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Abstract: Metabolic disorders entail both health risks and economic burdens to our society. A
considerable part of the cause of metabolic disorders is mediated by the gut microbiota. The gut
microbial structure and function are susceptible to dietary patterns and host physiological activities. A
sedentary lifestyle accompanied by unhealthy eating habits propels the release of harmful metabolites,
which impair the intestinal barrier, thereby triggering a constant change in the immune system and
biochemical signals. Noteworthy, healthy dietary interventions, such as intermittent fasting, coupled
with regular physical exercise can improve several metabolic and inflammatory parameters, resulting
in stronger beneficial actions for metabolic health. In this review, the current progress on how gut
microbiota may link to the mechanistic basis of common metabolic disorders was discussed. We also
highlight the independent and synergistic effects of fasting and exercise interventions on metabolic
health and provide perspectives for preventing metabolic disorders.
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1. Introduction

Overnutrition and unhealthy eating habits, coupled with urbanization and seden-
tary occupations, dramatically boost the development of metabolic disorders. Metabolic
disorders represent a series of complex conditions characterized by abdominal obesity, dys-
lipidaemia, hypertension, glucose intolerance, and insulin resistance that, when occurring
together, strongly lead to detrimental clinical outcomes, entailing both health risks and eco-
nomic burdens to our society. Current estimates report that the incidence rate of metabolic
diseases is increasing year by year, with a projected cost in excess of 5000 USD for each
individual. Up to 2019, it is estimated that there are 43.8 million cases of type 2 diabetes
(T2D), 18.5 million cases of hypertension, and 1.2 billion cases of nonalcoholic fatty liver
disease (NAFLD) in the world. Data on the incidence rates of obesity and hyperlipidemia
have not been reported yet, but the mortality rates of both are the highest. In 2019 alone,
5 million people died of obesity and 4.3 million died of hyperlipidemia [1]. From the results
of physiological and omics-based research, complemented by experiments in cells and
animals, it appears that a considerable part of the cause of metabolic disorders is mediated
by the gut microbiota [2,3].

The human body is contextualized by the coexisting microorganisms living in the
digestive tract, called the gut microbiota. The gut microbiota is a crucial actor in digesting
food, producing a diverse reservoir of metabolites to modify human metabolism, or trig-
gering host reactions that mediate physiological processes [4]. The pioneering evidence
regarding the mechanistic involvement of the gut microbiota in metabolic equilibrium was
provided in 2004, suggesting that the capacity of the host for harvesting energy from the
diet and energy storage was influenced by gut microbiota [5]. Subsequently, the research
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field has delivered a substantial amount of new knowledge about the potential effects of the
gut microbiota in metabolic disorders, spearheaded by the application of next-generation
microbiome sequencing and targeted bioinformatics [4]. The robustness and function of gut
microbiota partly depend on the host, but are also modified by the environment (e.g., irreg-
ular smoking, excessive drinking, prolonged sleep deprivation, and a high-fat or high-sugar
diet), particularly the dietary habits, which could act in concert to favor a healthy or diseased
status [2]. In general, the ratio between Bacteroidetes and Firmicutes remains relatively
stable in healthy individuals, which contributes to producing beneficial metabolites for
health. Conversely, the microbiota of individuals with metabolic disorders is often charac-
terized by the exasperation of the Firmicutes phylum and the reduction of the Bacteroidetes
phylum, poor microbial diversity, decreased short-chain fat acid (SCFA) production, as well
as enhanced intestinal permeability compared with that of healthy individuals [6].

Intermittent fasting (IF) is a dietary intervention pattern that targets a specific period
of time (ranging from a few hours to several days) to stop dietary intake and consume
a little or no calories, which has gained popularity in recent years and is expected to
become a possible new paradigm in the avenue to improve body health [7]. Patterns of the
specific IF diets include time-restricted feeding (TRF), alternate-day fasting (ADF), and the
5:2 strategy [2]. In TRF, a subset may consist of 16 h fasts with an 8 h nutritional window,
20 h fasts with a 4 h nutritional window, or other similar versions. ADF consists of a 24 h
fasting period to consume 25% of the daily energy intake, alternated with a 24 h eating
period that can be performed several times a week. Another 5:2 strategy is 2 fast days
interspersed with 5 nonrestrictive days [8]. Importantly, the evolution of the metabolic,
endocrine, and nervous systems in the fasted state can allow the optimization of physical
and behavioral performance. A large number of cross-sectional and longitudinal studies
have demonstrated the robust disease-modifying efficacy of the IF by interacting with the
gut microbiota [7–9]. IF intervention results in a bloom of health-associated microbiota,
contributing to the production of beneficial fermentation products, such as acetate and
lactate, and dramatically ameliorating obesity, insulin resistance, and hepatic steatosis [10].

