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Abstract: Hydroxytyrosol (HT) and punicalagin (PC) exert cardioprotective and antiatherosclerotic 

effects. This study evaluated the effect of an oral supplement containing HT and PC (SAx) on 

dyslipidemia in an adult population. A randomized, double-blind, controlled, crossover trial was 

conducted over a 20-week period. SAx significantly reduced the plasma levels of triglycerides (TG) 

in subjects with hypertriglyceridemia (≥150 mg/dL) (from 200.67 ± 51.38 to 155.33 ± 42.44 mg/dL; p 

< 0.05), while no such effects were observed in these subjects after the placebo. SAx also significantly 

decreased the plasma levels of low-density lipoprotein cholesterol (LDL-C) in subjects with high 

plasma levels of LDL-C (≥160 mg/dL) (from 179.13 ± 16.18 to 162.93 ± 27.05 mg/dL; p < 0.01), while 

no such positive effect was observed with the placebo. In addition, the placebo significantly reduced 

the plasma levels of high-density lipoprotein cholesterol (HDL-C) in the total population (from 

64.49 ± 12.65 to 62.55 ± 11.57 mg/dL; p < 0.05), while SAx significantly increased the plasma levels 

of HDL-C in subjects with low plasma levels of HDL-C (<50 mg/dL) (from 44.25 ± 3.99 to 48.00 ± 

7.27 mg/dL; p < 0.05). In conclusion, the supplement containing HT and PC exerted antiatheroscle-

rotic and cardio-protective effects by considerably improving dyslipidemia in an adult popula-

tion, without co-adjuvant treatment or adverse effects. 

Keywords: cardiovascular disease; atherosclerosis; hydroxytyrosol; punicalagin; dyslipidemia; 

total cholesterol; low-density lipoprotein cholesterol; high-density lipoprotein cholesterol; triglyc-

erides 

 

1. Introduction 

Cardiovascular diseases (CVDs) remain the leading cause of disease burden in the 

world. An estimated 17.9 million people died from CVDs in 2019, representing 32% of all 

global deaths [1]. The recommendation by the World Health Organization (WHO) to help 

reduce the global burden of CVD is designed to provide counseling and adequate treat-

ment for at least 50% of eligible people (defined) as aged 40 years or older and at high risk 

of CVD) by 2025 [2]. People considered to be at high risk for CVD are those with one or 

more risk factors, such as dyslipidemia, arterial hypertension, diabetes, or previously es-

tablished disease [3]. To reduce the global burden of CVD, early detection and primary 
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prevention are essential [3], and the WHO considers subjects aged 40–80 years, without 

a known baseline history of CVD, to be the target population in primary prevention efforts 

[2].  

It has been widely recognized that most CVDs can be prevented by addressing be-

havioral risk factors, such as unhealthy diet, physical inactivity, and harmful tobacco and 

alcohol use, as well as appropriate control of risk conditions for CVDs, including 

dyslipidemia, arterial hypertension, diabetes and obesity [4]. Although the remarkable 

success of pharmacotherapy and preventive efforts have been introduced in the past 

decades, CVDS still constitutes a public health challenge as a top cause of morbidity, loss 

of useful life years, and mortality worldwide [1]. Therefore, any efforts for the prevention 

of CVD should be strongly encouraged.  

Atherosclerosis, otherwise known as an atherosclerotic vascular disease (ASVD), is 

the main cause of mortality in CVD [5]. In ASVD, the buildup of plaques within blood 

vessels, resulting in the restriction of blood flow, with a potential risk of rupture, con-

tributes to the development of heart attacks (myocardial infarction) and strokes, which 

can be fatal [6].  

Dyslipidemia is one of the major risk factors for the development and progression of 

ASVD and CVDs [7,8]. Dyslipidemia includes a wide range of lipid abnormalities 

and may involve a combination of increased plasma levels of total cholesterol (TC), low-

density lipoprotein cholesterol (LDL-C), and triglycerides (TG), or decreased high-den-

sity lipoprotein cholesterol (HDL-C). The prevention and sensible management of 

dyslipidemia can positively modify CV morbimortality [8]. Therefore, an effective solu-

tion with few or no adverse effects and high adherence, could reduce the ASVD 

morbimortality and, CVDs.  

