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Abstract: Inadequate nutrient availability has been demonstrated to be one of the main factors related
to endocrine and metabolic dysfunction. We investigated the role of inadequate nutrient intakes in
the myokine levels of runners. Sixty-one amateur runners participated in this study. The myokine
levels were determined using the Human Magnetic Bead Panel from plasma samples collected before
and after the marathon. Dietary intake was determined using a prospective method of three food
records. The runners with lower carbohydrate and calcium intakes had higher percentages of fat
mass (p < 0.01). The runners with a sucrose intake comprising above 10% of their energy intake and
an adequate sodium intake had higher levels of BDNF (p = 0.027 and p = 0.031). After the race and
in the recovery period, the runners with adequate carbohydrate intakes (g/kg) (>5 g/kg/day) had
higher levels of myostatin and musclin (p < 0.05). The runners with less than 45% of carbohydrate of
EI had lower levels of IL-15 (p = 0.015) and BNDF (p = 0.013). The runners with higher cholesterol
intakes had lower levels of irisin (p = 0.011) and apelin (p = 0.020), and those with a low fiber intake
had lower levels of irisin (p = 0.005) and BDNF (p = 0.049). The inadequate intake influenced myokine
levels, which promoted cardiometabolic tissue repair and adaptations to exercise.

Keywords: nutrition; exercise; endurance; musculoskeletal; physiology

1. Introduction

Exercise promotes the release of chemical messengers as a result of skeletal muscle
contraction, called myokines and/or exerkines. The myokines modulate muscle mass,
function, and regeneration by acting on protein synthesis, insulin sensitivity, fat oxidation,
myogenesis, mitochondrial biogenesis, autophagy, mitophagy, and the remodeling of the
extracellular matrix [1–4].

In addition, many myokines seem to contribute to cardiometabolic adaptations to exer-
cise as a result of crosstalk with adipose tissues, the liver and heart contributing to glucose
homeostasis, the browning of white adipose tissue (WAT), and cardioprotection [1,5–7].

More than 650 myokines have been described in response to exercise, and many
researchers have been investigating their biological effects on different tissues. The most
studied myokines include IL-6, IL-15, myostatin, leukemia inhibitory factor (LIF), secreted
protein acidic rich in cysteine (SPARC), myonectin, monocyte chemoattractant protein-1
(MCP1), irisin, apelin, decorin, musclin, growth differentiation factor 15 (GDF-15), brain-
derived neurotrophic factor (BDNF), fibroblast growth factor (FGF)-21, follistatin (FSTL),
meteorin-like (Metrnl), fractalkine, and angiopoietin-like protein 4 [2,3,8]. The myokine
levels are dependent on various forms of exercise and training [9].

Nutritional interventions such as caloric restriction or supplementation seem to modu-
late cytokines, adipokines, myokines, and cardiomiokynes [4,10,11]. Previous studies have
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reported a poor daily intake with low carbohydrate, dietary fiber source, fruit, dairy bever-
age, and vegetable intake in endurance runners [12–15]. Chronic low or higher nutrient
availability promotes endocrine and cardiometabolic dysfunction [5,10].

Inadequate daily intake (DI) may influence the myokine response induced by en-
durance exercise, affecting the dynamics of muscle repair and cardiometabolic adaptations.
The maladaptive response after endurance exercise may impair muscle function, perfor-
mance, and health, or even increase the risk of acute cardiovascular events [16]

The aim of this study to investigate the effects of chronic low or high nutrient intakes
on myokine levels before and after endurance exercise.

2. Material and Methods
2.1. Subjects

Seventy-four amateur Brazilian male marathon finishers (aged 30 to 55 years) partici-
pated in this study. The volunteer recruitment was performed by e-mail to all marathon
runners registered in the São Paulo International Marathon in 2017 or 2018. Researchers
randomly contacted volunteers to confirm their interest and availability to participate in all
steps of the study (before the race, immediately after the race, and in the recovery period).
Inclusion criteria were training more than 30 km per week and having previously partici-
pated in a half marathon or marathon, as well as not having cardiovascular, pulmonary, or
kidney injury, and/or liver, kidney, inflammatory, or neoplastic diseases, or use alcohol or
drugs.

