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Abstract: Probiotics could improve cognitive functions in patients with neurological disorders such
as Alzheimer’s disease, but the effects on cognitive function in healthy older adults without cognitive
impairment need further study. The purpose of this study was to investigate the effect of Bifidobac-
terium longum BB68S (BB68S) on cognitive functions among healthy older adults without cognitive
impairment. A randomized, double-blind, placebo-controlled trial was conducted with 60 healthy
older adults without cognitive impairment who were divided into probiotic or placebo groups and
required to consume either a sachet of probiotic (BB68S, 5 × 1010 CFU/sachet) or placebo once daily
for 8 weeks. The Montreal Cognitive Assessment (MoCA) was used as an inclusion screening tool to
screen elderly participants with healthy cognitive function in our study, and the Repeatable Battery
for the Assessment of Neuropsychological Status (RBANS) was used to assess cognitive function in
subjects before and after intervention as an assessment tool. BB68S significantly improved subjects’
cognitive functions (total RBANS score increased by 18.89 points after intervention, p < 0.0001), es-
pecially immediate memory, visuospatial/constructional, attention, and delayed memory domains.
BB68S intervention increased the relative abundances of beneficial bacteria Lachnospira, Bifidobac-
terium, Dorea, and Cellulosilyticum, while decreasing those of bacteria related to cognition impairment,
such as Collinsella, Parabacteroides, Tyzzerella, Bilophila, unclassified_c_Negativicutes, Epulopiscium, Por-
phyromonas, and Granulicatella. In conclusion, BB68S could improve cognitive functions in healthy
elderly adults without cognitive impairment, along with having beneficial regulatory effects on their
gut microbiota. This study supports probiotics as a strategy to promote healthy aging and advances
cognitive aging research.

Keywords: probiotic; cognitive function; healthy older adults; gut microbiota

1. Introduction

Research in the field of aging and neuroscience reveals that the human brain shrinks
with the process of normal aging, while the ventricles expand and both gray and white
matter are reduced [1], resulting in alterations in neurological function that cause age-
related cognitive decline [2,3]. As the population ages, a great deal of the elderly are at risk
of age-related cognitive decline, which not only threatens their personal lives but also poses
a challenge to society [4]. Therefore, it is necessary to develop efficacious interventions and
preventative strategies for age-related cognitive decline and promote healthy aging of the
global population.

The gut microbiota was first defined by Lederberg and McCray, accentuating the
importance of microorganisms located in the human body in health and diseases [5].
Compelling evidence shows that the gut microbiota plays a critical role in powerfully
modulating brain activity through the gut-brain axis [6–8]. Furthermore, owing to its
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reciprocal relationship with age, the gut microbiota changes during host aging, is altered
in age-related diseases, and plays a role in modifying age-related health impairment of
the host [9–11]. Accumulating evidence links the gut microbiota to the cognitive function
of older adults. Regulating the gut microbiota as a prevention therapy for age-related
cognitive decline has become an active research strategy.

Probiotics, live microorganisms that provide health benefits when administered reg-
ularly in the host, substantially affect the composition as well as metabolic output of the
gut microbiome [12–14]. Probiotics can impact brain health and host behaviors through
the microbiota-gut-brain axis [15–17]. Their use in the treatment of neurological diseases is
being actively investigated [18–20]. Numerous animal studies have confirmed that probi-
otics can improve brain health, along with many human studies that have also explored
the impact of probiotic intervention on cognitive function, which have achieved some
positive results [21–23]. However, existing research has mainly focused on patients with
cognitive dysfunction, such as mild cognitive impairment, Alzheimer’s disease, and severe
depressive disorder [24,25]. Studies aimed at healthy elderly people without cognitive
impairment are scarce. Therefore, more population studies targeting the healthy elderly
are urgently needed to supplement evidence on the role of probiotics in improving the
cognitive function of this specific population.

Bifidobacterium longum BB68S (BB68S, CGMCC No. 14168) is a potential probiotic. The
16S ribonucleic acid (rRNA) sequence of B. longum BB68S is available in the NCBI database
under sequence number OP984807. Our previous in vivo and in vitro study evaluated
and verified its safety [26]. In an intervention trial, we observed that BB68S can relieve
constipation and regulate the gut microbiota [27]. Considering its other potential functions,
we aimed to investigate the effects of BB68S in improving cognitive function in healthy
older adults. We also focused on providing clinical evidence for validating the properties
and effects of probiotics on cognitive aging and healthy aging, thereby supporting their
better implementation in the expanding fields of healthcare and alternative medicine.