Polyphenols are becoming increasingly accepted as therapeutic substances for ad-

dressing a wide range of diseases, such as ASVD and CVDs [9–22], and their risk factors 

[9,11–17,20–26]. Diverse studies have reported an inverse correlation between polyphe-

nol consumption and the risk of CV events [10,18,23,27] and overall mortality [23,28–30]. 

Among these bioactive compounds, hydroxytyrosol (HT), from olives, and punicalagin 

(PC), from pomegranates, are noteworthy for their antioxidant, antiatherosclerotic, car-

dioprotective, neuroprotective, anticancer, and other effects [13,26,31–36]; in this article, 

we focus on their cardioprotective and antiatherosclerotic effects. According to vari-

ous in vitro and in vivo studies, the cardioprotective and antiatherosclerotic properties 

of HT and PC can normalize dyslipidemia, arterial prehypertension and hypertension, 

diabetes mellitus, oxidative and nitrative statuses, proinflammatory statuses, pro-

thrombotic statuses, endothelial dysfunction, obesity, metabolic syndrome, and mito-

chondrial dysfunction, modulate the expression of cardioprotective and antiatheroscle-

rotic genes, and reduce the adverse effects of drug treatment, etc. 

[9,13,14,16,26,31,32,34,37–52], through multiple pathways [9,13,16,26,31–34,45–47].  

In a previous crossover, randomized, double-blind and controlled study, oral sup-

plementation with a combination of HT and PC in middle-aged healthy adults showed 

anti-atherosclerotic effects by improving endothelial function, blood pressure and levels 

of circulating oxidized LDL, with more marked improvements in subjects with alterations 

of these atherosclerotic markers [14]. Data obtained in this clinical trial regarding the effect 

of this oral supplement on the lipid profile, especially in subjects with dyslipidemia are 

reported.  

2. Materials and Methods 

The present study was registered at http://clinicaltrials.gov under the number 

NCT02042742 (access date: 23 January 2014). 
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2.1. Design and Subjects 

This was a crossover, randomized, double-blind and placebo-controlled clinical trial, 

which was conducted over 20 weeks. A full description of the methodology of the 

study has been previously reported [14]. Briefly, eligible participants were assigned at 

random to two double-blind 8-week treatment periods receiving the supplement or pla-

cebo separated by a washout period of 4 weeks. Participants (n = 84) were men and 

women, aged 45–65 years, recruited at the Nutrition Department of Hospital University 

La Paz in Madrid, Spain, who voluntarily agreed to take part in the study and gave written 

consent. Exclusion criteria were body mass index (BMI) ≥30 kg/m2, subjects receiving 

drug treatment for CV risk (e.g., dyslipidemia, hypertension, diabetes mellitus, etc.), 

presence of family background of premature vascular disease, metabolic syndrome, 

severe liver or renal dysfunction, cancer, and mental illness or low cognitive ability. 

Other exclusion criteria were the use of nutritional supplements, intensive physical activ-

ity, alcohol use (>30 g/day), and hypersensitivity or allergy to olive and pomegranate by-

products. Women still experiencing menstrual cycles were also excluded.  

All subjects gave their informed consent to take part in the study, which was ap-

proved by the Scientific Research and Ethics Committee of the HULP (Code 3799) in ac-

cordance with The Ethical Standards of The Declaration of Helsinki [53]. 

