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Abstract: Chronic kidney disease (CKD) is a stealthy disease, and its development is linked to
mechanisms including inflammation and oxidative stress. Catalpol (CAT), an iridoid glucoside from
the root of Rehmannia glutinosa, is reported to manifest anti-inflammatory, antioxidant, antiapoptotic
and antifibrotic properties. Hence, we studied the possible nephroprotective effects of CAT and
its mechanisms in an adenine-induced (0.2% w/w in feed for 4 weeks) murine model of CKD by
administering 5 mg/kg CAT to BALB/c mice for the duration of 4 weeks except during weekends.
Upon sacrifice, the kidney, plasma and urine were collected and various physiological, biochemical
and histological endpoints were assessed. CAT significantly ameliorated the adenine-induced altered
body and kidney weight, water intake, urine volume, and concentrations of urea and creatinine in
plasma, as well as the creatinine clearance and the albumin and creatinine ratio. Moreover, CAT
significantly ameliorated the effect of adenine-induced kidney injury by reducing the kidney injury
molecule-1, neutrophil gelatinase-associated lipocalin, cystatin C and adiponectin. Similarly, the
augmented concentrations of markers of inflammation and oxidative stress in the adenine-treated
group were markedly reduced with CAT pretreatment. Furthermore, CAT prevented adenine-
induced deoxyribonucleic acid damage and apoptotic activity in the kidneys. Histologically, CAT
significantly reduced the formation of tubular necrosis and dilation, as well as interstitial fibrosis
in the kidney. In addition to that, CAT significantly decreased the adenine-induced increase in the
phosphorylated NF-κB and reversed the reduced expression of sirtuin-1 in the kidney. In conclusion,
CAT exhibits salutary effects against adenine-induced CKD in mice by mitigating inflammation,
oxidative stress and fibrosis via mechanisms involving sirtuin-1 activation and NF-κB inhibition.
Confirmatory studies are warranted in order to consider CAT as a potent nephroprotective agent
against CKD.

Keywords: catalpol; chronic kidney disease; adenine; inflammation; oxidative stress; apoptosis;
DNA damage; sirtuin-1

1. Introduction

Cases of chronic kidney disease (CKD) have reached an epidemic level, affecting one
in every ten people globally. Without effective interventions, CKD can advance to end-stage
renal failure (ESRF), which will significantly increase the risk of premature death unless
kidney replacement therapies are introduced [1,2]. These therapies, including hemodialysis
and kidney transplant, are not only costly but will also lead to major health and social
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complications, led by dependencies on the procedure (hemodialysis) and immunosuppres-
sive medications (kidney transplant). This will subsequently reduce the quality of life and
create a burden in the healthcare system [3–5].

Over the past couple of decades, various treatments have been developed to delay the
progression of CKD. The most effective method is by controlling blood pressure, namely
using the angiotensin-converting enzyme inhibitors [6,7]. Other therapeutic approaches,
such as the normalization of blood glucose and cholesterol and several lifestyle and diet
changes, have also been applied [8]. However, none of these approaches has resulted in the
reversal of the disease and there is no drug available that could improve kidney function in
CKD patients [9]. Therefore, there is an urgent need to search for a new drug and develop
a new therapy that can slow down or reverse the progression of CKD before it advances to
potentially fatal ESRF.

Adenine-induced rodent models have been extensively used in previous studies to
simulate CKD in humans [10,11]. Previous studies have shown that mice treated with
0.2% adenine for four weeks displayed morphological, biochemical and histopatholog-
ical changes, as well as elevated levels of markers of inflammation, kidney injury, and
oxidative and nitrosative stress, which correspond to what is observed in CKD cases in
humans [12–14].

Catalpol (CAT) is an iridoid glucoside isolated from the root of Rehmannia glutinosa,
a widely used herbs in traditional Chinese medicine and it has been used to manage
diabetes for over a millennium [15]. Previous studies have shown that CAT possesses
myriad therapeutic properties, including anti-inflammatory [16,17], antioxidant [18,19],
cardioprotective [20], antiapoptotic [21], antihyperglycemic [22] and antifibrosis [23], in
rodent models and cell cultures.

Since the pathogenesis of experimental and clinical CKD involves inflammatory
and oxidative actions, and CAT manifests various therapeutic actions, including anti-
inflammation and antioxidants [24,25], we thought that it would be compelling to evaluate
the effectiveness of CAT in mitigating or preventing CKD in mice, which, to our knowledge,
has not yet been reported. Therefore, the aim of our study is to evaluate the potential ame-
liorative effects of CAT in adenine-induced mice with CKD by evaluating several markers
of inflammation, oxidative stress, deoxyribonucleic acid (DNA) damage and apoptosis. In
addition to that, we wanted to explore the possible mechanisms involved by evaluating the
expression of the proteins that regulate inflammation, phosphorylated nuclear factor-κB
(phospho-NF-κB) as well as its antagonist sirtuin-1 [26].

2. Materials and Methods
2.1. Animals

Equal numbers of six- to eight-week-old male and female BALB/c mice (College
of Medicine and Health Sciences animal house, UAEU, Al Ain, United Arab Emirates)
weighing 25–30 g were housed in temperature-controlled (22 ± 1 ◦C) rooms and maintained
on a 12-h light-dark cycle with a humidity of 50–60%. They had unrestricted access to
drinking water and commercially available laboratory chow, which consisted of 24%
protein, 2% fat, and 8% fiber (National Feed and Flour and Marketing Co., Abu Dhabi,
United Arab Emirates).