2. Methods
2.1. Study Design

To investigate the effects of BB68S on the cognitive function of healthy elderly people
aged 60–75 years, we designed a randomized, double-blind, placebo-controlled trial. The
sample size was estimated according to Assessment of Neurological Status (ANS) scores
demonstrated by Xiao et al. [28]. We calculated that 30 subjects per group were needed
with an α-error of 0.05 and β-error of 0.20. This 10-week study included a 2-week baseline
period and an 8-week ingestion period (Figure 1). To remove the impact of any previous
intake, a 2-week baseline period was required. The participants were solicited to not
change their normal dietary patterns throughout the baseline period and were not allowed
to consume probiotics or any dietary supplements with probiotics. On day 14 ± 1, their
fecal samples were collected and the cognitive functions of the participants were evaluated.
The participants were randomly divided into either the placebo or probiotic groups. During
the ingestion period, the subjects were required to consume a sachet of probiotic (BB68S,
5 × 1010 CFU/sachet) or placebo (maltodextrin powder without probiotics) after lunch or
dinner daily for 8 weeks. Throughout the intervention period, the subjects were asked to
abstain from consuming any other probiotics or any dietary supplements with probiotics
while they were required to be consistent with their daily diet and exercise, thus excluding
their corresponding influence on the test results. To monitor the stability of their lifestyle,
subjects were requested to record their daily dietary intake. The subjects received adequate
training before recording in their daily diaries. In addition, any adverse events or symptoms
of discomfort were also required to be recorded. On day 70 ± 1, upon the completion of
the ingestion period, fecal samples were collected in a sterile tube and stored at −80 ◦C
until further analyses. The cognitive functions of the subjects were again evaluated using
the RBANS scores. The study was authorized by the China Agricultural University Ethics
Committee (CAUHR-2021021) and filed under registration number ChiCTR2200062331
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(http://www.chictr.org.cn, accessed on 21 November 2022). Written informed permission
was acquired from each subject.
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todextrin. V0–V1: visit 0–visit 1.

2.2. Participants

The subjects’ personal information was collected, including age, sex, disease status,
and drug use in the first round of screening. Experienced researchers assessed their physical
conditions based on medication history and dietary habits, and patients were screened
according to the inclusion and exclusion criteria.

2.3. Inclusion and Exclusion Criteria

We selected subjects based on the following inclusion criteria: (i) aged 60–75 years at
the time of screening and (ii) with healthy cognitive function judged by the Montreal Cog-
nitive Assessment (MoCA) screening tool. The specific criteria were as follows: total MoCA
scores were 19 or higher for those with 6 or fewer years of education, 22 or higher for those
with 7–12 years of education, and 24 or higher for those with 12 or more years of education.
In our study, we used the Chinese Beijing Version of MoCA (http://www.mocatest.org,
accessed on 21 November 2022) to define the cognitive health of the elderly. The exclu-
sion criteria were as follows: (i) obvious cognitive decline, or diagnosis with Alzheimer’s
disease, mild cognitive impairment, etc.; (ii) hearing, visual, or communication disabil-
ities or difficulties, incapable of living independently, or surgical history of digestive
system resection; (iii) history or clinical trace of nervous system disease or psychosis;
(iv) history of serious diseases, such as those of the heart, liver, kidney, or hematopoi-
etic system; (v) use of the test-related product (other probiotic products or antibiotics,
anti-inflammatory medications, gastrointestinal medicine) within a short period; (vi) un-
able to eat the test product according to the regulations, and (vii) participation in other
clinical studies.

2.4. Randomization and Blinding

During the screening process, demographic data were collected, and the examination
for cognitive ability assessment was conducted. The research assistant who was otherwise
not involved in the study completed randomization using SAS program version 9.4 with
Pocock and Simon minimum randomization methods and was required to conceal the ran-
domization results from all researchers and subjects. The randomization method performed
dynamic randomization to maximally balance the baseline characteristics between the two
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groups. The randomized data were stratified by factors including sex (male, female), age
(60~64 years old, 65~69 years old, ≥75 years old), and MoCA scores (19~21, 22~24, ≥25).
The subjects were evenly and randomly allocated to the probiotic or placebo groups. The
research team members remained blind to each participant’s assigned group until all data
were collected.