2.2. Intervention and Study Variables 

The supplement (SAx) (Pomalive®, Euromed S.A., Mollet del Vallès, Barcelona, Spain) 

(patent in concession process) contained 3.3 mg of HT from a standardized olive fruit ex-

tract (Mediteanox®,) 65 mg of PC from a standardized pomegranate fruit extract (Po-

manox® P30) and 331.7 mg of maltodextrin. Identically appearing placebo capsules 

contained 400 mg of maltodextrin. Subjects were instructed to take three capsules/day of 

the assigned product (SAx or placebo) with their meals and were instructed to maintain 

their normal dietary habits. They received the exact number of capsules (in blister packag-

ing) required for each 8-week intervention period (SAx or placebo) during pre-period vis-

its at the study center. Visits were scheduled at baseline and before and after each inter-

vention period. Study variables included the following: (a) diet assessment, (b) anthropo-

metric measurements, (c) vital signs, (d) biochemical analysis of the lipid profile, and (e) 

compliance with the study products and adverse effects.  

The diet was recorded over three days (including one day of the weekend) [20]. 

Participants registered the weight of foods or, alternatively, cups, spoonfuls, etc., 

used for household measurements. Records were reviewed by a nutritionist during the 

study visits in the presence of the participant. The DIAL software (Alce Ingenieria S.L., Las 

Rozas de Madrid, MD, Spain) was used for the calculation of the energetic and nutritional 

content of foods and beverages consumed.  

Anthropometric data (weight, height, BMI) were collected using standard techniques, 

adhering to international norms set out by the WHO [54] in the morning by trained per-

sonnel with the subject barefoot and wearing only underwear. A bioelectrical imped-

ance analyzer (BIA) was used for estimating body composition (EFG ElectroFluid-

Graph®, Akern S.R.L., Pontassieve, Fl, Italy). Blood pressure and heart rate were meas-

ured using a 420 Spot Vital Signs Monitor (Welch Allyn, Skaneateles Falls, NY, USA), 

determining the mean of three readings.  

At the beginning and end of each 8-week intervention period, fasting blood 

samples were collected for biochemical analysis. Samples were analyzed on the Olym-

pus AU5400 Automated Chemistry Analyzer (Olympus Corporation, Izasa, CA, USA) 

for levels of total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density 

lipoprotein cholesterol (LDL-C) and triglycerides. Results are expressed as mg/dL, values 

that were considered dyslipidemia were ≥200 mg/dL, ≥150 mg/dL, ≥160 mg/dL, and <50 

mg/dL for total cholesterol, triglycerides, LDL-C, and HDL-C levels, respectively.  
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The participants’ compliance was determined through interviews and a comparison 

between the number of capsules supplied and that returned in the middle and at the end 

of each intervention period. When a participant had consumed ≥90% of the capsules 

supplied, he/she was deemed compliant. Any adverse effects observed during the study 

were logged. Any unfavorable, unwanted effects (diarrhea, constipation, nausea, vomit-

ing, halitosis, etc.) that were reported by a participant and/or observed by the researchers 

were defined as adverse effects. No participants showed adverse effects during the study. 

The participants were informed of their right to leave the study at any time. 

2.3. Statistical Analysis 

In the present clinical trial, a sample size of 38 subjects was determined to be 

necessary to achieve 90% power (at α = 0.05) with a potential 20% dropout [14,55]. Quali-

tative data are presented as both counts and percentages. Quantitative data are pre-

sented as means ± standard deviations (SDs). The Kolmogorov–Smirnov test was used to 

assess whether the data were normally distributed, and Levene’s test was used to evaluate 

the homogeneity of the variances. The denominator’s degrees of freedom were estimated 

using Satterthwaite’s formula. The possible sequence effects, period effects, and resid-

ual effects that can occur in this type of crossover study were analyzed. Multiple com-

parisons were adjusted for using the Bonferroni method. Two-sided tests were applied, 

and a p-value < 0.05 was considered statistically significant. The statistical analyses were 

performed using the linear mixed model in the SAS Statistical Analysis Software, version 

9.3 (SAS Institute Inc., Cary, NC, USA). 

3. Results 

3.1. Recruitment and Study Population 

The present clinical trial was performed between February and June 2013. This study 

involved 84 apparently healthy subjects (17 males (20.2%) and 67 females (79.8%)) who 

were found to be suitable for inclusion. There were 17 participants subsequently lost 

to follow-up (nine in the SAx/Placebo sequence and eight in the Placebo/SAx sequence) 

for personal reasons (n = 15) and noncompliance with the treatment instructions (n = 2). 