2.2. Experimental Design

The mice were indiscriminately segregated into four groups (n = 8), with two groups
receiving 0.2% adenine from Sigma Aldrich Co. (St. Louis, MO, USA) mixed with powdered
feed for four weeks. Two groups of mice were given an oral gavage treatment of CAT,
purchased from Sigma Aldrich Co. (St. Louis, MO, USA), daily for the duration of four
weeks, except on weekends. We referred to previous publications to determine the dose
of adenine for this study [27], and the dose selection of CAT was done based on previous
studies where it has demonstrated anti-inflammatory and antioxidant activities [20,25].

The treatment of the mice was done as follows:
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• The control group was given standard feed along with saline (10 mL/kg) via oral gavage.
• The adenine group was given the same standard diet in powdered form containing

0.2% adenine (0.2 g of adenine in 100 g of powdered feed) with saline (10 mL/kg) via
oral gavage.

• The CAT group was given standard feed with CAT (5 mg/kg, dissolved in saline) via
oral gavage.

• The CAT + adenine group was given 0.2% adenine prepared similar to the adenine
group with CAT (5 mg/kg, dissolved in saline) via oral gavage.

The mice were sacrificed after four weeks, and one day prior to that, they were placed
in metabolic cages for 24 h to measure urine output and water intake. The collected urine
was stored at −80 ◦C pending further analysis.

The body weight of the animals was documented at the beginning of the study and
immediately before sacrifice. Instantly after urine collection, mice were given sodium
pentobarbital (60 mg/kg) intraperitoneally, and blood was collected via the inferior vena
cava into a tube containing sodium citrate (4%). The blood was then centrifuged for 15 min
at 900× g and 4 ◦C, and the plasma obtained was kept at −80 ◦C for future analysis. Both
kidneys were extracted and weighed. A small piece of the upper part of the right kidney
was cut and fixed in 10% formalin for histopathological analysis (n = 6), whereas the
remaining right and left kidneys were wrapped and dipped in liquid nitrogen and kept
frozen at −80 ◦C for further analysis.

2.3. Homogenization of the Kidney

The kidney tissues were homogenized in 2 mL homogenization vials along with
potassium chloride buffer added with protease and phosphatase inhibitor cocktails and
2.0 mm zirconia beads from BioSpec (Bartlesville, OK, USA). The homogenization was
done using the Precellys homogenizer from Bertin Instruments (Bretonneux, France) for
two times of three cycles of 10 s at 6500× g, and the homogenates were centrifuged at
14,000× g for 20 min. The supernatants were divided into four aliquots and frozen at
−80 ◦C until further analysis. The protein estimation was done using the Pierce™ BCA
Protein Assay Kit from Thermo Scientific (Rockford, IL, USA), as per the protocol provided
by the manufacturer.

2.4. Biochemical Parameters

The concentrations of creatinine, urea and albumin were quantified using commercially
available kits from Roche Diagnostics (Indianapolis, IN, USA).

2.5. Measurement of Markers of Kidney Injury in Plasma

The levels of kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated
lipocalin (NGAL), and adiponectin and cystatin C in plasma were measured using ELISA
kits from R&D Systems (Minneapolis, MN, USA).

2.6. Assessment of Thiobarbituric Acid Reactive Substances (TBARS) and Catalase Activity in
Kidney Homogenates

The level of lipid peroxidation was evaluated by measuring its byproduct, TBARS,
using malondialdehyde (MDA) from Sigma Aldrich Co. (St. Louis, MO, USA) to generate
a standard curve [28]. The activity of the catalase was determined according to the protocol
provided by Cayman Chemicals (Ann Arbor, MI, USA).

2.7. Measurement of Markers of Inflammation in Kidney Homogenates

The concentrations of proinflammatory cytokines, including tumor necrosis factor α
(TNFα), and interleukin (IL)-6 in kidney homogenates were determined using ELISA kits
from R&D Systems (Minneapolis, MN, USA).
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2.8. DNA Damage Analysis by Comet Assay

In a separate set of mice (n = 5), the kidneys of the mice were extracted following
sacrifice and immediately processed to evaluate the DNA damage as per the standard
Comet assay protocol [29,30]. The DNA damage was assessed by measuring the length of
DNA migration, which included the diameter of the nucleus and the migrated DNA, using
image analysis Axiovision 3.1 software by Carl Zeiss (White Plains, NY, USA).

2.9. Assessment of the Levels of Procaspase-3 and Cleaved Caspase-3 in Kidney Homogenates

The level of procaspase-3 was quantified using a colorimetric protease assay kit
from Invitrogen (Waltham, MA, USA). The level of cleaved caspase-3, a key mediator of
apoptosis, was assessed using an ELISA kit from R&D Systems (Minneapolis, MN, USA).

