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Abstract: Brassica vegetables contain a multitude of bioactive compounds that prevent and suppress
cancer and promote health. Evidence suggests that the gut microbiome may be essential in the
production of these compounds; however, the relationship between specific microbes and the abun-
dance of metabolites produced during cruciferous vegetable digestion are still unclear. We utilized
an ex vivo human fecal incubation model with in vitro digested broccoli sprouts (Broc), Brussels
sprouts (Brus), a combination of the two vegetables (Combo), or a negative control (NC) to investigate
microbial metabolites of cruciferous vegetables. We conducted untargeted metabolomics on the fecal
cultures by LC-MS/MS and completed 16S rRNA gene sequencing. We identified 72 microbial genera
in our samples, 29 of which were significantly differentially abundant between treatment groups. A
total of 4499 metabolomic features were found to be significantly different between treatment groups
(q ≤ 0.05, fold change > 2). Chemical enrichment analysis revealed 45 classes of compounds to be
significantly enriched by brassicas, including long-chain fatty acids, coumaric acids, and peptides.
Multi-block PLS-DA and a filtering method were used to identify microbe–metabolite interactions.
We identified 373 metabolites from brassica, which had strong relationships with microbes, such as
members of the family Clostridiaceae and genus Intestinibacter, that may be microbially derived.

Keywords: cruciferous vegetables; phytochemicals; multi-omic integration; microbiome; metabolomics

1. Introduction

Cruciferous vegetable consumption has been associated with a decreased risk of mul-
tiple types of cancers, thus presenting a cost-effective, non-pharmacological approach
to cancer prevention through dietary intervention [1–17]. Broccoli sprouts and Brussels
sprouts are among the leading cruciferous vegetables under study and contain some similar
and some distinct phytochemicals that can activate different but complementary mech-
anisms to promote health [18–21]. While the cancer-preventative effects of cruciferous
vegetables are typically attributed to glucosinolates and their metabolic products, isothio-
cyanate metabolites, and indoles, other components of cruciferous vegetables could play a
synergistic role in conferring cancer-protective and health-promoting effects. Additionally,
the metabolism of phytochemicals from cruciferous vegetables by the gut microbiome
could further lead to the production, inactivation, or clearance of bioactive dietary com-
ponents [22]. The gut microbiome is essential to the production of bioactive compounds
from various food sources. For example, with soy isoflavones and pomegranate urolithins,
the presence or absence of specific microbial taxa directly dictates which metabolites are
produced [23–25]. A similar paradigm could be extended to cruciferous vegetables in which
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the gut microbiome may play an important role in driving the inter-individual metabolism
of glucosinolates and isothiocyanates, such as sulforaphane.

Despite evidence pointing towards the gut microbiome as playing a pivotal role in driv-
ing inter-individual variation in glucosinolate metabolism, little is known about microbial
products of cruciferous vegetables beyond isothiocyanate metabolites and nitriles. While
work has been conducted to investigate microbial mechanisms of glucosinolate hydrolysis to
isothiocyanate metabolites and nitriles, other downstream products of these metabolic path-
ways are still greatly unknown [26–28]. Previous studies examining microbial metabolism
of glucosinolates found that while 100% of parent food-based glucosinolates were degraded,
only a fraction of the byproducts were recovered in the form of isothiocyanates and related
glucosinolate-derived nitriles [29,30]. These observations suggest the presence of unknown
microbial products of glucosinolates. Compounds from cruciferous vegetables are also
known to alter microbiome composition and metabolism, suggesting a complex interplay
between the microbiome and diet [26–28,31–33]. Additionally, the microbes responsible for
the metabolism of glucosinolates, and other cruciferous vegetable phytochemicals, are still
unclear, representing a major gap in knowledge. Many studies have been conducted in vivo,
in human and rodent models, to examine the impact of cruciferous vegetable consumption
on the gut microbiome; however, these analyses are typically strictly taxonomical and do
not examine specific microbe–metabolite relationships [26,31–40]. Metabolomics databases,
such HMDB or METLIN, typically focus on endogenous metabolites (i.e., originating from
humans), so metabolomic studies, while valuable, do not provide great insight into the
diverse array of microbial- and cruciferous vegetable-derived metabolites that are presumed
to be present after cruciferous vegetable consumption [41–54]. We recently reported that
the gut microbiome composition could influence the production of glucosinolate-derived
nitriles from cruciferous vegetables, showing that the presence or absence of specific mi-
crobes can influence the abundance of a single metabolite [22]. Thus, we sought to take an
untargeted approach to investigate other phytochemicals from cruciferous vegetables that
the gut microbiome could play a role in generating.

To investigate plant- and microbe-derived metabolites of cruciferous vegetable diges-
tion and capture information about the microbiome, we utilized an ex vivo fecal incubation
system. Our goals were to (1) understand the impact of cruciferous vegetables on the
gut microbiome, (2) describe changes to the digestive metabolome following cruciferous
vegetable consumption, and (3) identify relationships between specific members of the
gut microbiome and specific metabolites. Through this work, we elucidated specific rela-
tionships between the gut microbiome and diet-derived metabolites and generated novel
hypotheses through which cruciferous vegetables can promote health and prevent disease.
Furthermore, by integrating metabolomics and 16S microbiome data, this work helps
to bridge the gap between taxonomy and function by examining relationships between
microbes and metabolites, allowing for inference on metabolic niche and function.