As such, 67 participants (14 males (20.9%) and 53 females (79.1%)) completed the present 

20-week clinical trial; only their results were included in the statistical analyses (Figure 

1). 
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Figure 1. Flow chart depicting the present study. 

3.2. Baseline Characteristics 

Regarding the baseline state in the present clinical trial, there were no significant 

differences between the participants assigned to the different intervention sequences 

(Placebo/SAx and SAx/Placebo) in gender, age, smoking habits, anthropometry, lipid 

profiles, or other variables. The average age of the population was 53.0 ± 4.5 years, and 

the average BMI was 24.6 ± 3.1 kg/m2 (Table 1). 

Table 1. Baseline characteristics of the participants. 

 
Placebo/SAx  

(n = 33) 

SAx/Placebo 

(n = 34) 

Gender (Female %, n) 78.79 (26) 79.41 (27) 

Age (years) 53.21 ± 4.2 52.79 ± 4.8 

Smoking (Smokers %, n) 18.18 (6) 26.47 (9) 

Weight (kg) 66.26 ± 11.8 64.08 ± 10.9 

BMI (kg/m2) 24.64 ± 2.9 24.56 ± 3.2 

Waist circumference (cm) 80.51 ± 9.2 82.58 ± 9.8 

FM (%) 29.18 ± 6.7 28.76 ± 6.4 

FFM (%) 70.82 ± 6.7 71.24 ± 6.4 

MM (%) 48.03 ± 7.7 47.87 ± 5.5 

SBP (mmHg) 110.3 ± 13.1 110.9 ± 12.9 

DBP (mmHg) 74.06 ± 10.8 73.75 ± 9.5 

HR (bpm) 67.36 ± 8.9 70.41 ± 7.5 

TC (mg/dL) 226.7 ± 29.6 224.6 ± 35.4 

LDL-C (mg/dL) 144.3 ± 23.9 145.3 ± 28.6 

HDL-C (mg/dL) 66.25 ± 12.9 62.00 ± 12.6 

TG (mg/dL) 80.56 ± 24.6 86.52 ± 44.0 
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Data presented as means ± standard deviations (SDs). SAx: oral supplementation with hydroxyty-

rosol (HT) and punicalagin (PC); BMI: body mass index; FM: fat mass; FFM: fat-free mass; MM: 

muscle mass; SBP: systolic blood pressure; DBP: diastolic blood pressure; HR: heart rate; TC: total 

cholesterol; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein choles-

terol; and TG: triglycerides. There were no significant differences in the baseline state between the 

two intervention sequences. 

3.3. Dietary and Anthropometric Variables 

Regarding the results for the dietary and anthropometric variables compared 

between the beginning and end of the different intervention periods, no significant dif-

ferences were observed, nor were significant differences found between the different pe-

riods in terms of the changes in these variables (Table 2). 

Table 2. The dietary and anthropometric variables at the beginning and end of the supplementation, 

and placebo periods. 

   SAx 

(n = 67) 

Placebo 

(n = 67) 

Energy (kcal/day) Start 1923 ± 513.6 1864 ± 471.9 
  End 1891 ± 549.4 1881 ± 569.5 
  Change −31.88 ± 463.2 17.07 ± 355.5 

Carbohydrates (%) Start 38.06 ± 6.5 38.46 ± 8.9 
  End 37.62 ± 6.3 39.06 ± 6.5 
  Change −0.439 ± 5.7 0.598 ± 8.1 

Proteins (%) Start 17.24 ± 3.7 17.44 ± 2.9 
  End 17.43 ± 3.6 17.60 ± 3.1 
  Change 0.193 ± 4.4 0.164 ± 3.5 

Lipids (%) Start 41.42 ± 6.3 40.48 ± 8.8 
  End 41.36 ± 5.7 40.19 ± 5.9 
  Change −0.067 ± 5.3 −0.287 ± 8.0 