2.10. Western Blot Analysis of NF-κB and Phospho-NF-κB in Kidney Homogenates

The protein expressions of the NF-κB and phospho-NF-κB in kidney homogenate
were obtained using the Western blot method. Thirty micrograms of kidney homogenate
was separated electrophoretically in 10% sodium dodecyl sulfate polyacrylamide gel and
subsequently transferred onto polyvinylidene difluoride membranes. The blots were then
blocked with 5% bovine serum albumin for an hour at room temperature (RT) and probed
overnight at 4 ◦C with 1:1000 dilution of mouse monoclonal NF-κB and phospho-NF-κB
antibodies from Santa Cruz Biotechnology (Dallas, TX, USA). Next, a 1:10,000 dilution of
rabbit anti-mouse IgG from Abcam (Boston, MA, USA) was used to incubate the blots at RT
for 2 h. The development of the blots was done using the SuperSignal™ West Pico PLUS
chemiluminescent substrate from Thermo Scientific (Rockford, IL, USA) and protein band
density was measured using the image processing program ImageJ (Bethesda, MD, USA).
The blots were then incubated with a 1:10,000 dilution of mouse monoclonal GAPDH or
β-actin antibodies from Abcam (Boston, MA, USA), and the band density of these proteins
was used as the endogenous controls.

2.11. Measurement of the Concentration of Sirtuin-1 in Kidney Homogenates

The concentration of sirtuin-1 in kidney homogenates was determined using a com-
mercially available ELISA kit from MyBiosource (San Diego, CA, USA).

2.12. Histopathological Analysis

As per the standard histological protocol, the samples (n = 6 in each group) were fixed,
grossed, processed and embedded in paraffin [31]. Then, they were sectioned into 4 µm
pieces using a microtome from Leica Biosystems (Nussloch, Germany) and mounted onto
slides. The slides were stained with hematoxylin and eosin (H&E) to assess acute tubular
necrosis, Sirius red stain to evaluate interstitial fibrosis, and periodic acid Schiff (PAS) stain
to assess the glomerular integrity [32,33]. The stained sections were blindly evaluated
under a light microscope by a pathologist. The scoring was performed semi-quantitatively
based on the percentage of renal tubular necrosis. A score of 0 was given to a slide that
exhibited normal kidney architecture with no tubular injury, a score of 1 for tissues that
had less than 25% tubular injury, 2 for tissues with tubular injury of 26–50%, 3 for 51–75%,
and a score of 4 was given to tissues with more than 75% of necrotic tubular injury. The
proportion of red-stained fibrotic area in the cortex of each section, stained with Sirius red
stain, was graded semi-quantitatively and the fibrosis index was calculated and expressed
in percentage according to the protocol previously reported [32,34].

2.13. Statistics

The statistical analysis for this study was done using GraphPad Prism Software 7
(San Diego, CA, USA). Comparison between studied groups (Control vs. Adenine, Control
vs. CAT, Adenine vs. CAT + Adenine, and CAT vs. CAT + Adenine) was done using
the one-way analysis of variance and Holm-Sidak’s multiple comparison test. Data in
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the figures were expressed as mean ± SEM and p values < 0.05 were considered to be
statistically significant.

3. Results
3.1. The Effects of CAT on Physiological and Biochemical Parameters

Table 1 shows that mice treated with 0.2% adenine for the duration of four weeks had
a significant reduction in body weight (p < 0.0001). Conversely, the kidney weight, water
intake and urine volume were significantly increased in the adenine group compared with
the control (p < 0.0001, p < 0.0001, and p < 0.0001, respectively). A significant ameliorative
effect was observed when CAT treatment was given along with adenine for body weight
change (p < 0.01), kidney weight change (p < 0.0001), water intake (p < 0.0001) and urine
volume (p < 0.0001), when compared with the adenine-treated group.

Table 1. Some physiological parameters of control mice and those with adenine-induced chronic
kidney disease with or without catalpol (CAT) treatment.

Parameters/Treatment Control Adenine CAT CAT + Adenine

Body weight change (%) 5.56 ± 1.23 −28.35 ± 0.98 *** 2.68 ± 0.69 −15.84 ± 2.93 ∆ ooo

Kidney weight change (%) 1.07 ± 0.01 2.88 ± 0.13 *** 1.06 ± 0.02 1.57 ± 0.06 ∆∆∆ oo

Water intake 8 ± 1.06 28.67 ± 1.35 *** 11.67 ± 0.61 23.17 ± 1.55 ∆∆∆ ooo

Urine volume 3.61 ± 0.28 17.72 ± 1.56 *** 4.08 ± 0.21 9.83 ± 0.47 ∆∆∆ oo

Values in the table are mean ± SEM (n = 6). *** p < 0.0001 in control vs. adenine group. ∆ p < 0.01 and
∆∆∆ p < 0.0001 in adenine vs. CAT + adenine group. oo p < 0.001 and ooo p < 0.0001 in CAT vs. CAT + adenine
group. Statistical analysis by one-way analysis of variance followed by Holm Sidak’s test. Adenine was added to
the feed (0.2% w/w, for 4 weeks) and catalpol (CAT) treatment was given by oral gavage (5 mg/kg) on a daily
basis for 4 weeks except during the weekends.

Our biochemical tests showed significant elevation in the levels of urea (p < 0.0001) and
creatinine (p < 0.0001) in plasma among adenine-treated animals compared with the control.
However, when CAT was given in tandem with adenine, the levels of these biomarkers were
significantly reduced compared to the adenine group (p < 0.0001 and p < 0.0001; Table 2).
Adenine treatment caused a significant reduction in creatinine clearance (p < 0.001), and
a significant increase was observed in the CAT + adenine group when compared with
the adenine-treated animals (p < 0.05, Table 2). Table 2 also shows that adenine caused a
significant surge in the albumin and creatinine ratio (p < 0.0001), and an opposing effect
was observed when adenine-treated mice were given CAT (p < 0.0001).