2. Materials and Methods
2.1. Ex Vivo Fecal Incubation Model

Broccoli sprouts and Brussels sprouts were in vitro digested using an oral, gastric, and
intestinal phase as previously published [22,55–63]. Briefly, salivary amylase was added to
simulate the oral phase of digestion, which was followed by a gastric phase where samples
were acidified to a pH of 2.5 with hydrochloric acid, and pepsin was added. Then sodium
hydroxide was added to neutralize the samples (pH 7), and bile salts, pancreatin, and
mucin were added for the intestinal phase of digestion. For fecal bacterial cultivation, a
20% fecal slurry (w/v) was made from fecal material from 10 healthy volunteers (6 female
and 4 male, age 17–51, Lee Biosolutions) and sterile PBS (0.1 M pH 7). A total of 500 µL of
the fecal slurry was mixed with 10 mL of Brain Heart Infusion Broth (BHI) with hemin and
vitamin K, per the manufacturer’s recommendation, and either 500 µL of filter sterilized
in vitro digested broccoli sprouts (Broc), 500 µL of filter sterilized in vitro digested Brussels
sprouts (Brus), 500 µL of Broc, and 500 µL of Brus were added (Combo), or negative control
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in vitro digestion (NC). NC contained reverse osmosis water, equivalent in volume to the
water content of broccoli sprouts, and underwent the same in vitro digestion procedure as
described above with the same enzymes, chemicals, and equipment. Broc and Brus digests
were scaled to be equivalent in concentration to a human consuming 1

2 cup of broccoli or
Brussels sprouts, or in the case of the combination, 1

2 cup of broccoli sprouts and 1
2 cup of

Brussels sprouts. This combination was included as Broc and Brus contain many similar but
also some distinct phytochemicals, and thus by combining the vegetables, we increased the
dose and broadened the range of phytochemicals from cruciferous vegetables, which can be
achieved in the kitchen as a mixed vegetable dish. Fecal cultures were incubated at 37 ◦C
for 24 h in anaerobic conditions [23]. The fecal culture medium was then vortexed, sampled,
and centrifuged (13,000× g, 10 min), and supernatants were frozen in liquid nitrogen.

2.2. Microbial Sequencing

DNA was isolated from fecal cultures using a QIAamp PowerFecal DNA kit (Qiagen)
per the manufacturer’s protocol. Fecal DNA concentration was measured using the Qubit
dsDNA HS assay kit (Invitrogen). PCR was used to amplify the 16S rRNA gene at the
V4 region and then sequenced using an Illumina MiSeq to produce a sequence library
using the Earth Microbiome Project protocol [64]. This approach yielded 300 bp paired-end
amplicon sequences at a target sequencing depth of 50,000 reads per sample. The 16S
amplicon sequencing was performed at the Center for Quantitative Life Sciences core
facilities (Oregon State University) using established methods [65]. Data preprocessing and
identification of amplicon sequence variations (ASVs) were conducted using the DADA2
pipeline, as implemented in R (v3.5) [66]. Briefly, reads were first trimmed for read quality
and then filtered for expected errors, followed by a merging of paired reads and removal
of chimeric ASVs. Taxonomy was assigned using the Silva database v132 with the Naïve
Bayesian classifier built into DADA2 [66,67] (Supplemental Table S1).

2.3. Microbiome Data Management and Quantification of ASVs

All statistical analysis was conducted in R version 4.1.0 unless otherwise noted. The
Benjamini–Hochberg procedure was used for multiple testing corrections, and an adjusted
p-value of 0.05 was used as the significance cutoff [68]. Unannotated taxonomic assignments
at the genus level were assigned placeholder names using the form f_FamilyName_ASV#;
this method prevents unknown genera (i.e., “NA”) from being removed during agglom-
eration. ASVs were first agglomerated at the genus level, reducing the number of gen-
era considered in the analysis from 3557 to 935 due to a high number of unannotated
species [69]. In order to remove noise from the dataset, sparse genera, which were those
observed fewer than four times in at least 20% of the samples and with a mean relative
abundance across all samples less than 0.001%, were filtered out of our data set, which
yielded a final dataset of 72 genera. Rarefaction curves using the vegan package (v2.6-2)
in R were built on agglomerated and filtered data to ensure all samples were sufficiently
sequenced (Supplemental Figure S1) [70].

2.4. Diversity Analysis and Visualization

The R packages phyloseq (v1.4) and ggplot2 (v3.3.6) were used to visualize and calculate
alpha-diversity metrics using the unfiltered, un-agglomerated data [69,71]. Differences in
alpha diversity were assessed using the Friedman test for accounting for repeated measures.

2.5. Beta-Diversity Analysis

Beta diversity of agglomerated and filtered data was analyzed using Principal Coordinate
Analysis (PCoA) and based on Bray–Curtis distance [69]. Permutation analysis of variance
(PERMANOVA) was conducted using the adonis function from the vegan package (v2.6-2) [70].

2.6. Differential Abundance Analysis

In order to identify genera that were differentially abundant between treatment groups,
we utilized a negative binomial generalized linear mixed-effect model, as implemented
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by the package lme4 (v1.1-30) [72]. All samples were rarefied to an even depth prior to
fitting the model. The abundance of each genus was used as the response variable, with
the treatment group as the predictor variable. One model was built for each genus. The
Benjamini–Hochberg procedure was used to account for multiple tests [68].

