of bile acids, cholestasis, and altered lipid
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homeostasis, leading to the development of NAFLD [104]. Our group recently discovered
another mutation, R102C, in dual specificity tyrosine phosphorylation regulated kinase 1b
(Dyrk1b), that is strongly linked with metabolic syndrome in the carriers [105]. Further
mechanistic studies revealed that Dyrk1b spontaneously causes fatty liver in rodents by
increasing de novo lipogenesis and hepatic fatty acid uptake [56,105–108], despite sup-
pressing the [104] canonical insulin signaling by PKC epsilon-mediated insulin receptor
inactivation [57,59]. Our model recapitulates the selective insulin resistance model previ-
ously suggested by other investigators [63]. The detailed mechanistic studies revealed that
Dyrk1b increases the activity of the mammalian target of rapamycin complex2 (mTORC2),
a stimulator of DNL in the liver [91], in a kinase-independent manner and stimulates the
autophosphorylation of mTOR. Importantly, the Dyrk1b mRNA and protein levels were
elevated in mouse liver with diet-induced NAFLD and in human NASH samples. Since
Dyrk1b is activated by auto-phosphorylation during its translation, transcriptional and
post-transcriptional regulation seems to be the most probable mechanism to regulate its
activity in the cells and [109–111] future studies are required to clarify these findings.

1.4. Selective Insulin Resistance in Hepatocytes: A Perspective from the Structure of
Insulin Receptors

The concept of selective insulin resistance was proposed by Brown and Goldstein
about 15 years ago when they made a striking observation that systemic insulin resistance
impairs the insulin-dependent lowering of plasma glucose, but the insulin-dependent
lipogenesis in the liver remains increased [63]. One contributor to NAFLD is the unre-
strained supply of fatty acids from the lipolysis of adipose tissue in an insulin-resistant
state [33]. While this may explain the 60% contribution to hepatic fat in NAFLD patients,
the increase of fatty acid synthesis by the DNL pathway still remains unexplained [11,112].
Insulin stimulates DNL by transcriptional activation of key lipogenic enzymes such as
sterol regulatory binding protein 1c (Srebp1c), carbohydrate response element binding
protein (ChRebp1), and upstream transcription factor 1 (USF1), and by post-transcriptional
regulation of key lipogenic enzymes such as Srebp1c [83]. A potential explanation for this
“pathogenic paradox” may be offered by the structural changes in the insulin receptor in re-
sponse to hyperinsulinemia, which is commonly associated with metabolic syndrome [13].
In a normal unstimulated state, the heterodimeric insulin receptor assumes a symmetrical
inverted “V”-shape where the N-terminal end of one alpha subunit interacts with the
juxta membrane domains on the other alpha subunit (See references [113–116] for details).
The insulin receptor can bind maximally four insulin molecules [113,114,117–119] but the
binding of even one insulin molecule to the high-affinity site1 on the insulin receptor is
sufficient for the activation of the receptor and its dramatic conformational change from
an inverted “V” to an asymmetrical “T” structure [113,114,117–119], which is sufficient
for downstream signal transduction. These morphological alterations lead to autophos-
phorylation activation of the receptor, although the precise mechanisms by which insulin
induces these conformational changes in the insulin receptor are unclear [114]. It has been
observed that a fully occupied (all four insulin binding sites) insulin receptor causes the
distance between trans-activation domains to increase as opposed to an asymmetrical
partially occupied receptor [113]. It is plausible that a fully occupied receptor, as might be
present in hyperinsulinemia, is competent to stimulate the lipogenic pathway but is unable
to suppress glycogenolysis and gluconeogenesis. Hyperinsulinemia may desensitize the in-
sulin receptor to suppress glycogenolysis and gluconeogenesis but not DNL. Alternatively,
hyperinsulinemia [20,63,120–122] may differentially activate insulin receptor substrate-1
(IRS-1) versus IRS-2 in NAFLD [123,124]. Further, more clarity is needed to define the
structural changes in the IR in an insulin-resistant state and to determine if activation of
the insulin receptor is necessary for lipogenesis in NAFLD after the onset of fatty liver dis-
ease. An alternative explanation, independent of canonical insulin signaling, could be that
transcriptomic and proteomic changes induced in the liver by the nutritional overflow may
increase the expression of factors that stimulate lipogenesis even in the absence of active
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insulin signaling. One such factor that was recently discovered is Dyrk1b [105,108], which is
increased transcriptionally in fatty liver disease. Dyrk1b then activates the central regulator
of lipogenesis, mTORC2 [91], in the absence of the canonical insulin signaling and in a
manner independent of Dyrk1b’s kinase activity. Dyrk1b increases the flux and expression
of enzymes in the DNL pathway [56] while canonical insulin signaling is inhibited.