Table 2. The concentrations of urea and creatinine in plasma and creatinine clearance and albumin
and creatinine ratio in control mice and those with adenine-induced chronic kidney.

Parameters/Treatment Control Adenine CAT CAT + Adenine

Urea (mmol/L) 4.12 ± 0.09 16.67 ± 0.52 *** 4.70 ± 0.23 7.28 ± 0.33 ∆∆∆ ooo

Creatinine (µmol/L) 7.60 ± 0.48 19.42 ± 1.06 *** 7.83 ± 0.18 7.45 ± 0.63 ∆∆∆

Creatinine clearance (ml/min) 0.92 ± 0.11 0.20 ± 0.03 ** 1.03 ± 0.13 0.62 ± 0.05 ∆ o

Albumin/creatinine (mg/mmol) 0.87 ± 0.12 20.87 ± 1.86 *** 1.03 ± 0.23 1.09 ± 0.06 ∆∆∆

Values in the table are mean ± SEM (n = 6). ** p < 0.001 and *** p < 0.0001 in control vs. adenine group. ∆ p < 0.05
and ∆∆∆ p < 0.0001 in adenine vs. CAT + adenine group. o p < 0.05 and ooo p < 0.0001 in CAT vs. CAT + adenine
group. Statistical analysis by one-way analysis of variance followed by Holm Sidak’s test. Adenine was added to
the feed (0.2% w/w, for 4 weeks) and catalpol (CAT) treatment was given by oral gavage (5 mg/kg) on a daily
basis for 4 weeks except during the weekends.

3.2. The Effects of CAT on the Concentrations of Markers of Kidney Injury in Plasma

Figure 1 depicts the effect of CAT on various markers of kidney impairment. Adenine
caused an elevation at a significant proportion in the plasma levels of KIM-1, NGAL,
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cystatin C and adiponectin (p < 0.05, p < 0.001, p < 0.01 and p < 0.001, respectively). When
CAT treatment was given concomitantly with adenine, the levels of KIM-1, NGAL, cystatin
C and adiponectin showed significant reductions (p < 0.05, p < 0.01, p < 0.05, and p < 0.01,
respectively) compared with the group treated with adenine alone.
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Figure 1. Plasma concentrations of kidney injury molecule-1 (KIM-1, A), neutrophil gelatinase-as-
sociated lipocalin (NGAL, B), cystatin C (C) and adiponectin (D) in mice with or without adenine 
(0.2% w/w, for 4 weeks) added to the feed and oral treatment of saline or catalpol (CAT, 5 mg/kg) 
for 4 weeks except during the weekends. Mean ± SEM (n = 8). Statistical analysis by one-way analysis 
of variance followed by Holm Sidak’s test. 
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vation was significantly reduced when treatment with CAT was administered concur-
rently (p < 0.0001). Similarly, a significant surge was documented in catalase activity in 
adenine-treated mice compared to the control (p < 0.0001). This effect was markedly re-
duced (p < 0.0001) with CAT pretreatment (Figure 2). 

Figure 1. Plasma concentrations of kidney injury molecule-1 (KIM-1, (A)), neutrophil gelatinase-
associated lipocalin (NGAL, (B)), cystatin C (C) and adiponectin (D) in mice with or without adenine
(0.2% w/w, for 4 weeks) added to the feed and oral treatment of saline or catalpol (CAT, 5 mg/kg) for
4 weeks except during the weekends. Mean ± SEM (n = 8). Statistical analysis by one-way analysis
of variance followed by Holm Sidak’s test.

3.3. The Effects of CAT on Lipid Peroxidation and Antioxidant Levels in Kidney Homogenates

The concentration of TBARS, a marker of lipid peroxidation, was significantly elevated
in the adenine group (p < 0.0001) when compared with the control group. This elevation was
significantly reduced when treatment with CAT was administered concurrently (p < 0.0001).
Similarly, a significant surge was documented in catalase activity in adenine-treated mice
compared to the control (p < 0.0001). This effect was markedly reduced (p < 0.0001) with
CAT pretreatment (Figure 2).

3.4. The Effects of CAT on the Levels of Proinflammatory Cytokines in Kidney Homogenates

Adenine-treated mice demonstrated a significant elevation in the kidney concentra-
tions of proinflammatory markers TNFα and IL-6 compared to the control mice (p < 0.0001
and p < 0.0001, respectively, Figure 3). However, these elevations were significantly miti-
gated when CAT was given alongside adenine (p < 0.0001 and p < 0.0001).
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Figure 3. The concentrations of tumor necrosis factor alpha (TNFα, A) and interleukin 6 (IL-6, B) in 
kidney homogenate of mice with or without adenine (0.2% w/w, for 4 weeks) added to the feed and 
oral treatment of saline or catalpol (CAT, 5 mg/kg) for 4 weeks, except during the weekends. Mean 
± SEM (n = 8). Statistical analysis by one-way analysis of variance followed by Holm Sidak’s test. 
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Figure 2. The concentration of thiobarbituric acid reactive substances (TBARS, (A)) and the activity
of catalase (B) in the kidney homogenate of mice with or without adenine (0.2% w/w, for 4 weeks)
added to the feed and oral treatment of saline or catalpol (CAT, 5 mg/kg) for 4 weeks, except during
the weekends. Mean ± SEM (n = 8). Statistical analysis by one-way analysis of variance followed by
Holm Sidak’s test.