SFA (%) Start 12.33 ± 2.9 12.46 ± 4.0 
  End 12.38 ± 2.8 12.03 ± 2.9 
  Change 0.049 ± 2.7 −0.433 ± 4.2 

MUFA (%) Start 19.10 ± 3.6 18.82 ± 4.9 
  End 19.56 ± 4.0 19.29 ± 3.5 
  Change 0.453 ± 3.8 0.470 ± 4.2 

PUFA (%) Start 6.45 ± 2.3 5.60 ± 1.6 
  End 5.98 ± 1.7 5.46 ± 1.8 
  Change −0.470 ± 2.4 −0.134 ± 1.4 

Total Cholesterol (mg/dL) Start 350.5 ± 172.8 303.9 ± 150.4 
  End 328.1 ± 133.8 323.0 ± 115.9 
  Change −22.35 ± 210.8 19.04 ± 130.1 

Fiber (g/d) Start 21.95 ± 7.8 21.71 ± 8.0 
  End 21.68 ± 8.9 20.47 ± 7.3 
  Change −0.275 ± 8.2 −1.234 ± 6.5 

Weight (kg) Start 65.10 ± 11.3 65.10 ± 11.2 
  End 64.93 ± 11.2 64.85 ± 11.3 
  Change −0.173 ± 1.3 −0.249 ± 1.0 

BMI (kg/m2) Start 24.58 ± 3.0 24.63 ± 3.0 
  End 24.51 ± 3.0 24.48 ± 3.0 
  Change −0.068 ± 0.5 −0.151 ± 0.6 

Waist Circumference (cm) Start 81.85 ± 9.0 81.24 ± 9.8 
  End 81.82 ± 9.6 81.25 ± 9.6 
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  Change −0.034 ± 2.9 0.008 ± 3.7 

FM (%) Start 29.16 ± 6.6 28.90 ± 6.5 
  End 29.56 ± 6.8 29.79 ± 7.2 
  Change 0.400 ± 2.8 0.891 ± 3.7 

FFM (%) Start 70.84 ± 6.6 71.10 ± 6.5 
  End 70.44 ± 6.8 70.21 ± 7.2 
  Change −0.400 ± 2.8 −0.891 ± 3.7 

MM (%) Start 47.63 ± 6.2 47.52 ± 6.5 
  End 46.67 ± 5.7 46.44 ± 5.8 
  Change −0.970 ± 5.1 −1.082 ± 5.8 

Data expressed as means ± standard deviations (SDs). SAx: oral supplementation with hydroxytyro-

sol (HT) and punicalagin (PC); SFA: saturated fatty acids; MUFA: monounsaturated fatty 

acids; PUFA: polyunsaturated fatty acids; BMI: body mass index; FM: fat mass; FFM: fat-free 

mass; and MM: muscle mass. In the present clinical trial, no significant differences were observed 

between the beginning and end of the different intervention periods or in the changes. 

3.4. Lipid Profile Variables 

Table 3 shows the values obtained for the lipid-profile variables examined. Figure 

2 shows a significant reduction after SAx treatment was observed in the plasma levels 

of LDL-C in subjects with initially high plasma levels of LDL-C (≥160 mg/dL) (SAx period 

start: 179.13 ± 16.18; end: 162.93 ± 27.05 mg/dL; p < 0.004). This significant effect did not 

occur in these subjects following placebo treatment. 

Table 3. Lipid-profile variables at the beginning and end of the supplementation and placebo periods 

in population with dyslipidemia. 