Physical exercise is another important way to prevent metabolic disorders. Physical
exercise is explained as “a subset of physical activity that is planned, structured and
repetitive”, and gears to either improve or maintain physical fitness [11]. Moderate physical
exercise can help prevent excess weight gain by promoting a cascade of favorable changes
in the metabolic homeostasis of the human body [12]. Healthy dietary patterns coupled
with regular physical exercise improve several metabolic and inflammatory parameters
in chronic diseases. In this review, we will discuss the potential impacts and mechanisms
of gut microbiota in metabolic disorders and sum up the current research findings on the
independent effects of IF and exercise in metabolic disorders. We also shed light on the
benefits of combined exercise and IF interventions for metabolic disorders.

2. Mechanistic Insights of Gut Microbiota in Metabolic Disorders

Although the incidence of metabolic disorders is correlated with genetic and environ-
mental factors, evidence is proliferating for the role of the gut microbiota in metabolic dis-
orders. The underlying regulatory mechanisms are complex (Figure 1). The gut microbiota
can produce beneficial metabolites, deriving directly from bacteria or the transformation
of dietary or host-derived substrates, which contribute to maintaining metabolic health.
Probiotics, such as Pediococcus pentococcus PP04 and Lactobacillus plantarum LP104, can
also affect fat synthesis and decomposition by initiating the AMPK signaling pathway. In
addition, L. plantarum MTCC5690 and L. fermentum MTCC5689 can enhance the expression
of fasting-induced adipocyte factor (FIAF), an inhibitor of lipoprotein lipase (LPL). LPL
plays an important role in regulating lipid metabolism by preventing triglycerides from
being stored in the form of fat [13]. Conversely, perturbations in the structure and activity
of the gut microbiota propel the release of harmful metabolites, which impair the intestinal
barrier, thereby triggering a constant change in the immune system and biochemical sig-
nals [13]. Specifically, the imbalance of the gut microbiota may increase the expression of
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lipopolysaccharide (LPS), which degrade the mucous layer. A “leaky” gut can facilitate the
translocation of LPS from the intestine into the periphery, which is recognized by pattern
recognition receptors, further activating several signal transduction pathways, such as
NF-κB, MAPKs, PI3K/Akt, or producing pro-atherogenic trimethylamine (TMA), which
ultimately causes metabolic disorders [14]. Therefore, interacting pathways such as the
endocrine, metabolic, and immunological systems intertwine with other routes, providing
bidirectional communication between the gut microbiota and host.
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2.1. Altered Composition of Gut Microbiota

Research exhibited that patients with metabolic disorders have gut microbiome alter-
ations compared with healthy controls, indicating that the gut microbial diversity receded
and the pathogenic bacteria increased. Gut microbiota dysbiosis can impair gut perme-
ability and then increase circulating LPS levels, which promote low-grade inflammation
and, ultimately, metabolic disorders. The gut microbiota in animals with obesity displayed
gut microbiological ecology disturbance, including the exasperation of the Firmicutes
phylum, and the reduction of the Bacteroidetes phylum [15]. Epidemiological studies also
revealed that the abundance of LPS-producing bacteria and LPS increased in various obese
cohorts [16]. Fei et al. isolated Enterobacter cloacae B29 (an LPS-producing bacterium) from
a morbidly obese human’s gut which was then transplanted to germ-free (GF) mice, which
induced obesity and insulin resistance in GF mice [17]. In the population with T2D, the
gut microbiota has been characterized by a decline in metabolically butyrate-producing
microbiota and a compensatory expansion of the pathogenic bacteria that were known
causes of various other diseases [6]. As an energy source for colonocytes, butyrate can
effectively mitigate inflammation and oxidative stress, as well as protect gut barrier func-
tion [18]. In patients with steatosis, the abundance of Lachnospiraceae and Ruminococcaceae
responsible for butyrate production were fewer, while the abundance of Acidaminococcus,
Escherichia spp., and Bacteroides spp. related to insulin resistance was enriched [19].
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2.2. Gut Microbiota-Derived Signaling Metabolites