Nutrients 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

Contro
l 

Aden
ine

CAT

CAT+A
den

ine
0.0

0.2

0.4

0.6

0.8 P<0.0001 P<0.0001

TB
AR

S 
in

 K
id

ne
y

(μ
M

 o
f p

ro
te

in
)

A

Contro
l 

Aden
ine

CAT

CAT+A
den

ine
0

100

200

300

400

500 P<0.0001 P<0.0001

Ca
ta

la
se

 in
 K

id
ne

y
(n

m
ol

/m
in

/m
g 

pr
ot

ei
n)

B

 
Figure 2. The concentration of thiobarbituric acid reactive substances (TBARS, A) and the activity 
of catalase (B) in the kidney homogenate of mice with or without adenine (0.2% w/w, for 4 weeks) 
added to the feed and oral treatment of saline or catalpol (CAT, 5 mg/kg) for 4 weeks, except during 
the weekends. Mean ± SEM (n = 8). Statistical analysis by one-way analysis of variance followed by 
Holm Sidak’s test. 

3.4. The Effects of CAT on the Levels of Proinflammatory Cytokines in Kidney Homogenates 
Adenine-treated mice demonstrated a significant elevation in the kidney concentra-

tions of proinflammatory markers TNFα and IL-6 compared to the control mice (p < 0.0001 
and p < 0.0001, respectively, Figure 3). However, these elevations were significantly miti-
gated when CAT was given alongside adenine (p < 0.0001 and p < 0.0001). 

Contro
l 

Aden
ine

CAT

CAT+A
den

ine
0

50

100

150

200

250 P<0.0001 P<0.0001

TN
Fα

 in
 K

id
ne

y
(p

g/
m

g 
of

 p
ro

te
in

)

A

Contro
l 

Aden
ine

CAT

CAT+A
den

ine
0

50

100

150

200 P<0.0001 P<0.0001

IL
-6

 in
 K

id
ne

y
(p

g/
m

g 
of

 p
ro

te
in

)

B

 
Figure 3. The concentrations of tumor necrosis factor alpha (TNFα, A) and interleukin 6 (IL-6, B) in 
kidney homogenate of mice with or without adenine (0.2% w/w, for 4 weeks) added to the feed and 
oral treatment of saline or catalpol (CAT, 5 mg/kg) for 4 weeks, except during the weekends. Mean 
± SEM (n = 8). Statistical analysis by one-way analysis of variance followed by Holm Sidak’s test. 
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As depicted in Figure 4, the adenine-treated group exhibited a significant increase in 

DNA damage in the kidney tissue when compared with the control group (p < 0.0001). 
Nevertheless, a significant preventive effect was observed when CAT was given to the 
adenine-treated mice (p < 0.0001). 

Figure 3. The concentrations of tumor necrosis factor alpha (TNFα, (A)) and interleukin 6 (IL-6, (B))
in kidney homogenate of mice with or without adenine (0.2% w/w, for 4 weeks) added to the feed and
oral treatment of saline or catalpol (CAT, 5 mg/kg) for 4 weeks, except during the weekends. Mean
± SEM (n = 8). Statistical analysis by one-way analysis of variance followed by Holm Sidak’s test.

3.5. The Effects of CAT on Kidney DNA Damage

As depicted in Figure 4, the adenine-treated group exhibited a significant increase
in DNA damage in the kidney tissue when compared with the control group (p < 0.0001).
Nevertheless, a significant preventive effect was observed when CAT was given to the
adenine-treated mice (p < 0.0001).

3.6. The Effects of CAT on the Levels of Procaspase-3 and Cleaved Caspase-3 in
Kidney Homogenate

Figure 5 shows that while the level of procaspase 3 was slightly but statistically
insignificantly decreased, the level of cleaved caspase-3 in the kidney was significantly
higher in the adenine group compared with the control group (p < 0.0001) and this increase
was significantly diminished in mice treated with both adenine and CAT (p < 0.0001).
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Figure 4. DNA migration (mm) in kidney tissue by Comet assay in mice with or without adenine
(0.2% w/w, for 4 weeks) added to the feed and oral treatment of saline or catalpol (CAT, 5 mg/kg) for
4 weeks, except during the weekends. Mean ± SEM (n = 5). Statistical analysis by one-way analysis
of variance followed by Holm Sidak’s test.
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Figure 5. The levels of procaspase-3 (A) and cleaved caspase-3 (B) in the kidney homogenate of mice
with or without adenine (0.2% w/w, for 4 weeks) added to the feed and oral treatment of saline or
catalpol (CAT, 5 mg/kg) for 4 weeks, except during the weekends. Mean ± SEM (n = 8). Statistical
analysis by one-way analysis of variance followed by Holm Sidak’s test.

3.7. The Effects of CAT on the Expression of NF-κB and Phospho-NF-κB in Kidney Homogenate

Figure 6 shows that treatment with adenine induced an insignificant reduction in
the expression of NF-κB. Nevertheless, a notable and statistically significant surge in the
expression of phospho-NF-κB in the kidney homogenate was observed in the adenine
group compared with the control group (p < 0.0001, Figure 6). This surge was significantly
prevented by treatment with CAT (p < 0.0001).