2.7. Metabolomic Analysis

Metabolites from the fecal culture medium were extracted (100 µL culture/100 µL
ice cold 80:20, v/v, methanol:water), mixed vigorously, and clarified by centrifugation
(13,000× g for 10 min). The supernatants were further diluted 1:10 (v/v) with ice-cold
80:20 methanol:water (v/v) and transferred to mass spectrometry (MS) vials. Briefly, HPLC
was performed on a Shimadzu Nexera system with a phenyl-3 stationary phase column
(Inertsil Phenyl-3, 5 µm, 4.6 × 150 mm, GL Sciences) coupled to a quadrupole time-of-flight
MS (AB SCIEX TripleTOF 5600), as previously described [73,74]. The samples were ran-
domized, auto-calibration was performed every two samples, and a quality control (QC)
sample, composed of a pooled aliquot from each sample, was analyzed every 10 samples.
MS/MS information was obtained for all samples using information-dependent acquisition
(IDA), while sequential window acquisition of all theoretical spectra (SWATH) was per-
formed only on quality control samples. Spectral data were processed using Progenesis QI
(NonLinear Dynamics v2.4). Peak deconvolution for [M + H]+, [M + Na]+, and [M + NH4]+

adducts in positive ionization mode, and [M−H]−, [M + FA−H]−, and [M − H2O − H]−

in negative ionization mode was performed in Progenesis QI. Feature intensities were nor-
malized in Progenesis QI across samples by the total ion current of all features. In order to
remove features with high technical variation, features with a CV greater than 50 in the QC
samples were removed from the data resulting in 3903 compounds being removed from
negative ionization mode and 7355 compounds being removed from positive ionization
mode. Additionally, to identify biologically relevant features, features were filtered to only
those with a fold-change greater than 2 between treatment groups. The resulting data
matrix was exported as a CSV for downstream analysis in R.

2.8. Statistical Methods Summary

To summarize, changes to the gut microbiome were evaluated using a mixture of non-
parametric and parametric statistical tests to evaluate the effects of cruciferous vegetables
on both individual microbes and overall community structure (alpha- and beta-diversity).
Changes to the digestive metabolome were evaluated using metabolomics and subsequent
generalized linear mixed models, repeated measures ANOVAs, and pairwise t-tests to dif-
ferentiate between the various treatment groups. Chemical similarity enrichment analyses
were used to examine changes to classes of metabolites with exposure to cruciferous veg-
etables. To find interactions and relationships between the gut microbiome and digestive
metabolome (multi-omic integration), a variety of methods were used and described in
detail below. Briefly, to identify metabolites and microbes associated with different crucifer-
ous vegetables, a multi-block PLS-DA was used. A correlation circle was used to identify
specific pairs of gut microbes and metabolites to be evaluated for correlations that could
influence cruciferous vegetable phytochemical metabolism. Next, a data filtering method
was used to focus on potential microbial-derived metabolites of cruciferous vegetables,
and pairwise relationships between microbes and metabolites were evaluated using Spear-
man’s rank correlation coefficient, indicating potential relationships between microbes and
metabolites. The Spearman’s rank correlations results were presented using a heatmap that
clustered metabolites and microbes based on the similarity of their correlations.

2.9. Statistical Analysis of Metabolomics Data

In order to determine the impact of treatment on the metabolomic profile of the fecal
cultures, repeated measures ANOVA (RMANOVA) was conducted using Progenesis QI
software as previously published [41]. The False Discovery Rate (FDR) was controlled at
5% (significance was determined as q < 0.05). Pairwise t-tests, as conducted in Progenesis
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QI software, were used to find features significantly different between treatment groups.
The hyperbolic arcsine (arcsinh) transformation was used prior to all statistical tests being
conducted in Progenesis QI.

To find features significantly different between the two microbial sub-populations
previously identified in our fecal cultures, we used a generalized linear mixed model
(GLMM). In order to handle the large range of values in our metabolomics dataset, log
transformation followed by Pareto scaling was applied to the data. Pareto scaling reduces
the relative importance of large values while keeping the data structure partially intact [75].
Since Pareto scaling is sensitive to large fold-changes in the data, log2 transformation was
first applied. In order to handle 0s in the data, a generalized log transformation was applied

following the formula: log2x =
log2

√
x2+a2

2 , where a is the minimum non-zero value in the
dataset. We found that the negative control group had an unequal variance from the other
three treatment groups, so a separate model was run for NC from the three vegetable
treatments (Broc, Brus, Combo). A generalized linear mixed model, as implemented by the
lme4 package (v1.1–30) in R, was built for each feature using chromatographic intensity
as the response variable and the interaction of treatment and microbial sub-population as
the predictor variables [72]. For the NC model, only microbial sub-population was used as
the predictor variable. Contrasts, as implemented by the package LmerTest (v3.1–3), were
utilized to find features that differed in abundance between microbial sub-populations
by treatment group [76]. Multiple hypothesis testing was corrected using the Benjamini–
Hochberg method [68]. Statistical results are shown in Supplemental Table S2.

2.10. Metabolomics Data Annotation

Data were analyzed with Progenesis QI (Waters Corporation, Newcastle, UK) and
PeakView with XIC Manager 1.2.0 (AB SCIEX, Framingham, MA, USA) software. Level
1 and level 2 metabolite annotations were assigned based on the level of confidence of
annotations as described [77–79]. Level 1 annotations were determined using PeakView by
matching accurate mass (error < 5 ppm), retention time (error < 10%), MS/MS fragmenta-
tion (library score > 70), and isotope distribution (error < 20%) with an in-house library
of 650 commercially available standards (including IROA Technology, Bolton, MA, USA).
These metabolites were then integrated into the Progenesis QI software, where additional
Level 2 metabolite annotations were determined using Progenesis QI software and METLIN,
Human Metabolome Database, ChemSpider, and MONA libraries [77]. The current data
were evaluated based on accurate mass similarity (ppm ≤ 7), isotope similarity (≥70), and
fragmentation score (score ≥ 45). Supporting information (Supplemental Table S3) lists
identified and putatively assigned metabolites and provides access to the following proper-
ties: molecular formula, retention time, monoisotopic ion mass, adducts, mass error library
source for identification, and PubChem ID (PCID). Normalized abundances for all features
were exported from Progenesis and used for further analysis. To aid in identifying unknown
compounds, we utilized de novo annotation techniques and feature-based molecular net-
working, as implemented by Canopus and Global Natural Products Social Networking,
respectively [80–87]. Sirius, a preliminary step to Canopus, was set to the default settings.