Diet or body activities generate selection pressures that drive the gut microbiota to pro-
duce metabolites, in particular SCFAs, tryptophan metabolites, TMA, and so on. Through
the production of these metabolites, the gut microbiota actively communicates with host
cells, participating in the process of metabolic disorders. Meanwhile, these molecules
also functionally interplay with other endocrine hormones, such as leptin, glucagon-like
peptide 1 (GLP-1), and peptide YY [20]. Gut microbes employ dietary bioactive compounds
to synthesize SCFAs (e.g., acetate, butyrate, propionate), which affect host metabolism by
binding to G protein-coupled receptors. For instance, overweight adults supplemented
with propionate stimulated the release of GLP-1, coupled with weight and liver steatosis
reduction [21]. A butyrate precursor drug intervention in high-fat-fed mice improved
diet-induced obesity and had a certain alleviating effect on hepatic steatosis and insulin
resistance [22]. As distinct from butyrate and propionate, acetate may have a negative effect
on obesity because it promotes hyperphagia by stimulating the secretion of ghrelin and
contributes to fat storage by increasing the release of glucose-stimulated insulin [23]. Indole,
a tryptophan microbial catabolite from Bacteroides, Lactobacillus, and Bifidobacterium, can im-
prove intestinal barrier functions and enhance GLP-1 release, thereby indirectly effecting in-
sulin secretion and appetite regulation [24,25]. Indole is metabolized to indole-3-propionic
acid, which helps improve insulin secretion and sensitivity, reducing the incidence rate of
T2D [26]. Besides, gut microbiota, primarily those from the families Clostridia and Enter-
obacteriaceae, can metabolize some dietary nutrients (e.g., lecithin, choline, and carnitine)
as substrates to produce TMA [13]. And TMA is oxidized into trimethylamine-N-oxide
(TMAO), participating in the processes of inflammation, cholesterol metabolism, and throm-
bosis. Research has revealed that TMAO increases the production of pro-inflammatory
cytokines, decreases anti-inflammatory cytokines, and induces platelet hyperreactivity,
thus facilitating atherosclerotic thrombotic events [27].

2.3. Fuelling Metabolic Inflammation

Chronic low-grade inflammation is another robust driver of metabolic syndromes.
Dysbiosis or alteration in the composition of the gut microbiota composition and harmful
metabolites contribute to the disruption of the intestinal barrier. Pioneering studies in
animals and humans revealed that individuals with obesity, T2D, and NAFLD exhibited
increased intestinal permeability [28–30]. Increased intestinal permeability allows hyper-
translocation of harmful metabolites into the systemic circulation and metabolic organs, e.g.,
the liver and adipose tissue, thereby triggering metabolic inflammation [31]. Mechanically,
microbial-associated molecular patterns, including LPS, can specifically be recognized
by pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and NOD-like
receptors (NLRs). PRRs activate several signal transduction pathways (e.g., NF-κB, MAPKs,
and PI3K/Akt) via an adaptor molecule, MyD88, thus contributing to the breakdown of
metabolic homeostasis [32]. Amar et al. found that a high-fat diet triggered the translocation
of Escherichia coli through intestinal mucosa to mesenteric adipose tissue and increased
the adherence in intestinal mucosa, fuelling a continuous metabolic bacteremia. Further
analysis revealed that this phenotype was impeded in mice lacking Nod1, but overtly
increased in Myd88 knockout and ob/ob mice [31]. It was worth noting that the probiotic
strain Bifidobacterium animalis subsp. lactis 420 intervention for six weeks can reverse the
bacterial translocation process, thereby improving inflammatory and metabolic status [32].