2.5. Fecal Sample Collection

Fecal samples were collected before and after intervention. We provided a cryogenic
storage box (4 ◦C) and a sterile tube with a scoop inside the lid, instructing subjects to
gather fecal samples into the tubes within 24 h before visiting and transporting them in the
cryogenic storage box to the research site. The tubes were kept tightly sealed and stored
in the cryogenic storage box until they were sent to the laboratory, following which, the
samples were immediately stored at −80 ◦C until further analyses.

2.6. Evaluation of Cognitive Functions

Before and after intervention, we used the Repeatable Battery for the Assessment of
Neuropsychological Status (RBANS) as an assessment tool to assess the subjects’ cognitive
function. During the assessment, the subjects were placed in a quiet and undisturbed
environment and simultaneously evaluated by two researchers experienced in using the
evaluation form. One of the two researchers was required to speak uniformly and clearly to
inform subjects of the description of each item, to ensure that they heard all instructions, and
finally compute the average of the original scores of the 12 items recorded simultaneously
by the two researchers. The twelve averages were then converted to five global domain
scores as the final score for the corresponding subjects.

2.7. Gut Microbiota Analysis
2.7.1. Genomic DNA Extraction, Amplification, and Sequencing

The bacterial genomic DNA was extracted from fecal samples according to the method
described by Tang et al. [29]. Purity was determined by 1% agarose gel electrophoresis
and high-quality DNA (OD260/280 ≥ 1.5, ≥ 150 ng) was amplified using the 338F-806R
primer [30] in the hypervariable V3–V4 region of the bacterial 16S rRNA gene. High-quality
PCR products were sequenced on the Illumina MiSeq PE300 platform.

2.7.2. Processing of Sequencing Data

The original reads were demultiplexed and quality-filtered using the fastp 0.20.0
tool [31] and integrated using FLASH 1.2.7 [32]. UPARSE 7.1 (available at http://drive5
.com/uparse/, accessed on 21 November 2022) was used to cluster the operational tax-
onomic units (OTUs) using a 97% similarity criterion [33], and chimeric sequences were
discovered and eliminated. RDP Classifier version 2.2 [34] was used with a confidence
threshold of 0.7 to evaluate the taxonomy of each OTU representative sequence according
to the 16S rRNA database (Silva v138).

2.8. Statistical Analysis

When describing the baseline characteristics, we used the intent-to-treat dataset,
comprising all subjects who underwent random assignment to a treatment group, and
when analyzing the main results, the per-protocol set was adopted. Normality tests were
performed on all continuous variables using the Kolmogorov-Smirnov test. We calculated
means (SDs) for continuous variables and counts (percentages) for categorical variables.
The independent samples t-test was used for the comparison of continuous variables and
the chi-square test was used for the comparison of categorical variables. For the primary
outcome, RBANS scores at week 8, an analysis of covariance model adjusted for baseline
scores was used to examine the difference between the probiotic and placebo groups. With
a significant threshold setting at p < 0.05, data analysis was performed using IBM SPSS
statistics 23.0.

http://drive5.com/uparse/
http://drive5.com/uparse/
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3. Results
3.1. Baseline Characteristics

A total of 167 subjects were recruited for screening, and 60 subjects were chosen
based on the inclusion criteria. The subjects were randomized to give 30 subjects in each
of the placebo and probiotic groups. Ten subjects withdrew their consent and dropped
out, including five from each of the placebo and probiotic groups, with 50 subjects finally
finishing the trial (Figure 2). The intervention was carried out with 83% compliance and no
clinically significant adverse events occurred. Table 1 summarizes the demographic and
clinical variables at baseline, including age, weight, BMI, sex, education level, MoCA score,
and RBANS score. These characteristics were comparable between the groups (all p-values
were greater than 0.05).
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Table 1. Demographic data of the study subjects.