The Ethics Committee of Cruzeiro do Sul University, Brazil (Permit Number: 3.895.058)
approved this study in accordance with the Declaration of Helsinki. All volunteers read
and signed the written informed consent document before starting to participate in the
study.

Body composition, cardiopulmonary function, and DI were evaluated before the race.
Of the seventy-four marathon runners, sixty filled in three food records before the marathon
race (one week) for DI analyses. Therefore, we excluded fourteen runners from the analysis
of the association between myokines and DI.

The São Paulo International Marathon began at 07:30 a.m. on 9 April 2017 and 8 April
2018. Fluid ingestion was provided during the race (water every 2 to 3 km; sports drinks at
12 km, 21.7 km, 33 km, and 42 km; and a carbohydrate at 28.8 km). The weather during the
race was temperate (average temperature and humidity 19.8 ◦C, 72.8% in 2017, and 19.9 ◦C,
87.7% in 2018) (National Institute of Meteorology, Ministry of Agriculture, Livestock, and
Supply).

An electronic digital scale platform (marte®, Sao Paulo, SP, Brazil) was used to measure
body mass (kg) and height (cm). Body mass index (BMI) was calculated according to the
International Society for Advancement of Kinanthropometry (ISAK) standard [weight
(kg)/height (m2)]. The body composition was determined by bioimpedance analysis
(Biodynamics Corporation, Shoreline (WA), USA, 310e) 24 h before the marathon race in
the fasting state.

2.2. Cardiopulmonary Exercise Test

After the medical history data collection, the cardiopulmonary exercise test (CPET)
was realized between three and one week before the São Paulo International Marathon by
a progressive treadmill test with a constant incline of 1%, and an initial speed of 8 km·h−1,
with an elevation of 1 km·h−1 every 1 min until voluntary exhaustion (TEB Apex 200, TEB,
São Paulo, Brazil, speed 0–24 km/h, grade 0–35%). The volunteers were monitored with a
standard 12-lead computerized electrocardiogram during the test (TEB®, ECG São Paulo,
Brazil) to rule out any cardiac dysfunction at rest and during exertion. The respiratory gas
exchange was measured through open-circuit and automatic, indirect calorimetry (Quark
CPET, COSMED®, Rome, Italy). The VO2 max of the subjects was determined according
to the American College of Sports Medicine [17]. All volunteers finished the International
Marathon of São Paulo in 2017 (40 runners) and 2018 (34 runners).
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2.3. Blood Sampling

Blood samples (10 mL) were collected 24 h before, and 24 h and 72 h after the race from
the antecubital vein at the Cruzeiro do Sul University with at least 12 h without physical
activity and from fasting runners. To obtain plasma samples, vacuum tubes containing
ethylenediaminetetraacetic acid (10 mL, EDTA, 1 mg/mL) samples were immediately
centrifuged at 4 ◦C, 400× g for 10 min and then stored at −80 ◦C for the later analysis of
myokines at University of São Paulo. Immediately after the race, blood samples (10 mL)
from the fed runners were maintained on ice for approximately 2 h at the International
Marathon of São Paulo (competition venue, close to finish line) and then sent to Cruzeiro
do Sul University (10 mL) for plasma collection as described above.