2.11. Chemical Similarity Enrichment Analysis

To evaluate which classes of compounds were enriched by cruciferous vegetables,
we performed Chemical Similarity Enrichment Analysis (ChemRICH) [88]. De novo
predicted classes by Canopus were used as grouping information, and p-values from the
metabolomics pairwise t-tests between indicated treatment groups were used. ChemRICH
can only compare 2 groups at a time, so the analysis was run three times to individually
compare each cruciferous vegetable treatment group (Broc, Brus, Combo) against NC.

2.12. Multi-Block PLS-DA

To integrate metabolomics and microbiome data and identify metabolomic features
and microbes associated with cruciferous vegetable consumption, we utilized a multi-
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block partial least squares discriminant analysis (PLS-DA) [89]. To overcome the high
dimensionality of our metabolomics data, we first filtered the dataset only to include
features that were found to be significant by RMANOVA or GLMM. In order to simplify
the analysis, positive and negative ion metabolomics data were combined utilizing the R
package MSCombine (v1.4) [90]. A maximum residual of 0.2 was used as a cutoff value, and
the adducts [M + H], [M + NH4], [M + Na], [M–H2O–H], [M–CH2–H], [M–H], [M + Cl],
and [M + FA–H] were searched, and the feature in the polarity with a greater intensity
was kept. A centered log-ratio (clr) transformation was applied to the microbiome data to
center and scale it. Zero-count cells were imputed to 1 prior to the clr-transformation.

The multi-block PLS-DA was conducted as implemented in the R package MixOmics
(v6.20.0) [89,91]. Prior to analysis, a multi-level approach to separate within-subject varia-
tion from between-subject variation was used to handle the repeated-measures aspect of
our study [92]. A design matrix was created with all blocks connected to one another, and
a dummy matrix representing the treatment groups was used as the response. The model
was built on 8 components, where 15 genera were kept on the first 2 components, with
72 kept on the rest, and 100 metabolomic features were kept on the first two components,
with 6062 on the rest. The number of features to keep and the number of components
was tuned using a grid search with 10-fold cross validation for each parameter. Centroid
distance was used to compare performance between models. Due to general similarity in
model performance between the numbers of features kept, a larger model was selected to
capture more features at the risk of finding spurious results. Variables were extracted on
the first and second components, and an importance cutoff of 0.1 was used. Responder
operating characteristic (ROC) curves were constructed using R package pROC (v1.18.0)
following leave-one-out cross-validation [93].

2.13. Microbial Metabolite Identification

To explore possible microbial-derived metabolites of cruciferous vegetables, we im-
ported data from Progenesis into R and utilized a metabolite filtering approach. Features
were filtered down to only those metabolites that were not present in media (mean inten-
sity < 5), the in vitro digested vegetables (mean intensity < 14), and the NC samples (mean
intensity < 18), thus removing artifacts of the ex vivo incubation system, incomplete break-
down products of in vitro digestion, and possible microbial-derived metabolites not made
from cruciferous vegetables, respectively. To isolate metabolites produced from cruciferous
vegetables by bacteria, we further filtered for only compounds with a mean abundance
twice as high in Broc, Brus, or Combo as compared to the NC samples. Lastly, we used a
Friedman test (non-parametric repeated measures ANOVA) with a Nemenyi post hoc test
to identify metabolites that were significantly different between the treatment groups (Broc,
Brus, Combo, NC). A correlation analysis was conducted using Spearman’s correlation.

2.14. Data and Code Availability

R code containing statistical analyses conducted is available at github under “bouranij/
Bouranis_2022_Brassicas_Microbes_Metabolomics”. Raw 16S reads are available in the
NCBI SRA under BioProject PRJNA895102. Metabolomics data were submitted to
Metabolomics Workbench under ST002338.

3. Results
3.1. Impact of Cruciferous Vegetables on Microbiome Composition

In total, 72 genera were identified in our samples. In order to determine the overall
microbial composition of each sample, alpha-diversity was measured using richness, Simp-
son, and Shannon indexes, and no significant differences were found between treatment
groups for any measures (p = 0.782 for richness, p = 0.782 for Simpson, p = 0.43 for Shannon,
respectively) (Figure 1). To evaluate if cruciferous vegetables significantly altered the com-
position of the gut microbiome and evaluate between-sample compositional differences,
we analyzed beta diversity using a principal coordinates analysis (PCoA) (Figure 2A). We
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did not observe clustering by treatment, suggesting that beta diversity was not altered
by cruciferous vegetable. PERMANOVA by treatment was found to be non-significant
(p = 0.719), validating our observation.
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above, and the color and size of each bar correspond to a different family and its relative abundance
within each sample.
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Figure 2. Cruciferous vegetables do not alter β-diversity but do impact individual ASVs. (A) Principal
coordinates analysis (PCoA) showing beta diversity of samples. Each point represents one sample,
with the color of the point indicating the treatment group. Ellipses represent the multivariate
t-distribution of each treatment group. (B) ASVs significantly different between treatment groups, as
determined using a negative binomial generalized linear mixed model. The x-axis represents each
genus, and the y-axis represents each pairwise comparison. f_ASV# indicates an unannotated genus
of the family shown. Comparisons are organized as Group 1 vs. Group 2; purple squares represent a
positive log2 fold change, indicating Group 1 is more abundant than Group 2, while orange squares
represent a negative fold change, indicating Group 2 is more abundant than Group 1. Black dots
within the squares signify significant (q ≤ 0.05) differential abundance.