BB68S Placebo p-Value

Age (years) 64.10 ± 3.40 64.50 ± 3.79 0.67 1

Sex
Male (%) 12 (40) 13 (43)

0.77 2
Female Male (%) 18 (60) 17 (57)

Height (cm) 164.79 ± 8.18 165.09 ± 9.05 0.89 1

Weight (kg) 67.13 ± 13.50 67.21 ± 12.50 0.98 1

BMI (kg/m2) 24.55 ± 3.47 24.49 ± 3.03 0.95 1

Education
Elementary or less 10 10
Junior-high school 13 12

High school or more 7 8
MoCA total score 23.03 ± 2.50 22.97 ± 2.43 0.92 1

RBANS total score 186.90 ± 17.22 186.93 ± 15.62 0.99 1

1 Independent sample’s t-test. 2 Chi-square test.
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3.2. Primary Outcomes for Cognitive Function

Each subject underwent RBANS assessment at baseline and at week 8, and the effects
of BB68S on cognitive functioning were evaluated (Table 2). BB68S intervention significantly
enhanced the cognitive function total score by 18.89 points (95% CI 14.98 to 22.80, p < 0.0001).
As shown in Table, the BB68S group had significantly higher scores in 4 domains than
the control group after 8 weeks of intervention. The score differences (95% confidence
intervals) between groups were 4.36 (2.95 to 5.76, p < 0.0001) for immediate memory, 2.01
(1.18 to 2.83, p < 0.0001) for visuospatial/constructional, 7.29 (4.77 to 9.80, p < 0.0001) for
attention, and 4.28 (95% CI 2.26 to 6.30, p < 0.0001) for delayed memory. BB68S’s effect on
language was nonsignificant (p = 0.141). Changes in RBANS scores after the intervention
were calculated and are exhibited in Figure 3 for the two groups. Subjects in the BB68S
group had significantly greater changes in total score and in almost all domains, except for
the language domain.

Table 2. The effects of BB68S on RBANS scores.

Baseline Week 8

Placebo
(n = 25)

BB68S
(n = 25)

Placebo
(n = 25)

BB68S
(n = 25) Difference (95% CI) p-Value

Total score 185.88 ± 16.77 186.88 ± 18.32 201.96 ± 17.14 221.72 ± 16.20 18.89 (14.98 to 22.80) <0.0001
Immediate memory 31.56 ± 5.03 32.20 ± 5.69 35.28 ± 5.09 40.12 ± 4.35 4.36 (2.95 to 5.76) <0.0001

List learning 20.28 ± 3.03 20.84 ± 3.82 22.56 ± 3.19 25.52 ± 4.00 2.49 (1.24 to 3.74) <0.0001
Story memory 11.28 ± 3.54 11.36 ± 2.93 12.72 ± 3.49 14.60 ± 2.06 1.82 (0.81 to 2.84) <0.0001

Visuospatial/Constructional 30.56 ± 4.08 30.68 ± 5.13 33.40 ± 3.33 35.48 ± 2.35 2.01 (1.18 to 2.83) <0.0001
Figure copy 16.32 ± 2.69 16.48 ± 2.54 17.64 ± 2.18 19.04 ± 1.02 1.33 (0.62 to 2.04) <0.0001

Line orientation 14.24 ± 2.85 14.20 ± 2.60 15.76 ± 2.33 16.44 ± 2.22 0.71 (0.03 to 1.39) 0.042
Language 29.76 ± 3.56 30.36 ± 4.39 32.08 ± 3.66 33.64 ± 3.87 1.09 (−0.38 to 2.56) 0.141

Picture naming 9.68 ± 0.75 9.60 ± 0.91 9.92 ± 0.28 9.76 ± 0.60 −0.14 (−0.36 to 0.09) 0.233
Semantic fluency 20.08 ± 3.37 20.76 ± 3.48 22.16 ± 3.65 23.88 ± 3.57 1.23 (−0.29 to 2.74) 0.11

Attention 55.44 ± 9.99 55.20 ± 9.80 59.56 ± 10.34 66.64 ± 8.68 7.29 (4.77 to 9.80) <0.0001
Digit span 14.16 ± 1.95 14.12 ± 1.96 14.36 ± 1.85 14.44 ± 1.73 0.10 (−0.66 to 0.87) 0.785

Coding 41.28 ± 9.63 41.08 ± 10.21 45.20 ± 10.11 52.20 ± 8.40 7.17 (4.62 to 9.71) <0.0001
Delayed memory 38.56 ± 4.91 38.44 ± 4.54 41.64 ± 5.10 45.84 ± 4.17 4.28 (2.26 to 6.30) <0.0001

List recall 4.96 ± 2.23 4.00 ± 2.25 6.00 ± 2.18 6.60 ± 2.08 1.06 (−0.03 to 2.14) 0.056
List recognition 18.04 ± 2.17 18.28 ± 1.81 18.84 ± 1.80 18.72 ± 1.67 −0.25 (−1.03 to 0.54) 0.526

Story recall 6.84 ± 1.97 7.20 ± 2.10 7.44 ± 2.38 9.56 ± 2.18 1.96 (0.75 to 3.17) 0.002
Figure recall 8.72 ± 2.69 8.96 ± 2.49 9.36 ± 1.91 10.96 ± 2.61 1.53 (0.29 to 2.77) 0.017

Mean ± SD is used to indicate values. Effects of BB68S are indicated by the difference (95% CI) between the
two groups, calculated from the generalized linear model (GLM).