3.8. The Effects of CAT on the Concentrations of Sirtuin-1 in Kidney Homogenate

Figure 7 depicts that the level of sirtuin-1 was significantly reduced in the adenine
group compared to the control (p < 0.0001). This reduction, however, was significantly
prevented in mice treated with both CAT and adenine when compared with the adenine-
only group (p < 0.0001).
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Figure 7. The concentration of sirtuin-1 in kidney homogenate of mice with or without adenine 
(0.2% w/w, for 4 weeks) added to the feed and oral treatment of saline or catalpol (CAT, 5 mg/kg) 
for 4 weeks, except during the weekends. Mean ± SEM (n = 8). Statistical analysis by one-way anal-
ysis of variance followed by Holm Sidak’s test. 

3.9. Histopathological Findings 
Figure 8 illustrates representative images of the H&E staining of the kidney tissues. 

The control (Figure 8A) and CAT (Figure 8B) groups displayed normal kidney architec-
ture with intact glomeruli and renal tubules; therefore, they were scored 0. The adenine-

Figure 6. The nuclear factor-κB (NF-κB; (A)) and phosphorylated NF-κB (phospho-NF-κB; (B))
expressions in kidney homogenate of mice with or without adenine (0.2% w/w, for 4 weeks) added
to the feed and oral treatment of saline or catalpol (CAT, 5 mg/kg) for 4 weeks, except during the
weekends. Mean ± SEM (n = 8). Statistical analysis by one-way analysis of variance followed by
Holm Sidak’s test.
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Figure 7. The concentration of sirtuin-1 in kidney homogenate of mice with or without adenine
(0.2% w/w, for 4 weeks) added to the feed and oral treatment of saline or catalpol (CAT, 5 mg/kg) for
4 weeks, except during the weekends. Mean ± SEM (n = 8). Statistical analysis by one-way analysis
of variance followed by Holm Sidak’s test.

3.9. Histopathological Findings

Figure 8 illustrates representative images of the H&E staining of the kidney tissues.
The control (Figure 8A) and CAT (Figure 8B) groups displayed normal kidney architecture
with intact glomeruli and renal tubules; therefore, they were scored 0. The adenine-treated
group (Figure 8C,D) was scored 2, as they exhibited foci of tubular injury with tubular injury
in 48.2 ± 3.96% of the examined tissue areas, loss of brush border of proximal tubules, and
mixed inflammatory cell infiltration of the interstitium consisting of lymphocytes. However,
mice treated with both CAT and adenine (Figure 8E,F) showed a significant alleviation in
the damaging effect of adenine. The focal tubular injury with tubular dilatation was seen
in 23.2 ± 2.68% (p < 0.0001 vs. adenine group) of the cortical tissue, and was scored 1.
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Figures 9 and 10 display representative images of the PAS and Sirius red staining of 
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hibited normal kidney architecture and histology, with no increase in interstitial fibrosis 
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Figure 8. The representative light microscopy sections of kidney tissue of mice with or without
adenine (0.2% w/w, for 4 weeks) added to the feed and oral treatment of saline or catalpol (CAT,
5 mg/kg) for 4 weeks except during the weekends. The Control (A) and CAT-treated (B) groups
showed normal kidney architecture and histology. The adenine-treated group (C,D) showed large
areas of dilated tubules (arrowheads), foci of tubular atrophy (thin arrows) and interstitial lymphocyte
infiltration (thick arrows). The CAT + adenine group (E,F) showed a significant ameliorative effect
with a reduction in the foci of dilated tubules (arrowheads), foci of tubular atrophy (thin arrows) and
interstitial lymphocyte infiltration (thick arrows).

Figures 9 and 10 display representative images of the PAS and Sirius red staining of the
kidney tissues. The control (Figures 9A and 10A) and CAT (Figures 9B and 10B) exhibited
normal kidney architecture and histology, with no increase in interstitial fibrosis and were
given a score of 0. The adenine group (Figures 9C,D and 10C) exhibited focal tubular atro-
phy with foci of acute tubular necrosis with interstitial fibrosis of 32.8 ± 2.99% of the cortical
tissue and was scored 2. Meanwhile, the CAT + adenine group (Figures 9E,F and 10D)
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displayed foci of dilated tubules with foci of acute tubular necrosis and a significant ame-
liorative effect, with interstitial fibrosis in only 22.6 ± 2.54% (p < 0.01 vs. adenine group) of
the cortical tissue and was given a score of 1.
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Figure 9. Representative images of periodic acid-Schiff (PAS) staining of kidney tissue of mice
with or without adenine (0.2% w/w, for 4 weeks) added to the feed and oral treatment of saline or
catalpol (CAT, 5 mg/kg) for 4 weeks, except during the weekends. The Control (A) and CAT-treated
(B) groups showed normal kidney architecture and histology. The adenine-treated group (C,D) shows
large areas of dilated tubules (arrowheads) and foci of acute tubular necrosis (thin arrows). The
CAT + adenine group (E,F) showed a significant ameliorative effect with a reduction of foci of both
dilated tubules (arrowheads) and acute tubular necrosis (thin arrows).
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Figure 10. Representative images of Sirius red staining of kidney tissue of mice with or without
adenine (0.2% w/w, for 4 weeks) added to the feed and oral treatment of saline or catalpol (CAT,
5 mg/kg) for 4 weeks, except during the weekends. The Control (A) and CAT-treated (B) groups
showed normal kidneys. The adenine-treated group (C) showed a large area of interstitial fibrosis
(arrowhead). The CAT + adenine group (D) showed a significant ameliorative effect with focal
interstitial fibrosis (arrowhead) interstitial fibrosis.