3. Gut Microbiota and Host Metabolism Variations during Fasting

Preclinical studies consistently demonstrated that the IF contributed to the reconstruc-
tion of the composition of gut microbes, with a major bloom in Akkermansia muciniphila
and Lactobacillus, a reduction in pro-inflammatory taxa Desulfovibrio and Turicibacter, as
well as enhancing antioxidative microbial metabolic pathways [33]. Interestingly, research
showed that A. muciniphila could alleviate multiple energy dysmetabolism-induced diseases,
whereas the lower abundance of this microbiota was positively correlated with hyperlipi-
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demia, T2D, and fatty liver [4]. Fasting-induced adipocyte factor (FIAF) is an inhibitor of
lipoprotein lipase (LPL) that is upregulated during fasting. Probiotics, such as Lactobacillus
plantarum MTCC5690 and Lactobacillus fermentum MTCC5689, can also enhance the expres-
sion of FIAF. FIAF stimulates the oxidation of fatty acids, prevents triglycerides from being
stored in the form of fat by inhibiting LPL, thereby regulating lipid metabolism, and protects
against diet-induced obesity [13]. Gut rest (i.e., the IF) could also improve gut epithelial
integrity and, as a result, mitigate the leakage of LPS and blunt systemic inflammation [34].
A study reported that a metabolic “switch” during fasting acts to promote energy balance
by enhancing gut epithelial integrity [35]. In addition, the gut microbiota itself also follows
diurnal oscillations in connectivity and robustness and is controlled by feeding regimes [36].
And the IF can coordinate the dynamic responses to modulate host health.

One mechanism is that properly fasting may coordinate the adaptive responses of
the circadian rhythm. The central clock of the brain in the suprachiasmatic nucleus of the
hypothalamus orchestrates circadian rhythm and subsequently coordinates the peripheral
clock genes present in peripheral organs (e.g., the liver, heart, lungs, and kidneys) and
immune cells [37]. A disrupted activity-rest cycle indirectly facilitates excessive caloric
intake and perturbs the normal counter-regulatory metabolic state [38]. Nutrient-sensing
pathways intimately interact with the circadian clock. Rodents are nocturnal animals that
preferentially consume food preferentially during the dark phase. A high-fat diet propels
the mice to eat around the clock, resulting in severely blunting the diurnal feeding rhythms
and disturbing metabolic pathways entrained by both circadian and feeding rhythms [39].
Intriguingly, introducing the TRF effectively attenuates body weight gain and improves
overt rhythms in mice with the high-fat diet [40]. Fasting regimens might enhance the
robustness or amplitude of the circadian oscillation. Furthermore, the IF leads to liver
glycogen store depletion and lipolysis of free fatty acids, which are metabolized to generate
β-hydroxybutyrate (β-HB). Research showed that IF dietary regimes could develop a two-
fold concentration of β-HB [33]. As a signaling mediator, this metabolite is involved in
many regulations of cellular functions and adaptive responses, such as lipolysis, oxidative
stress, and metabolic homeostasis [41]. IF seems to prevent weight gain and increase energy
expenditure by triggering brown adipose tissue nonshivering thermogenesis as well as
the browning of white adipose tissue [42]. Meanwhile, it also plays an essential role in
metabolic disorders by alternating related-gene expression, activating cell surface receptors,
and modifying histone [43].

The field of clinical endocrinology and metabolism has generated observational and
efficacy data supporting a role for the IF in metabolic disorders by regulating gut microbiota.
A randomized clinical trial from Guo et al. identified that the gut microbiota alteration
attributed to the 8-week IF, coupled with distinct genetic shifts of carbohydrate metabolism,
significantly attenuated the obesogenic effect, modulated inflammatory cytokines, and
improved vasodilatory parameters [9]. In addition, in the genetic model of T2D mice, Wei
et al. revealed that intervention with IF led to the alternation of gut microbiota, including
increased abundance of Parabacteroides and Blautia, as well as reduced Saccharbacteria, Pre-
votellaceae, Alistipes, and Ruminococcaceae, which contributed to alleviating the deterioration
of pancreatic islets and the loss of β cells [44].