3.3. Results of Gut Microbiota Composition

To determine the relationship between the improvement in cognitive function and
the gut microbiota, we performed gut microbiome analysis for all participants. After the
amplification and cloning of bacterial sequences, purified amplicons were sequenced for a
total of 50 fecal samples. Finally, 1133 OTUs from all samples were annotated, which were
divided into 13 phyla, 23 classes, 56 orders, 109 families, 283 genera, and 600 species.

3.3.1. Results of Alpha-Diversity

After intervention, the BB68S group had increased Sob, Chao, Ace, and Shannon
indexes and a reduced Simpson index, but not all changes were statistically significant
(p > 0.05) (Table 3). This indicated that BB68S showed a tendency towards improving the
alpha diversity of the gut microbiota but did not alter it significantly.
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Table 3. The effects of BB68S on the α-diversity.

Baseline Week 8
a p-Value b p-Value

Placebo BB68S Placebo BB68S

Sobs 229.44 ± 83.66 233.96 ± 90.34 236.32 ± 73.97 241.32 ± 91.81 0.76 0.67
Ace 282.86 ± 98.31 276.57 ± 106.21 278.72 ± 87.53 286.95 ± 106.95 0.67 0.63

Chao 284.75 ± 97.13 273.67 ± 112.03 280.71 ± 84.41 293.49 ± 114.6 0.56 0.56
Shannon 3.28 ± 0.65 3.22 ± 0.97 3.29 ± 0.59 3.22 ± 0.77 0.95 0.91
Simpson 0.1 ± 0.07 0.14 ± 0.22 0.11 ± 0.08 0.11 ± 0.09 0.77 0.95

Mean ± SD is used to indicate values; a p-values indicate the change from baseline to Week 8 for the BB68S group;
b p-values indicate the difference between the 2 groups at Week 8; a and b were both calculated using Wilcoxon
rank-sum tests.

3.3.2. Results of Beta-Diversity

In Figure 4, the results of the principal coordinate analysis showed that the V0 and V1
regions of the probiotic group and the V1 regions between the BB68S and placebo groups
did not differ significantly (p > 0.05). These results indicated that the BB68S intervention
did not have a substantial impact on the beta diversity of the gut microbiota.
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Figure 4. Principal coordinate analysis (PCoA) of the gut microbiota at the operational taxonomic unit
(OTU) level. (A) Differences in V4 between the Placebo and Probiotic groups. (B) Differences between
V0 and V1 in the Probiotic group. Placebo_V1: samples at V1 in the placebo group, Probiotic_V1:
samples at V1 in the probiotic group, Probiotic_V0: samples at V0 in the probiotic group.

3.3.3. Results of the Species Composition Analysis

Figure 5 displays the composition of the gut microbiota between the BB68S and placebo
groups at the phylum and genus levels.

At the phylum level (Figure 5A), the gut microbiota mainly included Firmicutes,
Bacteroidetes, Proteobacteria, and Actinobacteria. After intervention, the BB68S group had
increased relative abundances of Firmicutes and Actinobacteria with a decreased relative
abundance of Proteobacteria.

Figure 5B shows the bacteria with relative abundances of more than 1% at the genus
level, including Bacteroides, Prevotella, Faecalibacterium, Megamonas, Agathobacter, Blautia,
Escherichia-Shigella, Roseburia, Subdoligranulum, Bifidobacterium, Ruminococcus, Klebsiella, Dial-
ister, Phascolarctobacterium, Lachnoclostridium, Lactobacillus, Fusicatenibacter, and Coprococcus.