2.4. Determination of Myokines

Apelin, BDNF, FSTL, FGF-21, IL-6, IL-15, irisin, myostatin, and musclin plasmatic
levels were evaluated using the MILLIPLEX® Human Myokine Magnetic Bead (MagPlex®-
C microspheres) Panel protocol (HCYTOMAG-56K, EMD Millipore Corporation, MA, USA).
The fluorescent-coded magnetic beads contain a specific capture antibody of each myokine
on the surface with internally color-coded microspheres with two fluorescent dyes detected
by Luminex® xMAP® technology. After the capture antibody incubation, a biotinylated
detection antibody is added on the assay, followed by a reaction with a Streptavidin-PE
conjugate. The high-speed digital signal processors of capture and detection components
were analyzed by a Luminex® analyzer (MAGPIX®). The intra-assay precision (mean
coefficient variation percentage) described by the MILLIPLEX® Human Myokine Magnetic
Bead Panel instructions is <10%.

2.5. Dietary Intake

A prospective method of three food records was used to estimate DI during the week
before the marathon race (3rd to 8th April in 2017, and 2nd to 7th April in 2018). Dietetics
instructed the runners to fill in the meal time and all food and drinks that were ingested,
including portion size and food brand, on two days of the week and one day of the weekend.
In an interview with the runners one day before the race, the food records were checked by
a trained nutrition undergraduate student to elucidate or complete missing food data. The
energy intake (kcal), macronutrients (g or g/kg), and micronutrients (mg) were estimated by
the professional Dietbox (http:/dietbox.me) website/app. The United States Department
of Agriculture–Agricultural Research Service (USDA) food composition database and
Brazilian Table of Food Composition database (TACO, University of Campinas, São Paulo,
SP, Brazil) were used in the professional Dietbox website/app to provide the nutrient
composition of foods.

2.6. Statistical Analyses

Data of general characteristics, DI, and myokines are reported as mean ± SEM of sixty
endurance runners. Statistical analyses were performed using GraphPad Prism (GraphPad
Prism version 9). The myokines were used as the independent variable. The normality
of the data distribution was determined using the Kolmogorov–Smirnov test and the
normality was rejected. Statistical analyses of myokines were evaluated using the Kruskal–
Wallis test and Dunn’s test for multiple comparison. Correlations between myokines and
DI (macronutrients and micronutrients) were performed by the Spearman test. Statistical
significance was accepted at the level of p < 0.05 in all analyses. Statistical analyses of
myokine levels in runners with an adequate and inadequate intake of the percentage
of sucrose and carbohydrate in the energy intake (EI), with fiber, calcium, sodium, and
potassium intakes evaluated using the Mann–Whitney test, and carbohydrate, cholesterol,
selenium, vitamin B3, and phosphorus intakes evaluated using the Kruskal–Wallis test.
Cohen’s d was calculated to estimate the effect size of the significant differences of myokine
levels between runners with adequate and inadequate intake.

http:/dietbox.me
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The number of runners with lower, adequate, higher, or very higher intake are de-
scribed in Table 1.

Table 1. Number of runners with lower, adequate, higher, or very higher intake.

Lower Adequate Higher Very Higher

Sucrose
(% of EI)

<10 >10

40 20

Carbohydrate
(% of EI)

<45 45–65 >65

19 38 3

Carbohydrate (g/kg/day)
<3 3–5 >5

23 23 14

Protein (g/kg/day)
<1.2 1.2–2.0 >2

24 21 15

Cholesterol (mg)
<300 300–600 >600

23 27 10

Fiber (g)
<25 >25

40 20

Calcium (mg)
<1000 >1000

50 10

Sodium (mg)
<2300 >2300

29 31

Selenium (mcg)
<55 55–110 >110

7 20 33

Vitamin B3 (mg)
<16 16–32 >32

16 29 15

Phosphorus (mg)
<700 700–1400 >1400

5 30 25

Potassium (mg)
<2000 >2000

21 39
EI, Energy Intake.