Nutrients 2023, 15, 42 8 of 19

A negative binomial mixed model was used to investigate the impacts of Broc, Brus,
and Combo on individual bacterial taxa. Overall, 29 genera were found to be significantly
different in their abundance between at least two treatment groups (Figure 2B, Supplemen-
tal Table S4). Twenty-six genera were significantly different between NC and at least one
cruciferous vegetable group (Broc, Brus, and/or Combo). Of these 26 genera, 11 were found
to be significantly more abundant, including four unannotated genera of Clostridiaceae,
Subdoligranulum, and Lachnoclostridium, following incubation with cruciferous vegetables.
Fourteen genera were found to be significantly less abundant, including Agathobacter, Rose-
buria, Paeniclostridium, and six unannotated genera of Clostridiaceae, and one was mixed
in the direction of the cruciferous vegetable effect depending on the treatment condition
(Supplemental Table S4). In order to evaluate the effects of combining cruciferous vegeta-
bles compared to a single vegetable, comparisons were made between the Broc and Brus
treatment groups and the Combo treatment group. A total of 18 genera were found to be
significantly differentially abundant, 10 of which had increased abundance in the Combo
group, while seven were significantly less abundant in Combo compared to the single
vegetables (Broc and/or Brus, Figure 2B). Lastly, the abundance of nine taxa was found to
be significantly different between Broc and Brus treatments (Supplemental Table S4). All
significantly different taxa belonged to families Ruminococcaceae, Clostridiaceae, Lach-
nospiraceae, Erysipelotrichaceae, Eggerthellaceae, Peptostreptococcaceae, Streptococcaceae,
and Enterococcaceae.

We had previously identified two sub-populations within our sample donors, those
which had microbiomes enriched with bacteria from the family Clostridiaceae and those
with bacteria enriched with bacteria from the family Enterobacteriaceae. In this study, these
two subpopulations persisted in our dataset, and clear clustering was observed in the PCoA
(Figure 2A). PERMANOVA analysis verified the presence of these two bacterial clusters
(p = 0.001). Cumulatively, while the abundance of individual genera appears to be altered
by cruciferous vegetables, there is no effect by in vitro digested Broc, Brus, nor Combo on
alpha- nor beta-diversity and the underlying microbial subpopulations (i.e., Clostridiaceae-
and Enterobacteriaceae-dominant groups) were not disrupted.

3.2. Cruciferous Vegetable Consumption Alters the Digestive Metabolome

In order to describe the impacts of cruciferous vegetables on the digestive metabolome,
we conducted an untargeted metabolomics analysis on the fecal cultures. A total of
11,258 features were detected, with 2151 and 2348 features significantly different in neg-
ative and positive ionization mode, respectively, when abundances were compared over
all four treatment groups (RMANOVA, q ≤ 0.05). Pairwise t-tests delineated which fea-
tures significantly differed between the specific treatment groups (Supplemental Table S2):
1790 features were different between NC and Broc, 1757 features were different between
NC and Brus, and 4545 features were different between NC and Combo. Comparisons
between cruciferous vegetable treatments showed 15 features were significantly different
between Broc and Brus treatments, while 114 and 139 features were significantly different
between Broc and Combo and Brus and Combo, respectively. Principal component analysis
(PCA) was conducted on the data, and no separation was observed between any of the
treatment groups (Supplemental Figure S2).

Among the features detected, 293 were annotated (Supplemental Table S3), and
many were found to be di- and oligo-peptides, most likely incomplete breakdown prod-
ucts from in vitro digestion. Many known plant-derived metabolites were identified,
including azelaic acid, suberic acid, sinapic acid, kaempferol glucosides, and 3-formyl
indole (Figure 3A–C, Supplemental Tables S2 and S3). Additionally, we identified known
microbial-derived metabolites, including indole acetic acid (Figure 3D). Due to the low
coverage of plant- and microbe-derived metabolites in available databases, de novo iden-
tification methods using Sirius, CSI:FingerID, and Canopus were utilized to elucidate
compound class (Supplemental Table S2, Figure 3F). To evaluate which classes of the
compound were enriched by cruciferous vegetables, we performed Chemical Similarity
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Enrichment Analysis (ChemRICH) (Figure 3F). Overall, we found 35 classes of compounds
to be significantly enriched by Broc, 36 to be significantly enriched by Brus, and 45 to be
significantly enriched by Combo (Supplemental Table S5). Of particular interest, we found
long-chain fatty acids and cyclic depsipeptides (Figure 3E,F) to be enriched in all three
treatment groups. Additionally, we found coumaric acids and derivatives to be significantly
enriched in both Broc and Combo treatments but not in Brus.
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Figure 3. Cruciferous vegetable exposure leads to an increase in plant- and microbial-derived
metabolites: (A–E) Intensity of metabolites in each group, as detected by LC-MS/MS. Each point
represents an individual, bars represent means, and error bars show standard error. Metabolite
identity of (A–D) confirmed via MS/MS fragmentation pattern matching. (E) Predicted via de novo
annotation. (F) Chemical Enrichment Analysis (ChemRICH) impact plot for NC vs. Combo. The size
of each cluster represents the number of metabolites belonging to it, and the y-axis shows the level of
significance; the color of the dot refers to if the compounds were increased (red) or decreased (blue)
in Combo relative to NC. Only significant clusters are shown, and peptides and amino acids have
been removed for clarity.

We previously identified differential metabolic capabilities in two sub-populations, in-
dividuals enriched with Clostridiaceae vs. Enterobacteriaceae, in our data [22]. We next
investigated if these two microbial sub-populations were associated with differing digestive
metabolomes following cruciferous vegetable consumption and found 534 metabolomic fea-
tures to be significantly different (Supplemental Table S2). De novo annotation predicted the
classes of some of these compounds to be alkanesulfonic acids, benzenesulfonamides, organic
sulfuric acids, and thiazoles, all of which contain sulfur atoms (Supplemental Table S2).