4. Potential Role for Physical Exercise in the Modification of the Gut Microbiota in
Metabolic Disorders

Physical exercise masters adaptational events in human metabolic equilibrium to
enable extraordinarily beneficial actions. Physical exercise propels the motility of the bowel,
changes the temperature and distribution of blood flow, and actively regulates the function-
ing of immune system cells in the gut mucosa, which helps maintain a healthy intestinal
barrier by reducing chronic low-intensity inflammation and increasing the abundance of
beneficial bacteria [45]. A substantial number of studies have tried to describe the effects of
physical exercise on the gut microbiota composition of active versus non-active popula-
tions [46]. In active women, an elevation of a significant abundance of health-promoting
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bacteria such as Faecalibacterium prausnitzii and A. muciniphila was found [47]. Observa-
tional research conducted on humans and rodents all converged to indicate a reduction in
the abundance of Akkermansia spp. In the gut of individuals with metabolic disorders such
as obesity, T2D, NAFLD, and cardiovascular diseases (CVDs) [48–50].

4.1. Obesity

Regular and adequate levels of physical exercise favorably prevent weight gain and
modify bacterial communities in mice with a high-fat diet and in sedentary adults with
obesity. In general, physical exercise is beneficial to reducing visceral and subcutaneous
adipose tissue volumes. The balance between Bacteroidetes and Firmicutes is directly
related to obesity; levels are reduced in obese individuals. A study from Evans et al. re-
vealed that intervention with voluntary wheel running for 12 weeks significantly increased
the Bacteroidetes/Firmicutes ratio and the relative proportion of butyrate-producing
bacteria in high-fat diet-induced obesity mice [51]. These results are in perfect con-
cordance with population-based studies. Intervention with endurance exercise for six
weeks increased butyrate-regulating bacterial taxa (Lachnospira spp., Lachnospiraceae, and
Faecalibacterium spp.) and the fecal concentrations of acetate, butyrate, and propionate in
sedentary adults with obesity [52]. Other animal studies supported that there was no
change in the Bacteroidetes/Firmicutes ratio, but there was an increase in Akkermansia and
a reduction in Proteobacteria after exercise intervention [53].

4.2. T2D

Many studies have reported that physical exercise promotes a wide cadre of favorable
responses in reducing the incidence of T2D, together with obvious improvements in insulin
sensitivity-related indexes and impaired glucose tolerance [45]. Remarkably, gut microbiota
could play a leading role in influencing mechanisms of these processes. In patients with
T2D, Motiani and colleagues revealed that print interval and moderate-intensity continuous
exercise reduced systematic and intestinal inflammatory markers (tumor necrosis factor-
α, LPS), increased the Bacteroidetes/Firmicutes ratio and decreased the abundance of
Clostridium genus and Blautia [54]. Interestingly, a previous study revealed that Blautia
was one of the most abundant genera in prediabetes and T2D compared with healthy
subjects, which increased the release of pro-inflammatory cytokines [55,56]. In addition,
different activity intensities also have different effects on the abundance and function of
specific gut microbiota. Moderate intensity and prolonged exercise resulted in a decrease
in Clostridium Cluster IV, Bifidobacterium, A. municiphila, and butyrate-producing taxa in
more active people with T2D. Higher-intensity activity also increased butyrate producers,
but from different orders (Eryspelothrichales and Oscillospirales) [57]. Butyrate may play an
instrumental role in protecting the integrity of the gut barrier and assembling the expression
of tight junctions. Amino acids, carbohydrates, cofactors, and vitamins, as well as amino
acids and nucleotide sugar metabolic pathways, were also expressed differently between
moderate intensity and higher intensity activity groups [57].