3. Results
3.1. General Characteristics

The general characteristics of sixty runners are described as follows: age, 40.9 ± 1.0 years;
body mass, 74.6 ± 1.3 kg; height, 1.73 ± 0.01 m; BMI, 24.9 ± 0.4 kg/m2; percentage of
fat mass, 21.6 ± 0.6%; free fat mass, 58.3 ± 0.9 kg; race time, 258.7 ± 6.0 min, training
experience, 6.9 ± 0.5 years; time in 10 km race, 46.7 ± 0.77 min; frequency of training, 4
(3.75–5.0) times/week; and training volume, 51.8 ± 2.7 km/week. The CPET parameters
are: time of exhaustion, 11.5 ± 0.3 min; maximum speed of runners, 18.4 ± 0.3 km/h;
anaerobic threshold oxygen consumption (VO2 AT), 33.6 ± 1.0 mL/kg/min; respiratory
compensation point oxygen consumption (VO2 RCP), 51.6 ± 1.2 mL/kg/min; and peak
oxygen consumption (VO2 peak), 54.4 ± 1.3 mL/kg/min.

3.2. Dietary Intake

The energy and macronutrient intake are summarized in Table 2. We observed an
adequate protein, total fat, and sucrose intake; however, a low energy, carbohydrate, and
fiber intake were observed, as well as a higher cholesterol intake.
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Table 2. Energy, macronutrient, cholesterol, and fiber intake.

Daily Intake DV *

Energy intake (kcal) 2319 ± 117 2907 ± 36
Energy availability (kcal/kg of FFM) 40 ± 1.98 >45

Carbohydrate (g/kg) 3.9 ± 0.3 * 5–12
Protein (g/kg) 1.6 ± 0.1 * 1.2–1.7

Total fat (% of EI) 29 ± 1 <30%
Sucrose (% of EI) 8 ± 1 <10%
Cholesterol (mg) 391 ± 28 <300

Fiber (g) 22 ± 1 >25
* Reference daily values (DV) based on Dietary Reference Intake (DRI) of the American Dietetic Association,
Dietitians of Canada, and the American College of Sports Medicine (ADA/ACSM). The values are presented as
mean ± mean standard error of 60 runners.

The micronutrient daily intake is summarized in Table 3. We observed low folic acid,
vitamin D, calcium, and magnesium intakes.

Table 3. Micronutrient daily intakes in marathon runners.

Vitamins Daily Intake DV * Minerals Daily Intake DV *

Vitamin A (mcg) 994 ± 183 900 Calcium (mg) 715 ± 57 1000
Vitamin B1 (mg) 1.73 ± 0.14 1.2 Iron (mg) 15.7 ± 1.5 8
Vitamin B2 (mg) 1.94 ± 0.15 1.3 Mn (mg) 2.8 ± 0.30 2.3
Vitamin B3 (mg) 28 ± 3 16 Se (mcg) 163 ± 18 55
Vitamin B6 (mg) 2.3 ± 0.2 1.7 Zinc (mg) 12.7 ± 0.9 11
Folic acid (mg) 286 ± 27 400 Mg (mg) 289 ± 16 420

Vitamin B12 (mcg) 6.4 ± 1.6 2.4 P (mg) 1340 ± 73 700
Vitamin C (mg) 141 ± 28 90 Potassium (g) 2.6 ± 130 4.7

Vitamin D (mcg) 3.7 ± 0.53 15 Sodium (g) 2.5 ± 1.6 1.5
Vitamin E (mg) 12.34 ± 1.5 15

* Reference daily values (DV) based on Dietary Reference Intake (DRI) of the American Dietetic Association,
Dietitians of Canada, and the American College of Sports Medicine (ADA/ACSM). Mn, manganese; Se, selenium;
Mg magnesium; P, phosphorus. The values are presented as mean ± mean standard error of 60 runners.

3.3. Correlation: Dietary Intake and General Characteristics

Percentage of fat mass was negatively correlated with EI, % of adequate EI, carbohy-
drate, protein, sucrose, vitamin B2, calcium, manganese, and phosphorus intake (Table 3).
Free fat mass was negatively correlated with the percentage of carbohydrate and protein of
EI (r = −31, p = 0.016; r = −26, p = 0.042), and carbohydrate intake (r = −27, p = 0.032). Race
time was negatively correlated with protein, cholesterol, vitamin B3, selenium, magnesium,
potassium, and phosphorus (Table 4).