3.3. Interplay between Cruciferous Vegetables and the Gut Microbiome

Having observed changes to both the digestive metabolome and the gut microbiome,
we were next interested in finding specific relationships between microbes and metabolomic
features using a multi-block partial least squares discriminate analysis (PLS-DA). A dis-
criminate analysis identifies features (i.e., metabolites and microbes), which most separate
groups and thus are most associated with each treatment group A consensus plot of indi-
viduals, showed clear separation of NC and Combo while Broc and Brus were not able to
separate, indicating poor discriminatory power between Broc and Brus (Figure 4A). Never-
theless, sixty-four metabolomic features had importance greater than 0.1, indicating that the
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metabolite discriminated between at least 2 of the treatment groups (e.g., NC vs. Combo,
NC vs. Broc, etc.). Thirty-seven of these sixty-four metabolites were discriminatory towards
Combo, twenty-four towards NC, one towards Broc, one towards Brus, and one metabolite
was a tie between two groups. These results indicate that there was the greatest discrimina-
tion between NC and Combo (Supplemental Table S6). Combo and NC had nine and eight
metabolites annotated as peptides, respectively. Three compounds annotated as long-chain
fatty acids, a thiazole, a fatty acyl, and an amino fatty acid, were also associated with
Combo. Five Combo-associated metabolites were annotated as myristoylglycine, pinellic
acid, azelaic acid, HpODE, and TriHOME (Figure 4B–F). Additionally, a benzenoid was
associated with Broc. Overall, these classes of compounds could originate from vegetables
or from metabolism by the gut microbiome.
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Figure 4. Multi-block PLS-DA reveals signatures of cruciferous vegetable exposure and relationships
between specific microbes and metabolites. (A) Consensus plot from multi-block PLS-DA analysis.
Each point represents one fecal culture, and the color of each point represents the treatment group.
(B–F) Intensity of select metabolites identified by multi-block PLS-DA. Each point represents an
individual, bars represent means, and error bars show standard error. (G,H) Plots comparing intensity
of metabolites with the centered log-ratio transformed abundance of select microbes. Each point
represents a fecal culture, and lines show within-treatment group correlation. For both presented
metabolites, different within-treatment correlations are observed, suggesting that the metabolism of
these compounds by the gut microbiome is dependent on the presence of precursor compounds that
come from the vegetables themselves.

The presence of Lachnoclostridium, Adlercreutzia, Subdoligranulum, and Dorea was associ-
ated with Combo. This is consistent with our single-omics results (Supplemental Table S4),
where these microbes were observed to have increased abundance in Combo relative to
other groups. Lachnospira, Bifidobacterium, Turicibacter, Butyricioccus, and Faecalibacterium
were all found to be discriminative towards Brus. Interestingly, no microbes were found to
be discriminatory towards Broc. Receiver operating characteristic (ROC) curves indicated
that the metabolome was a better predictor of treatment class than the microbiome. Ad-
ditionally, the prediction of NC and Combo is better than the prediction of Broc or Brus
(Supplemental Figure S3A).

To further understand the relationship between genera and metabolomic features, a
correlation circle was used (Supplemental Figure S3B). Variables that fall further away from
the origin (closer to 1) more strongly associate and contribute to a component, while those
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closer to the origin more weakly contribute. Additionally, variables that are close to one
another and thus have an acute angle between them have a positive correlation, while those
with an obtuse angle are negatively correlated. Clustering in the feature spaces, using the
correlation circle, was used to guide further analysis between specific genera and metabo-
lites. For some features, such as Anaerostipes and HpODE, a weak correlation (rho = 0.49)
was detected (Figure 4G). For other features, such as Myristoylglycine and Blautia, there
was no apparent relationship (rho = 0.18) between the metabolite and the genera.

For TriHOME, HpODE, azelaic acid, and pinellic acid, it appears trace amounts could
be produced by microbes, as observed by their low abundance in the NC samples, but they
are more likely cruciferous vegetable-derived compounds that are metabolized by the gut
microbiome (Figure 4B–F). To further investigate this relationship, the correlation circle
was used to find genera that are associated with Combo and fall close to HpODE, such as
Lachnospiraceae Anaerostipes (Supplemental Figure S3B). By using Spearman’s rank corre-
lation, the within-treatment correlation between Anaerostipes and HpODE was calculated:
rho = 0.517 for Broc, rho = 0.571 for Brus, rho = 0.681 for Combo, and rho = −0.063 for
NC (Figure 4G). These results suggest that the presence (or absence) of specific microbial
taxa could influence the bioavailability of this compound in vivo. Myristoylglycine, on
the other hand, appears to be directly dependent on the combo treatment group, as noted
by its absence in the NC, Broc, and Brus treatment groups (Figure 4H). Correlation at the
treatment level with an unannotated genus of Lachnospiraceae (represented by ASV354),
located closely on the correlation circle (Supplemental Figure S3B), shows a moderate
correlation (rho = 0.644) for Combo. Furthermore, this genus is not present in any other
treatment groups (other than a single Brus sample), suggesting its growth is dependent on
the presence of some factor originating from the combination of Broc and Brus (Combo).
It is unclear, however, if the generation of myristoylglycine is dependent on the presence
of this microbe due to the low abundance of this compound in some Combo samples,
which lack the presence of ASV354. Overall, the multi-block PLSDA revealed relationships
between cruciferous vegetables and microbes; however, due to the nature of the analysis,
compounds that are solely related to treatment, as opposed to an interaction between the
gut microbiome and dietary compounds, also appeared in our analysis.