4.3. NAFLD

A characteristic of NAFLD is the accumulation of triglyceride in liver cells, which
is formed from the esterification of fatty acids in the liver [58]. As an intricate disease,
the pathophysiology of NAFLD is closely intertwined with insulin resistance, oxidative
stress, inflammation responses, epigenetic modifiers, and others [59]. Insulin resistance in
adipose tissue contributes to an incomplete suppression of lipase, promoting lipolysis and
the release of FFA, which are elevated in serum and are taken up by the liver of NAFLD
patients [60]. Intriguingly, it has been shown that physical exercise can improve liver status
through hepatic or peripheral lipid metabolism, insulin sensitivity, and inflammation. The
results of a randomized controlled trial for diabetic obese patients with NAFLDA revealed
that high-intensity interval and moderate-intensity continuous exercise regulated lipid
metabolism by reducing triglycerides and visceral lipids [61]. Physical exercise not only
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directly affects metabolic responses but also mediates its beneficial effects on NAFLD via
regulating the gut microbiota. Several lines of evidence indicate that microbial populations
are altered in patients with NAFLD compared with healthy controls. A study from Qin and
colleagues revealed that NAFLD patients with advanced fibrosis were characterized by an
exasperation of Proteobacteria and Escherichia coli, along with a decrease in Firmicutes [62].
Gut microbiota dysbiosis renders the bowel more permeable with a parallel release of LPS,
which is transported over the intestinal lumen and reaches the liver via the portal vein,
and initiates TLR signaling. In particular, the LPS-induced TLR4 cascade in hepatocytes
triggers elevated systemic levels of proinflammatory cytokines, thus promoting insulin
resistance, inflammation, and fibrosis [63]. Studies on exercise (a combined aerobic and
resistance training protocol) in rodent models supported that exercise effectively promoted
the enrichment of a functionally protective microbiota and increased the secretion of mucus
in the intestinal mucus layer by upregulating the expression of intestinal tight-junction
proteins, which, in turn, prevented disturbance of the gut-liver axis and controlled hepatic
lipid metabolism [64].

4.4. CVDs

The gut microbiota participates in the pathogenesis of CVD through regulating the
production of TMA and LPS, triggering bacterial translocation to carotid arterial plaques,
and increasing blood pressure [65,66]. Noteworthy, physical exercise can increase the flow-
mediated shear stress on the artery walls, decrease serum triglyceride levels, as well as
enhance cardiac reserve capacity and autonomic regulation, which contribute to improving
endothelial function and reducing the prevalence of coronary heart diseases and cardiomy-
opathies [67,68]. As a unique form of physiological stress, regular physical exercise can
improve intestinal peristalsis. This “internal activity” may boost the shedding of loosely
bound microbes in the intestinal epithelium, thereby promoting the growth of healthy com-
mensals that are involved in the development of healthy mucosal immunity [69]. Compared
to mice that received microbiota transplants from non-exercised mice, mice that received
microbiota from exercised mice exhibited better cardiac function, as indicated by recent
studies. Mechanistically, physical exercise alternates gut microbial richness and community
structure as well as propels the release of 3-hydroxyphenylacetic acid and 4-hydroxybenzoic
acid, protecting against cardiac dysfunction in myocardial infarction mice [70].

5. Modulation Effects of Combining IF and Physical Exercise on Metabolic Disorders

As discussed above, IF and physical exercise are simple options implementable in daily
life situations to prevent metabolic disorders. Noteworthy, ample experimental evidence
has indicated that the combination of exercise and IF lead to a greater improvement of
metabolic parameters (Figure 2 and Table 1). The interaction between IF and exercise
may have potentiated the hormonal effects of insulin metabolism and is associated with
higher glycemic tolerance, which is attributed to the increase in AMPK activity and GLUT4
protein [71]. In a 3-month randomized parallel-arm trial, the results demonstrated that
ADF combined with aerobic exercise was effective for reducing intrahepatic triglycerides
in adults with obesity and NAFLD [72]. Combining IF and physical exercise produces
superior changes in manipulating lipid levels. Bhutani et al. assessed the effects of a
12-week combination of ADF and exercise (3 d/week) on lipid levels in obese adults.
Results revealed a significant reduction in low-density lipoprotein and an increase in high-
density lipoprotein concentrations in the combination group only [73]. A comparative
and randomized cross-over experiment revealed that high-intensity interval exercise in
the fasted state led to a significant reduction in fat mass in adult women compared to
exercise intervention alone [74]. Batitucci et al., in a randomized study, found that the
5:2 IF protocol with high-intensity interval exercise efficiently promoted increments in
fat-free mass compared to exercise in isolation and improved the functional physical
capacities in women with obesity [75]. Furthermore, in diet-induced obese mice, IF with
high-intensity interval exercise resulted in significantly preventing weight gain in the form
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of fat mass accumulation and reducing serum low-density lipoproteins levels compared to
not combining exercise [76].
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Bacteroidetes/Firmicutes
ratio and the relative
proportion of
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Prevent body weight gain
and adiposity [51]

Lean and
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experiments

Endurance exercise
for 6 weeks

Increase
butyrate-regulating
bacterial taxa
(Faecalibacterium spp.,
Roseburia spp., Lachnospira
spp., Lachnospiraceae, and
Clostridiales spp.)