The runners with lower carbohydrate (Cohen’s d = 1.37), phosphorus (Cohen’s
d = 1.48), and calcium intakes (Cohen’s d = 1.16) had a higher percentage of fat mass
(Figure 1A–C).
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Table 4. Correlation of dietary intake with % of fat mass and race time.

% of Fat Mass r p Race Time (min) r p

EI (kcal/kg of FFM) −0.28 0.025 Protein (g/kg) −0.35 0.012

% of adequate EI −0.34 0.007 Cholesterol (mg) −0.40 0.043

Carbohydrate (g/kg) −0.41 0.0009 Vitamin B3 (mg) −0.30 0.033

Protein (g/kg) −0.32 0.013 Se (mcg) −0.30 0.032

Sucrose (g) −0.34 0.007 Mg (mg) −0.36 0.011

Vitamin B2 (mg) −0.27 0.033 K (mg) −0.29 0.043

Calcium (mg) −0.49 <p.0001 P (mg) −0.38 0.006

Mn (mg) −0.31 0.016

P (mg) −0.35 0.007
EI, energy intake; Mn, manganese; Se, selenium; Mg, magnesium; P, phosphorus. The values are presented as
mean ± mean standard error of 60 runners.
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Figure 1. General characteristic and dietary intake. Percentages of fat mass and carbohydrate (A),
calcium (B), and phosphorus (C) intake; race time and protein (D), cholesterol (E), selenium (F),
vitamin B3 (G), phosphorus (H), and potassium (I) intake. The percentages of fat mass and race time
were presented as mean ± EPM, as well as individuals’ values.
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Runners with higher intakes of protein (>2 g/kg/day, Cohen’s d = 0.79), cholesterol
(>600 mg, Cohen’s d = 0.98), selenium (>110 mg, 2-fold RDA, Cohen’s d = 0.99), vitamin
B3 (>32 mg, 4-fold RDA, Cohen’s d = 0.86), phosphorus (>1400 mg, 2-fold RDA, Cohen’s
d = 1.62), and potassium (>2000 mg, 100% RDA, Cohen’s d = 0.79) had lower race times
(Figure 1D–I).

3.3.1. Myokine Analyses

Running the marathon elevated BDNF (2-fold,), FSTL (2-fold), FGF-21 (4-fold), and
IL-6 (5-fold) plasma levels (Figure 2). The IL-6 concentration was slightly reduced 72 h after
the marathon (Figure 2D).
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Figure 2. Myokine levels after the marathon race. The BDNF (A), FSTL (B), FGF-21 (C), IL-6 (D),
musclin (E), apelin (F), myostatin (G), irisin (H), and IL-15 (I) levels are presented as mean ± EPM of
60 runners before the race, and 24 and 72 h after the race. * vs. before p < 0.05; ** for p < 0.01; *** vs.
before p < 0.001; and **** vs. before p < 0.0001.
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We also demonstrated a decrease in musclin and apelin after the race (Figure 2E,F);
musclin, apelin, myostatin, and irisin levels 24 h after the marathon (Figure 2E–H); and
musclin, myostatin, and IL-15 levels 72 h after the race (Figure 2E,G,I).

3.3.2. Myokines and DI

Before the race, BDNF was positively correlated with the percentage of carbohydrate
and sucrose in the EI, as well as fiber intake (r = 0.36, p = 0.01; r = 0.38, p = 0.0053; r = 0.30,
p = 0.033, respectively), and negatively correlated with sodium (r = −0.27, p = 0.049). The
percentage of carbohydrate also had a positive correlation with FSTL (r = 0.32, p = 0.025).
Musclin, myostatin, IL-15, irisin, and apelin were not associated with dietary intake before
the race (data not shown).