3.4. Identification of Microbial Metabolites of Cruciferous Vegetables

We next examined 387 possible microbial-derived metabolites (detected as described
in Section 2.11) that may have been produced from compounds found in broccoli and
Brussels sprouts (i.e., not found in NC samples). Many of these metabolites displayed
high levels of inter-individual variation, suggesting the gut microbiome played a role
in their generation (Supplemental Figure S4). A total of 373 metabolomic features were
significantly different between treatment groups (Supplemental Table S7), and post hoc
testing revealed that differences between NC and Combo drove the bulk of changes. Many
of these compounds were not annotated, so de novo annotation was utilized and predicted
triterpenoids, diterpenoids, and flavonoids (Supplemental Table S7), which are of interest
as they are typically derived from food sources. Additionally, of 207 metabolites that
we could predict a class and chemical formula for, 106 were predicted to contain sulfur
atoms, and some were predicted to be azoles, thiodioxopiperazines, peptides, triterpenoids,
and benzenoids.

A correlation analysis was conducted to identify relationships between the identified
compounds and microbes (Figure 5.) We observed strong positive correlations between
Intestinibacter, Bifidobacterium, and an unannotated genus of Clostridiaceae (represented by
ASV2) and benzenoids, indoles, and flavonoid-3-O-glycosides. Conversely, we detected
strong negative correlations with these same compounds and Phascolarctobacterium and
Ruminococcaceae UCG-005. Clustering of bacteria based on correlations with specific metabo-
lites could represent similar metabolic functions despite different taxonomy. For example,
the six unannotated genera of Clostridiaceae (represented by ASVs 683, 584, 556, 462, 457,
2) that decreased with cruciferous vegetables, relative to NC, clustered together while the
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four unannotated genera of Clostridiaceae (represented by ASVs 130, 141, 157, 168), which
increased in the presence of cruciferous vegetables, clustered separately. Additionally, for
some of these potential microbial metabolites of cruciferous vegetables, these two groups of
Clostridiaceae had opposite correlations, suggesting the differential metabolic capabilities
of these bacteria.
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metabolites (y-axis) and ASVs (x-axis).

4. Discussion

Overall, in this study, we sought to identify microbial-derived metabolites of cru-
ciferous vegetable phytochemicals and successfully found metabolites of both origins as
well as relationships between microbes and metabolites. We observed that the presence of
broccoli sprouts and/or Brussels sprouts caused significant changes in the abundance of a
variety of individual microbial genera, including members of the families Ruminococcaceae,
Clostridiaceae, Lachnospiraceae, Erysipelotrichaceae, Eggerthellaceae, Peptostreptococ-
caceae, Streptococcaceae, and Enterococcaceae; however, we did not observe changes to
alpha- nor beta-diversity. We also showed 45 classes of compounds to be significantly
enriched and expected to be in the gut milieu after broccoli and Brussel sprouts were
consumed, including long-chain fatty acids, cyclic depsipeptides, coumaric acids and their
derivatives, and peptides. Multi-omic integration identified relationships between crucifer-
ous vegetable-derived metabolites myristoylglycine, pinellic acid, azelaic acid, HpODE, and
TriHOME and microbes from families Peptostreptococcaceae, Lachnospiraceae, Eggerthel-
laceae, and Ruminococcaceae. Furthermore, we found 387 microbial-derived metabolites
of cruciferous vegetables, many of which displayed high levels of inter-individual varia-
tion and correlations with gut microbes. Overall, this study highlights the complexity of
microbiome-diet interactions and presents novel findings to be further investigated through
mechanistic studies.

Many studies have shown that consumption of various cruciferous vegetables is
associated with changes in the microbiome, and our study supports these findings as
we found broccoli and Brussels sprouts can affect the abundances of specific microbial
taxa [26,28,31–35]. Specifically, we observed changes in bacteria from the families Ru-
minococcaceae, Lachnospiraceae, Eggerthellaceae, and Streptococcaceae, which have been
observed to be altered by cruciferous vegetables in other studies suggesting these bacteria
may fill a specific ecological niche that is altered or promoted by compounds in cruciferous
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vegetables [31–34,36]. In our study, we observed an increase in four unannotated Clostridi-
aceae genera and a decrease in seven unannotated Clostridiaceae genera. Previous studies
in humans have observed decreases in genus Clostridium with consumption of cruciferous
vegetables, a result discordant with our findings [31]. One reason for this discrepancy
could be because different genera of the family Clostridiaceae respond differently to cru-
ciferous vegetables than those from Clostridium. This hypothesis is further supported by
examining the correlations between microbial-derived metabolites of cruciferous vegeta-
bles, where we observed some unannotated Clostridiaceae genera having strong positive
correlations while others had strong negative correlations suggesting differential metabolic
processes. Another source of this discrepancy could be the ex vivo nature of our study,
where the microbes were exposed solely to the in vitro digested cruciferous vegetables for
24 h as opposed to the study by Kellingray et al., in which humans were fed a cruciferous
vegetable-rich diet for 2 weeks, which could have an effect of greater magnitude [31].

Additionally, we observed a possible combinatorial effect on the alteration of the gut
microbiome when combining two different types of cruciferous vegetables. While broccoli
sprouts and Brussels sprouts are similar in composition, they possess different types of
glucosinolates, which yield two different classes of hydrolysis products: isothiocyanates,
such as sulforaphane, and indoles, respectively. The similar phytochemical composition
of these two compounds is reflected by the very low number of significantly different
metabolomic features we observed between them. Indeed, it can be argued that the
greater amount of plant material in the Combo treatment drove the response; however,
evidence in the literature supports the notion that phytochemicals themselves played a
role. In Lachnospiraceae Roseburia, we observed a decrease in abundance in the Brus and
Combo groups, compared to NC; however, the decrease in the Combo group was greater,
suggesting a combinatorial effect between Brus and Broc. Previous work has shown that
supplementation of indole-3-carbinol (the major hydrolysis product of glucobrassicin in
Brussels sprouts) can lead to decreases in bacteria from the family Lachnospiraceae [94].
While we did not detect indole-3-carbinol, the direct hydrolysis product of glucobrassicin
in brussels sprouts, we did detect 3-formyl-indole, a bacterial metabolite that is a known
agonist for the aryl hydrocarbon receptor (AhR), similar to indole-3-carbinol [95,96].