1.5. A Discrepancy in the Association of Insulin Resistance with Hepatic Fat Content

A strong positive correlation exists between liver triglyceride content and hepatic in-
sulin resistance in the diet-induced models of NAFLD in rodents and humans [2,13,31,63,120,125,126].
As mentioned previously, increased levels of diacylglycerol (DAG), a precursor to triacyl-
glycerol, correlates with insulin resistance, as DAG has been shown to increase PKCepsilon
translocation to the plasma membrane, which causes inhibitory phosphorylation in the beta
chain of the insulin receptor [34,56,57,59,127]. However, in several rodent genetic models
and human genetic models of NAFLD, the association between hepatic fat and insulin
resistance does not hold true. The genetic rodent models such as hepatic Akt1/2 and the
hepatic knockout of mTORC2 function show reduced lipogenesis but increased insulin
resistance [91,122,128,129]. Downstream of Akt, mTORC1 activation promotes lipogenesis
in the liver, as revealed by pharmacological inhibition with rapamycin [66,121]. One caveat
to the studies examining the function of rapamycin is that prolonged rapamycin treatment
inhibits both mTORC1 and mTORC2 [130]. Notably, the loss of mTORC2 has a potent effect
on the prevention of hepatic steatosis and increasing hepatic glucose production [91]. The
regulation of hepatic lipogenesis by mTORC1 is more complicated. Both the activation of
mTORC1 by disruption of TSC1 and loss of Raptor, a mTORC1 specific subunit, protect
against NAFLD–NASH [25,131–133], suggesting complex regulation of hepatic lipogenesis
by mTORC1. This can be explained by a negative feedback mechanism by which the
overactivated mTORC1 turns off its own activation [67]. To delineate mechanisms that
selectively activate lipogenesis and avoid activation of negative feedback pathways by
mTOR complex1, a recent study by Gosis et al. found that mTORC1 activates lipogenesis
by phosphorylating transcription factor E3/B (TFE3/B) which then suppresses fatty-acid
oxidation and lysosomal and mitochondrial biogenesis [134]. These findings, however, do
not recapitulate the diet-induced models of metabolic syndrome in which lipogenesis and
glucose production are both elevated. Another condition in which hepatic steatosis exhibits
no correlation with diet-induced insulin resistance is the increased hepatic triglyceride
content in homozygous patatin-like phospholipase domain containing 3 (PNPLA3) pI148M
mutation carriers, which do not develop hepatic insulin resistance [135–138]. These studies
indicate that despite the common phenotype of hepatic lipid accumulation, the heterogene-
ity of the underlying mechanisms results in different metabolic states. In-depth analyses of
dysregulated signaling pathways in NAFLD are necessary to identify novel drug targets
and pursue the management of patients with NAFLD in a personalized fashion [63,120,121].

1.6. Therapeutic Interventions to Treat NAFLD

NAFLD begins with a benign fatty acid accumulation but can progress into a patholog-
ically and morphologically complex disease, often associated with CVD and type II diabetes.
Therapeutic interventions for preventing type II diabetes are also being investigated for
their impacts on alleviating steatosis in the liver (Table 1). These include insulin-sensitizing
PPAR agonists, satiety-promoting GLP-1 agonists, and inhibition of the glucose-absorbing
Sglt2 cotransporter in the renal tubules. However, as steatosis progresses into inflammation,
fibrosis, and HCC, it does not remain merely a metabolic disease. Therefore, other therapies
have to be developed to cure advanced disease states such as inflammation, fibrosis, and
hepatocellular carcinoma. To that end, Cenicriviroc (CVC), an oral dual CCR2/CCR5 an-
tagonist was studied in the Centaur trial, a randomized, double-blind, placebo-controlled,
multinational study of 289 adults with histological evidence of NASH and liver fibrosis.
Although the drug failed to demonstrate a statistically significant improvement in the
primary endpoint of NASH improvement, defined as ≥2-point improvement in NAS, it
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showed improvement in fibrosis, especially in subjects with higher disease activity [139].
Nevertheless, the most successful clinical trials have been limited to those that target
primary metabolic defects (Table 1). The FDA has yet to approve a therapy for NAFLD.

Table 1. Therapeutics for NAFLD and their mechanism of action.

Mechanism of Action T2D Steatosis Fibrosis Other Indications References

PPAR agonist Insulin sensitizing,
transcriptional control yes Yes; trials

ongoing
Yes; trials
ongoing

Weight gain
Bone fractures [140–142]

GLP-1 agonist Increases insulin secretion,
enhances satiety yes Yes; trials

ongoing Not tested Weight loss [143–145]

Thyroid
receptor

beta-agonist

Increases mitochondrial
respiration and breakdown

of lipids.

Not
tested

Yes; trials
ongoing

Yes; trials
ongoing

Liver and
isoform-specific [146–148]

Fgf21
Increases energy

expenditure; improves
glucose and lipid balance

Not
tested

Yes; trials
ongoing

Yes; trials
ongoing

Some Fgf21
analogues were

discontinued
[149–151]

Obeticholic acid

Activator of FXR.
Suppresses liver fat

content by increasing
Fgf19 signaling from gut to

the liver.

Not
tested

Yes; trials
ongoing

Yes; trials
ongoing

Promising results
for NASH patients.
Approved drug for

cholangitis.

[152]

Sglt2 inhibitor Inhibits tubular absorption
of sugars in the kidney yes Yes; trials

ongoing
Yes; trials
ongoing

Bone fractures,
frequent urination,

urinary tract
infections.

[153–157]

ACC + DGAT
Inhibitor

Inhibits the activity of
enzymes that stimulate
lipogenesis in the liver

Not
tested

Yes; trials
ongoing Not assessed [158,159]

SCD1 inhibitor Suppresses synthesis of
saturated fats in the liver

Not
tested

Yes, trials
ongoing

Yes; trials
ongoing [160]
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