Runners with a sucrose intake above 10% of their EI and adequate levels of sodium
intake (<2300 mg/day) had higher levels of BDNF (Figure 3A,B).
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Figure 3. Dietary intake and myokine levels after the race and in the recovery period. The BDNF
levels before the race (A,B), myostatin levels 72 h after the race (C), and musclin levels 24 h after
(D) the race (E); IL-15 levels 24 h after the race (F); and BDNF levels 72 h after the race (G) and 24 h
after the race (H). The myokine levels are presented as mean ± EPM, as well as individuals’ values.
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3.4. Myokines Induced by Exercise and Dietary Intake

After the race, carbohydrate intake (g/kg) was correlated with musclin and myostatin
levels (r = 0.29, p = 0.027; r = 0.32, p = 0.014), and the percentage of carbohydrate of EI was
correlated positively with musclin and FGF-21 levels (r = 0.26, p = 0.047; r = 0.33, p = 0.012).

Runners with adequate carbohydrate intake (>5 g/kg/day) had higher levels of
myostatin 72 h after the race, with Cohen’s d = 1.46 (Figure 3C), and higher levels of
musclin after the race and 24 h after the race, with Cohen’s d = 0.90 and 0.79 (Figure 3D,E).

In the recovery period, the percentage of carbohydrate of EI was correlated positively
with IL-15 and BDNF (r = 0.34, p = 0.01; r = 0.30, p = 0.024), and sucrose intake had a positive
correlation with BDNF and FSTL levels (r = 0.36, p = 0.0049; r = 0.30, p = 0.022).

Runners with less than 45% of carbohydrate of EI had lower levels of IL-15 (Cohen’s
d = 0.59, 24 h after race) and BNDF (72 h after the race, Cohen’s d = 0.65) (Figure 3F,G), and
those with less than 10% of sucrose had lower levels of BDNF (24 h after the race, Cohen’s
d = 0.42) (Figure 3H).

Protein intake (g/kg or % of EI) was not correlated with the myokines determined in
this study in all periods (before and after the race, and in the recovery period) (data not
shown).

Cholesterol intake negatively correlated with apelin and irisin levels (r = −0.26,
p = 0.037; r = −0.31, p = 0.015, respectively) after the race. Runners with a higher cholesterol
intake (>600 mg/day) had lower levels of irisin (Cohen’s d = 0.71) and apelin (Cohen’s
d = 0.96) compared to runners with adequate cholesterol intake after the race (Figure 4A,B).
Cholesterol intake also showed a negative correlation with apelin 24 h after the race
(r = −0.26, p = 0.44).

Fiber intake had a correlation with irisin and BDNF levels 72 h after the race (r = 0.34,
p = 0.00067; r = 0.28, p = 0.028). Runners with a low fiber intake (<25 g/day) had lower
levels of irisin (Cohen’s d = 0.49) and BDNF (Cohen’s d = 0.60) (Figure 4C,D).

After the race and in the recovery period, vitamin C was positively correlated with
IL-15, musclin, FSTL, myostatin, IL-6, and FGF-21 (Table 5).

Table 5. Correlation of vitamin C with myokines after the race.

r p

IL-15 24 h after 0.33 0.010

Musclin after 0.34 0.0075

Musclin 24 h after 0.27 0.038

FSTL 24 h after 0.26 0.049

Myostatin after 0.26 0.037

Myostatin 24 h after 0.27 0.033

IL-6 24 h after 0.30 0.019

FGF-21 24 h after 0.28 0.031
IL, interleukin; FSTL, follistatin; FGF, fibroblast growth factor. Correlations between vitamin C and DDI were
determined in 60 runners via the Spearman test.