4. Discussion

In the present study, we showed that daily oral treatment with 5 mg/kg CAT has
significantly ameliorated CKD-associated biochemical, physiological and histopathological
alterations without causing any detrimental side effects.

CKD is an insidious and multicausal disease that, regardless of the cause, has common
characteristics of repeated glomerular and tubular injury associated with the elevation of
the endogenous reactive oxygen species (ROS). The upregulation of ROS in turn leads to
inflammation, oxidative stress, DNA damage, changes in cell proliferation and repair, and
cell death, thereby resulting in fibrosis, a major indicator of CKD [14,35–37]. Subsequently,
the presence and accumulation of fibrosis in the kidney causes irreversible nephrotic
loss and leads to the progression of CKD to ESRD [7,36]. Most conventional drugs and
approaches to CKD today, however, are effective at delaying but not at preventing its
deterioration [8,38].

In the present work, we applied a method that has been extensively utilized in the
past to induce CKD in rodent models [13]. Treatment of mice with 0.2% adenine over
a period of four weeks has been shown to mimic the biochemical, physiological and
histological changes observed in CKD in humans [5,12,39]. The orally administered adenine
is metabolized to a low-soluble 2,8-dihydroxyadenine, which deposits and forms tubular
crystals and thus causes kidney damage. The occlusion of renal tubules induced by
the crystals inhibits the excretion of nitrogenous substances, leading to biochemical and
physiological changes that resemble CKD in humans [5,12,39]. The latter makes it a
biologically plausible model for studying the nephroprotective effects of CAT [5,12,39]. We
have treated our adenine-induced CKD models with 5 mg/kg CAT, and observed that
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animals treated with CAT on their own did not show any adverse effect or have altered
parameters that were assessed in this study. The compound and dose were selected based
on their efficacy in ameliorating inflammatory, oxidative and apoptosis events in various
animals and cell models of diabetic nephropathy, endometritis, neurogenerative disorder
and cardiomyopathy [16–18,40].

Treatment with adenine has caused physiological changes, including a significant
reduction in body weight, as well as a significant increase in kidney weight, water intake,
and urine volume, comparable to previously reported studies [41–43]. The decrease in
body weight is in line with cachexia observed in CKD patients [44], whereas increased
urine output might have to do with the reduced efficiency of the kidney to filter blood and
to reabsorb water [45], which subsequently leads to an increase in water consumption. The
increase in kidney weight is possibly due to the buildup of fibrotic tissue in the kidney.
The latter is driven by a repair response, characterized by the accumulation of extracellular
matrix in the glomeruli, and is a pathognomonic symptom of CKD [46]. Moreover, we have
also confirmed that, as per previous reports [5,8,13], the reduction of kidney function in
the adenine-treated mice is characterized by a significant reduction in creatinine clearance,
elevation of plasma concentration of urea, and urinary concentrations of creatinine and
albumin, which are in line with CKD cases in humans [47,48]. These physiological and
biochemical parameters were significantly normalized with the pretreatment of CAT.

Markers customarily used to detect kidney injuries associated with CKD, such as
KIM-1, NGAL, cystatin C and adiponectin were also assessed in our study [8,49,50]. These
biomarkers of reduced renal function were found to be significantly elevated in adenine-
treated mice, which is in line with previous reports [51–53] and were reduced markedly
when treatment with CAT was given concomitantly with adenine.

The overproduction of ROS and the inadequate response of antioxidants play an
important role in the pathogenesis of CKD, both clinically and experimentally [14,32,36,54].
Due to its reactivity to lipids, ROS oxidize the lipids from cell membranes, causing lipid
peroxidation, which eventually leads to the formation of reactive aldehydes, namely MDA,
a bioactive marker that was measured in our study [36,54]. Treatment with adenine signifi-
cantly increased the concentration of MDA, which corroborates previous experimental and
clinical studies [39,55], and this action was significantly reversed by CAT. Furthermore, we
have observed a significant elevation in catalase activity, an antioxidant enzyme responsible
for eliminating excess ROS, in adenine-treated mice, signifying that oxidative stress events
are happening and that the compensatory process is occurring in the kidney to alleviate
the detrimental effects of ROS [12,56]. Our findings indicated that CAT pretreatment sig-
nificantly reduced the activity of this antioxidant. In addition to causing oxidative stress,
the overproduction of ROS also plays a pivotal role in inflammatory responses [52]. It
has been previously reported that adenine-treated mice exhibit elevated concentrations of
proinflammatory cytokines in the kidney [8,11,43]. A similar pattern was observed in our
study and was abrogated when CAT was given in parallel with adenine, hence supporting
the reports that in addition to being an antioxidant, CAT is also a potent anti-inflammatory
agent [20,40]. In fact, it has been previously reported that treatment with CAT ameliorated
inflammation and oxidative stress in vivo in a myocardial reperfusion injury model and in
doxorubicin-induced injury of H9C2 cardiomyocytes in vitro [20,40].