Figure 5C,D exhibits the differences in the fecal bacterial population at the genus level.
After BB68S intervention, the relative abundances of Solobacterium and Oribacterium de-
creased significantly (Figure 5C). Compared to the control, the BB68S group had a signifi-
cantly higher relative abundance of Bifidobacterium and lower relative abundances of Eubac-
terium_hallif_group, Collinsella, Parabacteroides, Tyzzerella, Bilophila, Eubacterium_saphenum_group,
and unclassified_c_Negativicutes after 8 weeks of intervention (Figure 5D).
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In Figure 5E, we employed LEfSe analysis to further determine if different groups of
bacterial taxa were specifically enriched after intervention. The results showed that the
bacteria taxa significantly enriched in the control group were Clostridium_sensu_stricto_1,
Collinsella, Epulopiscium, Porphyromonas, unclassified_c_Negativicutes, and Granulicatella,
while in the BB68S group, these taxa were Dorea, Lachnospira, and Cellulosilyticum.
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Figure 5. Effects of BB68S intervention on the composition of the gut microbiota. (A) Relative abun-
dances of main phyla between groups. (B) Relative abundances of main genera ≥1% between groups.
(C) Significantly different genera levels after intervention in the BB68S group. (D) Significantly
different genera levels between 2 groups after intervention. (E) LEfSe analysis indicated significant
differences between the 2 groups after intervention. * p ≤ 0.05. Placebo_V0: samples of the placebo
group at baseline, Probiotic_V0: samples of the probiotic group at baseline, Placebo_V1: samples of
the placebo group after intervention, Probiotic_V1: samples of the BB68S group after intervention.



Nutrients 2023, 15, 51 11 of 15

4. Discussion

This study was a randomized, double-blind, placebo-controlled trial conducted among
healthy elderly people, showing the effects of probiotics on cognitive function in the healthy
elderly. The subjects had good tolerance to the probiotic intervention in this study and no
side effects were reported.

To our knowledge, among articles assessing the effect of probiotics on cognitive function,
only two studies published to date have been conducted on the healthy elderly [35,36] and
they were limited by the lack of consideration given to the subjects’ education level and lack
of strict assessment criteria for cognitive health. In addition, the existing research tended to
include some active and educated volunteers who cared about age-related memory problems
and did not represent the general population. In a study of memory among middle-aged
and elderly people, a relatively small but significant difference in the subjects’ education
level between the two treatment groups impacted the results [37]. In our study, we recruited
subjects with different education levels, which better represents the general population.

MoCA, developed by Nasreddine in 2004, is an assessment tool with 30 items used
for rapid evaluation of cognitive function. Nine cognitive areas are assessed. The total
score of the scale is 30 points. The higher the score, the better the global cognitive function.
Its validity has been studied in various clinical settings [38–42]. In addition to being a
concise cognitive assessment tool, MoCA is specific and useful to distinguish cognitive
health from cognitive impairment. Based on MoCA, the criteria used to judge cognitive
health are different for individuals with different education levels, which improves the
screening sensitivity and effectiveness [43]. A total score of 19 points or more is considered
representative of normal cognitive function among those who have been educated for less
than or equal to 6 years, and scores of 22 and 24 points apply to those who have been
educated for between 7 and 12 years and more than 12 years, respectively. In a study
including Chinese healthy elderly with different levels of education, MoCA was sensitive,
reliable, and highly accepted for the screening of cognitive function [43]. In our study,
MoCA was used as a tool to cognitively screen healthy elderly people. Since we recruited
the elderly without cognitive functional impairments in this study, rather than focusing on
those who responded to the treatment effect, such as patients with neurological diseases,
and strict screening tools (MoCA) with high sensitivity and effectiveness were used, our
research is more applicable to a universal medical strategy for the elderly and has broader
social significance.

In addition, this study used RBANS to evaluate the cognitive level of subjects. RBANS,
a short assessment scale, was developed by Randolph in 1998 [44]. It contains 12 items,
which are divided into 5 global areas that include immediate memory, visual space/structure,
language, attention, and delayed memory. It is widely used in cognitive research at home
and abroad to assess the cognitive level of normal people and patients, showing high
reliability and validity [45–48]. In previous clinical studies, RBANS has been used to assess
cognitive improvement after intervention and has good sensitivity [48]. The scale analysis
for various aspects of brain functions shows the effect of the intervention on different
cognitive domains.