This is the first time, to our knowledge, an untargeted approach has been conducted to
characterize the digestive metabolome following the consumption of broccoli sprouts, Brus-
sels sprouts, or their combination. Interestingly, we showed a diverse array of compounds
beyond glucosinolate-derived isothiocyanate metabolites and indoles are present in the gut
during digestion, many of which have yet to be fully characterized. We utilized an in vitro
approach that inherently has limitations, such as failing to capture the role of host dynamics
on gut microbiome composition. As metabolomics databases still have a poor annotation
of many plant and microbial metabolites, we utilized de novo annotation methods, which
predict the class and structure of metabolites based on MS/MS spectra [81,83]. While
these methods are informative, they are not as definitive as the use of a standard. Our
analysis detected many compounds predicted as benzene and substituted derivatives to
be highest in Broc, Brus, and Combo. Another study examining the major constituents of
broccoli leaves found benzene-derived compounds, suggesting the compounds we detected
are plant metabolites [97]. We also found microbial metabolites of tryptophan, including
indole-3-acetic acid and 3-formyl indole, as well as metabolites annotated as terpenoids
and triterpenoids. Indole-3-acetic acid has been shown to scavenge free radicals, as well
as improve insulin resistance and lipid metabolism in mice [98]. Triterpenoids have been
shown in vivo and in vitro to reduce inflammation and have potential in the treatment and
prevention of cancer [99,100]. These compounds could offer complementary mechanisms
through which cruciferous vegetables promote health and could represent the untapped
and unknown potential of microbial-derived metabolites of dietary compounds to improve
human health. Future work is needed to elucidate the structure of these metabolites and
explore their bioactivity in vivo.
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Beyond analyzing the microbiome and metabolome in isolation, we utilized multi-
omic integration techniques to find specific relationships between microbes and metabolomic
features. The first strategy we used was biologically driven based on previous work from
our group, where we observed that the production of sulforaphane nitrile and iberin nitrile
were dependent on the composition of the gut microbiome [22]. We observed the same
sub-populations in this dataset and identified metabolites that followed a similar paradigm.
Next, we used two separate data-driven approaches to highlight bacterial-derived metabo-
lites. Our multi-block PLS-DA highlighted many compounds that appeared to be derived
from plants but metabolized by the gut microbiome, potentially impacting their bioavail-
ability in vivo. We also filtered our data based on the abundance of metabolites in each
treatment group to select a set of possible bacterial-derived metabolites. De novo anno-
tation predicted many of these metabolites to contain sulfur atoms, which is of interest
because cruciferous vegetables contain many sulfurous compounds such as glucosinolates.
Additionally, high levels of inter-individual variation were observed in these metabolites
between fecal donors suggesting these metabolites are microbially derived. Interestingly,
the predicted classes of these metabolites included organonitrogen compounds, benzenoids,
alpha amino acids and derivatives, and triterpenoids, all of which are predicted to contain
sulfur. These metabolites showed strong correlations with multiple genera, including
Bacteroides, Escherichia/Shigella, and Akkermansia, which have been shown to play a role
in colonic sulfur metabolism [101]. We also observed strong correlations between these
classes of compounds and multiple unannotated genera from the family Clostridiaceae,
which we previously showed was associated with the production of nitriles from glu-
cosinolates, possibly through their desulfation [22]. Other studies conducted in humans
have shown that cruciferous vegetable consumption leads to a decrease in sulfate-reducing
bacteria, while other studies have shown that prolonged consumption of cruciferous
vegetables can lead to an increase in the conversion of glucosinolates to isothiocyanate
metabolites [26–28,31,33,34]. These cumulative findings from across multiple studies point
to microbial sulfur metabolism as playing a key role in the metabolism of cruciferous
vegetable phytochemicals; however, future work, including metagenomic, proteomic, and
other basic-science work must be conducted to identify a causal link between microbial
sulfur metabolism and cruciferous vegetable phytochemicals. Additional work can also
be completed to validate if the metabolomics results can be reproduced experimentally
through in vitro culturing of individual bacteria and subsequent evaluation of the capacity
of bacteria of interest to produce the predicted metabolites from cruciferous vegetables.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu15010042/s1. Figure S1: Rarefaction curves of each sample. Each
line represents one sample; thus, there is 10 for each treatment group. Each line reaching a plateau
indicates that the sample was adequately sequenced. Figure S2: Principal component analysis of
metabolomics data following log-transformation and Pareto scaling. Figure S3: (A) Receiver Operator
Characteristic (ROC) curves of each component and block for the PLS-DA model following leave-
one-out cross validation. (B) Correlation circle of variables with importance greater than 0.1 from the
PLS-DA model. Color indicates which group the feature is associated with, and the shape indicates
the data block. Figure S4: (A–D) Intensities of some metabolites identified using our filtering
method. Each dot represents one sample, and bars represent means. Error bars show standard
error. Supplemental Table S1: Taxonomy of ASVs present. Supplemental Table S2: Statistical results,
abundances, and de novo annotations of significantly different metabolites. Supplemental Table S3: L1
and L2 annotations of metabolomics data. Supplemental Table S4: Differentially abundant microbes
by treatment group. Supplemental Table S5: Chemical enrichment analysis results. Supplemental
Table S6: Multi-block PLS-DA group contributions. Supplemental Table S7: Statistical results of
microbial-derived metabolites and de novo annotations.
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