The loss of equilibrium in the redox balance is fundamental to CKD progression. In
addition to lipids and proteins, excess ROS can also oxidize DNA, causing DNA dam-
age [57]. Many of the oxidative DNA damage might not be repaired due to the inability
of the compensatory mechanism to cope with the severity of the damage [58,59]. The
occurrence of DNA damage in the peripheral blood lymphocytes of CKD patients has been
reported in several studies [60,61]. In the present study, we found a significant increase in
DNA damage in the kidneys of the adenine-treated group. This effect was abrogated in
mice treated with CAT and adenine. Our data corroborate a recent study that showed that
CAT prevented DNA damage in the hearts of mice exposed to diesel exhaust particles [25].
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It is well known that unrepaired DNA damage can induce various cascades of re-
sponses, including cell death, mediated by different mechanisms, including apoptosis. The
latter is a programmed cell death modulated by the activation of caspases, including the
executioner caspase 3 [62]. Here, we found that adenine induced a significant increase in
the concentration of cleaved caspase-3, the active form of caspase-3. Compellingly, our
data elucidated that pretreatment with CAT prevented the event of apoptosis, marked
by a significant reduction in cleaved caspase-3 in the kidney. Our results are in line with
previous reports, which showed that CAT significantly reduced the expression of cleaved
caspase-3 in a mouse model of myocardial reperfusion injury [20], as well as other apoptotic
markers, including Bax and BCL-2, in murine models of diabetic nephropathy and diabetes
mellitus-induced male reproductive damage [21,24].

NF-κB is involved in myriads of pathogenesis of inflammatory diseases, including
kidney disease [63]. In the absence of a cellular stimulant, NF-κB resides in the cytoplasm
and is inhibited by the IκB proteins. The increase of ROS or in the presence of other stim-
ulants, IκB will be phosphorylated and degraded, which liberates the NF-κB. The NF-κB
then migrates to the nucleus, where it is phosphorylated at the p65 subunit [26,64,65].
The latter event subsequently activates the transcription of inflammatory cytokines [65,66].
Therefore, we evaluated the expression of NF-κB in the kidney to elucidate its role in the
anti-inflammatory mechanism of CAT. Our data showed that the administration of adenine
significantly elevated the kidney concentration of phospho-NF-κB, and CAT treatment
significantly reversed this effect. These findings corroborate recent studies that showed
that pretreatment with CAT mitigated inflammatory actions in mice with chronic inflam-
matory skin disease, endometritis and cardiac inflammation via the inhibition of the NF-κB
pathway [16,25].

To gain more insight into the mechanisms involved in the nephroprotective effects of
CAT, we evaluated the concentration of sirtuin-1 in the kidneys. Sirtuin-1 regulates mam-
malian oxidative respiration, anti-inflammatory responses, and redox signaling pathways;
the latter is critical in regulating the pathogenesis of various diseases, including kidney
diseases [26,37,67]. Studies have suggested that ROS control and cause an inhibitory effect
on sirtuin-1 by oxidizing its cysteine residue. The inhibition of sirtuin-1 enhances the NF-κB
signaling and subsequently activates inflammatory mechanisms [68]. As demonstrated in
previous reports, the relationship between sirtuin-1 and NF-κB is antagonistic [26]. Sirtuin-1
obstructs the NF-κB activity by deacetylating its p65 subunit, leading to the inhibition of the
inflammation signaling cascade [26]. The concentration of sirtuin-1 has been reported to be
downregulated in chronic inflammation and oxidative stress [37,69], an observation that is
concurred with our study, where mice that exhibited elevated inflammatory and oxidative
stress parameters related to adenine-induced CKD showed a significant reduction in the
level of sirtuin-1. This effect was significantly reversed with the treatment of CAT, which
corroborates recent studies, where the ameliorative effect of CAT is linked to its ability
to activate sirtuin-1 in mice with chronic skin disease [70], as well as rats with polycystic
ovarian syndrome and colitis [71,72].

The downregulation of sirtuin-1 and the increase in inflammation have been associated
with the increased formation of tubular fibrosis in CKD [37,73]. This is in line with our
histological observations. Adenine-treated mice showed significant elevation in necrotic
and fibrotic incidences, as well as tubular dilation in the kidney, which was significantly
ameliorated with the pretreatment of CAT. This mitigating effect may be in part due to the
activation of sirtuin-1, which inhibits not only the inflammatory signals but also TGF- β
and other fibrotic mediators [73]. This inhibition subsequently attenuates the formation of
fibrotic tissues and corroborates a previous study on the effectiveness of CAT in relieving
liver fibrosis in rodents [23].

5. Conclusions

In conclusion, our data demonstrated that CAT exhibited ameliorative effects against
adenine-induced CKD in mice by mitigating inflammation and oxidative stress, which
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subsequently suppressed the occurrences of DNA damage and apoptosis and consequently
led to the reduction of kidney injury markers and fibrosis through mechanisms involving
sirtuin-1 activation and NF-κB inhibition. There was no identifiably overt side effect with
CAT treatment. Further investigations should be done in order to consider CAT as an
efficacious agent for the clinical treatment of CKD.
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