In our study, BB68S intervention significantly improved cognitive function (total
RBANS score increased by 18.89 points, p < 0.0001) compared to that of controls. Among
the 12 items, list learning, story memory, figure copy, line orientation, coding, story re-
call, and figure recall scores of the probiotic group improved significantly. Among the
5 domains, only language did not significantly improve. All of the other four domains
improved significantly in the BB68S group. The scores increased as follows: 4.36 points for
immediate memory, 2.01 points for visuospatial/constructional, 7.19 points for attention,
and 4.28 points for delayed memory (all p-values were less than 0.0001). In contrast, another
study evaluating the effect of drinking lactic acid bacteria-fermented milk on memory only
observed significant improvement in memory (the score increased by 4 points), with no
change in total RBANS score and other domain scores [49]. Bifidobacterium longum BB68S
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significantly improved the cognitive function of healthy elderly people, providing strong
evidence for future research and investigation.

Changes in the gut microbiota were essential to our study. Notably, the microbial
composition of the probiotics group changed after the intervention, and the relative abun-
dances of Solobacterium and Oribacterium, which cause inflammation, decreased significantly.
Studies have shown that the relative abundances of Solobacterium and Oribacterium in the
pro-inflammatory microbiota associated with colorectal cancer and reflux esophagitis were
significantly reduced after the consumption of probiotics [50,51]. Based on Wilcoxon rank-
sum and LEfSe analyses, many taxa showed differential abundance between the BB68S and
control groups. The relative abundance of Bifidobacterium increased markedly after BB68S in-
tervention. Some studies have shown that Bifidobacterium plays beneficial roles in the body,
including regulating the gut microbiota and improving immune function [52]. The relative
abundances of Collinsella, Parabacteroides, Tyzzerella, Bilophila, Eubacterium_saphenum_group,
and unclassified_c_Negativicutes decreased significantly after BB68S intervention. Collinsella
is an inflammation-related bacterium. Many studies have reported the association between
the increased abundance of Collinsella and inflammatory diseases [53]. An increase in
the abundance of Parabacteroides induced depression-like behavior in SAMP6 mice [54].
Tyzzerella has been negatively associated with 17-HAMD scores, playing a key role in
metabolic disorders in patients with postpartum depression [55]. Hippocampal IL-1β
levels have shown a positive correlation with the relative abundance of Tyzzerella, indi-
cating that its increase might lead to neuroinflammation to a certain extent [56]. Bilophila
is an obligate anaerobic pathobiont that is harmful to the hippocampus and cognitive
behaviors [57]. In addition, unclassified_c_Negativicutes was found to be more abundant in
patients suffering from Parkinson’s disease than in controls [58]. LEfSe analysis indicated
that Dorea was enriched in the probiotic-treated group. These bacteria produce acetate
and lactate that serve as substrates for butyrate production, and they are positively related
to the immune response and negatively related to depression [59]. Many studies have
shown that Lachnospira is negatively related to anxiety, depression, Parkinson’s disease, and
psychiatric disorders [60–62]. The relative abundance of Lachnospira increased significantly
following probiotic consumption according to the LEfSe analysis. Porphyromonas gingivalis
is increasingly implicated in Alzheimer’s disease, cancer, and arthritis. The LEfSe results
showed that probiotic intervention significantly reduced the relative abundance of the
Porphyromonas genus [63].

The present study had some limitations that need to be addressed. First, our research
lacked an analysis of the metabolites in the peripheral system and intestinal flora, and thus
cannot explain the mechanism of action of the probiotics. In the coming research, we will
attempt to carry out exploratory biomarker analysis to fully understand how probiotics
improve the cognitive function of healthy elderly individuals. Second, although cognitive
functions improved significantly, changes in some cognitive domains and intestinal flora
were not significant. Eight weeks of study may not be sufficient to observe these results.
Therefore, further research is needed with a longer duration. Third, although we instructed
the subjects not to adjust their habitual diet during the intervention period, we did not
strictly control their diet; therefore, we could not rule out the impact of dietary changes
on gut microbiota. Studies with more rigorous designs (e.g., strict diet control) are needed
in the future. Despite these limitations, our study also had some advantages. This study
included subjects with diverse education levels and used highly sensitive screening tools
specifically for different levels of education. We strictly and effectively evaluated cognitive
function and measured the significant effects of probiotics on cognitive function with a
short-term intervention among the healthy elderly.

In conclusion, our research showed that Bifidobacterium longum BB68S could improve
cognitive function and has a beneficial regulatory effect on the gut microbiota in healthy
elderly individuals. This study provides some evidence supporting probiotics as an alter-
native strategy to advance cognitive aging and promote healthy aging.
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