Decrease body
fat percentage;

[52]
Increase bone
mineral density;

Improve cardiorespiratory
fitness
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Table 1. Cont.

Subjects Methodological
Approach

Duration of
Intervention Affected Gut Microbiota Experimental Results Reference

People with T2D Randomized
clinical trial

Combined aerobic
and resistance
moderate intensity
exercise, or combined
aerobic and
resistance
high-intensity
exercise for 8-weeks

Increase Bifidobacterium,
Akkermansia municiphila,
and butyrate-producing
taxa

- [57]

Patients with
NAFLD

Randomized
clinical trial

Alternate-day fasting
combined with
exercise for 3 months

- Reduce hepatic steatosis; [72]

Active women
(27 ± 6 years)

Comparative and
randomized
cross-over trial

High-intensity
interval training
combined with IF for
16 weeks

- Decrease in fat mass;

[74]Increase in jumping
performance

Women with obesity
(32.2 ± 4.4 years)

Randomized
clinical trial

5:2 IF protocol with
high-intensity
interval exercise for
8 weeks

-

Promote increments in
fat-free mass;

[75]
Improve physical fitness
and strength

↑ = up-regulate, ↓ = down-regulate.

The synergistic mechanisms of IF and physical exercise are still poorly explored,
especially in the gut microbiota. On the one hand, combined IF and exercise can drastically
change the ways our bodies synthesize and utilize fuel sources. When exercising in a
fed state, the body primarily utilizes glucose from the recent diet as the predominant
source of fuel. However, when exercising in a fasted state, as a result of the depletion of
glucose and glycogen stores, the preferential fuel comes from lipolysis and fat oxidation,
particularly the breakdown of intramyocellular triglycerides, resulting in stronger ben-
eficial actions for metabolic health [77]. Some studies revealed that the combination of
IF and exercise increased mitochondrial activity, exacerbated the consumption of stored
lipids, and enhanced the lipid reserves in muscle [78]. And the reservation of lipid in
muscle is an important substrate source during acute exercise, which is considered to be
a beneficial adaptation to exercise in the fasting state [79]. It is still unclear whether a
combination of IF and exercise can affect the gut microbiota towards a healthy state. We
found through searching the National Center for Biotechnology Information database that
only an animal experiment evaluated the effects of the combination of exercise and IF
on the microbiome. Unexpectedly, the combination group showed a lower abundance of
Bifidobacterium and Lactobacillus compared to the other groups but displayed a tendency
towards an anxiolytic effect [80]. Therefore, more animal and human studies about the
effects of the combination of exercise and IF on the microbiome merit further investigation
to determine the regulation mechanisms.

6. Conclusions

Presently, health concepts such as exercise, fitness, and a balanced diet have become
a consensus, which also guides us to actively pursue a healthy lifestyle. IF and physical
exercise promote adaptational changes in human metabolic capacities to enable extraordi-
narily beneficial actions. But the receptiveness of an individual to these two intervention
methods varies significantly. There is great diversity in the patterns of IF and modalities
of exercise. The research on how to combine IF and exercise is contradictory. It must be
highlighted that fasting and exercise cannot always be carried out simultaneously, as both
are sources of stress. Therefore, balancing the timing of exercise and fasting, such as which
intensity of exercise or no exercise to engage in during a fasted state, is of fundamental
importance. Age differences among individuals are also an important factor to consider
during a combined IF and exercise intervention. In addition, a few ongoing studies are
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currently investigating the effects of combined exercise and fasting on the gut microbiota.
Deciphering the pathogenesis of these processes represents a key challenge in preventing
metabolic disorders.
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