Thiamine (B1) was correlated with myostatin levels after the race (r = 0.31, p = 0.014),
vitamin D was negatively correlated with IL-6 levels after the race (r = −0.26, p = 0.044),
and musclin 72 h after the race (r = −0.26, p = 0.037). Manganese was correlated with
musclin after the race (r = 0.30, p = 0.019), and selenium was negatively correlated with
apelin 24 h after the race (r = −0.28, p = 0.030).
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mean ± EPM, as well as individuals’ values.

4. Discussion

Our study highlights the importance of carbohydrate, energy and vitamin C intake for
the percentage of fat mass, race time, and myokine levels before (BDNF) and after the race
(myostatin, musclin, irisin, apelin), and in the recovery period (BDNF, IL-15, FSTL, FGF-21,
myostatin, and musclin). Chronic higher sodium and cholesterol, or low fiber consumption
were demonstrated to reduce some myokine levels (BNDF, irisin, and apelin). Our results
contribute to elucidating the mechanisms involved in the effects of low or higher nutrient
intakes on tissue recovery and exercise adaptations.

In this study, amateur long-distance runners had low energy, carbohydrate, and
fiber intakes and higher cholesterol intakes in accordance with scientific literature, which
described low energy availability in elite and amateur athletes [12,18]. Relative Energy
Deficiency in Sport (RED-S) has been reported in male and female elite athletes and im-
pairs endocrine response (i.e., cortisol, insulin, IGF-1, adipokines, incretins), contribut-
ing to metabolic and immune dysfunction [19–22]. Previously, we suggested that pro-
inflammatory cytokines induced by endurance exercise are higher in runners with a low
energy, carbohydrate, and fiber intake, and the adequate carbohydrate intake tended to pro-
mote higher IL-10 levels in the recovery period of intense exercise [12]. RED (< 30 kcal·kg−1
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FFM·day−1), accomplished by a low carbohydrate intake, also reduces the mobilization of
fat stores, protein synthesis, metabolic rate, and glucose utilization, and the production of
growth hormones [21,22]. Herein, we have demonstrated higher percentages of fat mass
in runners with lower carbohydrate, phosphorus, and calcium intakes. There is crosstalk
between adipose tissue, and calcium and phosphorus homeostasis, which involves some
hormones such as leptin and parathormone [23].

We also observed higher percentages of runners with low energy (87.6%, <45 kcal/kg/FFM)
and carbohydrate (76.7%, <5 g/kg/day) intakes. After the race and in the recovery period,
we observed a positive correlation of myostatin and musclin with carbohydrate intake, and
higher levels of these myokines with an adequate carbohydrate intake (5 to 8 g/kg/day).
Myostatin acts in the process of protein degradation in muscle tissue via the activation of
activin receptors (type I and II) leading to the phosphorylation and activation of SMAD-
2 and SMAD-3, which forms a complex with SMAD-4, promoting the transcription of
catabolic genes, and through the ubiquitin–proteosome system and autophagy activa-
tion [1,3,8], myostatin inhibition seems to increase the browning of WAT by activating
the AMPK/PGC1-alpha/FNDC-5 pathway [24,25]. Activin receptors are also distributed
in other tissues, and myostatin seems to impair the growth hormone (GH)/IGF1 axis in
the liver [26]. The positive correlation of myostatin with carbohydrate intake does not
contribute to our understanding of the role of carbohydrate intake in muscle mass repair
after endurance exercise. However, it may elucidate the role of restricted caloric and low-
carbohydrate diets, such as the Dietary Approaches to Stop Hypertension (DASH) diet, to
improve muscle mass and cardiometabolic health [27].

Musclin activates PPAR-gamma and promotes mitochondrial biogenesis in WAT and
skeletal muscle [28,29], and it also reduces glucose uptake in skeletal muscle through the
inhibition of Akt/PKB and PPARγ and liver × receptor a (LXRα) activation [30]. Runners
with adequate carbohydrate intake had higher musclin levels, which may contribute to
improved exercise adaptations, such as the improvement of glucose homeostasis and the
browning of adipose tissue.

After or in the recovery period, the percentage of carbohydrate of EI or sucrose intake
was correlated positively with IL-15, FGF-21, BDNF, and FSTL levels, myokines that are
responsible for muscle repair, whose functions include myogenesis (BDNF, FSTL, and IL-15),
mitochondrial biogenesis (BDNF, IL-15), mytophagia (FGF-21, IL-15), autophagy (IL-15),
satellite cell activation (BDNF), anti-inflammatory response (IL-15), vascular smooth muscle
cell proliferation (IL-15), intramuscular fat oxidation, insulin sensitivity, and glucose intake
(BDNF, FGF-21, IL-15) [1–3,5,8,31–34]. Many of these myokines act in several signaling
pathways that will culminate in the activation of the transcription coactivator peroxisome
proliferator-activated receptor-gamma coactivator (PGC)-1alpha and transcription factor
PPAR-gamma, which modulate genes related to the muscle autocrine/paracrine effects
cited above [25].

Moreover, these myokines promote crosstalk between skeletal muscle and other car-
diometabolic tissues, which improves glucose homeostasis (IL-15, BDNF, and FSTL), en-
hances fuel utilization of glucose and lipids (FGF-21), and enacts a cardioprotective role
(FGF-21 and BDNF) [1,5,9,33–35]. BDNF is a neurotrophin stimulated by metabolic stress
and higher intracellular calcium levels, and it acts on myocardial contraction, decreasing
the cardiomyocyte apoptosis and mitochondrial dysfunction, increasing motor neuron ex-
citability and cardiomyocyte contraction, and improving lipid and glucose metabolism via
p-AMPK and PGC-1α activation [31]. Interestingly, we also observed that runners with un-
healthy behaviors, such as higher intakes of sodium or lower percentages of carbohydrate
(<45%) or fiber intake, had lower BDNF levels.

Cholesterol intake was negatively associated with apelin and irisin levels, which im-
prove carbohydrate and lipid metabolism, and have cardioprotection properties [8,32,36,37].
Runners with higher cholesterol intakes (>600 mg/day) had lower levels of irisin and apelin;
moreover, runners with a lower fiber intake had lower levels of irisin. These myokines in-
clude a portion of the cell membrane protein, FNDC5, composed of 94-amino-acid residue
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fibronectin III (FNIII)-2 domains, and through the intracellular signaling pathway p38
and ERK1/2, they induce the browning of WAT, the upregulation of UCP1, and the im-
provement of glucose intake on skeletal muscle and insulin sensitivity [37]. Apelin seems
to have a cardioprotective role, binding to the G-protein-coupled receptor (GPCR) and
acting on the PI3K-Akt-NO signaling pathway, the reperfusion injury salvage kinase (RISK)
pathway, the extracellular signal-related kinase 1/2 (ERK 1/2), protein kinase B/Akt, and
eNOS [38]. Lipolysis on adipose tissue, lipid oxidation, and mitochondrial biogenesis on
skeletal muscle are upregulated by apelin levels [39].

Muscle cells also require multiple protective enzyme systems involved in muscle func-
tion. In this study, we observed that after the race and in the recovery period, vitamin C was
positively correlated with IL-15, musclin, FSTL, myostatin, IL-6, and FGF-21. Vitamin C has
many physiological functions, including anti-inflammatory and anti-oxidative properties.
However, the supplementation of vitamin C seems to be beneficial to vitamin deficiency,
but leads to controversial responses in muscle mass and function, leading to the inhibition
of protein synthesis pathways [40].

Inadequate dietary intake may influence some myokine levels responsible for the
maintenance of muscle mass and function, and for the recovery of cardiometabolic tissues
after endurance exercise, as well as enhancing adaptation to exercise. Professionals in
the field of nutrition and sports medicine should emphasize the importance of adequate
nutrition for performance improvement, the recovery of body tissues, and for the beneficial
adaptations induced by exercise.
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