   SAx 

(n = 67) 

Placebo 

(n = 67) 

TC 
(mg/dL) 

(n = 49) 

Start 

End 

Change 

237.6 ± 26.0 

234.9 ± 25.1 

−2.776 ± 18.8 

238.4 ± 20.0 

233.0 ± 22.8 

−5.388 ± 18.8 

LDL-C (mg/dL) Start 179.1 ± 16.2 171.6 ± 9.1 
 (n = 16) End 162.9 ± 27.1 ** 163.6 ± 16.9 
  Change −16.20 ± 18.5 −8.063 ± 15.1 

HDL-C (mg/dL) Start 44.25 ± 4.0 41.50 ± 5.2 
 (n = 8) End 48.00 ± 7.3 * 43.75 ± 8.3 
  Change 3.750 ± 4.0 2.250 ± 5.4 

TG (mg/dL) Start 200.7 ± 51.4 186.0 ± 51.5 
 (n = 4) End 155.3 ± 42.4 * 170.5 ± 50.3 
  Change −45.33 ± 10.5 −15.50 ± 73.1 

Data expressed as means ± standard deviations (SDs); SAx: oral supplementation with hydroxyty-

rosol (HT) and punicalagin (PC); TC: total cholesterol; LDL-C: low-density lipoprotein cholesterol; 

HDL-C: high-density lipoprotein cholesterol; and TG: triglycerides. In the present clinical trial, 

significant differences were observed between the beginning and end of the SAx period (* p < 0.05, ** 

p < 0.01). There were no significant differences in the placebo period or in the changes in the 

different intervention periods. 
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Figure 2. The plasma levels of low-density lipoprotein cholesterol (LDL-C) significantly de-

creased after SAx treatment (oral supplementation with hydroxytyrosol (HT) and punicalagin 

(PC)) (black color) in subjects with high plasma levels of LDL-C, a risk factor for CVD, (n = 16) (** 

p < 0.01). This effect was not observed after placebo treatment (gray color). The data represent the 

adjusted means ± standard deviations (SDs) from multivariate models. 

In addition, at the end of the placebo period, a significant decrease in the plasma levels 

of HDL-C was observed in the total population (Placebo period start: 64.49 ± 12.65; end: 

62.55 ± 11.57 mg/dL; p < 0.016). After the SAx period, a significant increase in the plasma 

levels of HDL-C was observed in subjects with initially low plasma levels of HDL-C (SAx 

period start: 44.25 ± 3.99; end: 48.00 ± 7.27 mg/dL; p < 0.033). After the placebo period, this 

significant effect on plasma HDL-C levels was not observed in these subjects (Placebo 

period start: 41.50 ± 5.19; end: 43.75 ± 8.26 mg/dL; p < 0.464) (Figure 3). In the present 

clinical trial, only women showed low plasma levels of HDL-C. There were no men who 

presented low plasma levels of HDL-C. 
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Figure 3. Plasma levels of high-density lipoprotein cholesterol (HDL-C) significantly increased after 

SAx treatment (oral supplementation with hydroxytyrosol (HT) and punicalagin (PC)) (black color) 

in subjects with low plasma levels of HDL-C, a risk factor for CVD, (n = 8) (* p < 0.05). This effect 

was not observed after placebo treatment (gray color). The data represent the adjusted means ± 

standard deviations (SDs) from multivariate models. 

At the end of the SAx period, a significant decrease in the plasma levels of TG was 

observed in subjects with hypertriglyceridemia (≥ 150 mg/dL) (SAx period start: 200.67 ± 

51.38; end: 155.33 ± 42.44 mg/dL; p < 0.017). This significant effect on the plasma levels of 

TG was not present after the placebo period in these subjects (Placebo period start: 186.00 

± 51.54; end: 170.50 ± 50.32 mg/dL; p < 0.700) (Figure 4). 
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Figure 4. Plasma levels of triglycerides (TG) significantly decreased following SAx treatment (oral 

supplementation with hydroxytyrosol (HT) and punicalagin (PC)) (black color) in subjects with 

hypertriglyceridemia, a risk factor for CVD, (n = 4) (* p < 0.05). This effect was not observed after 

placebo treatment (gray color). The data repreScheme  

3.5. Compliance and Adverse Effects 

No significant differences were observed in the numbers of capsules consumed 

between the different intervention periods or treatment sequences. More than 90% of the 

capsules provided were consumed by all the participants. No adverse effects derived from 

the consumption of any treatment were reported. 

4. Discussion 

The present clinical trial is the first study to evaluate the effects of the regular con-

sumption of an oral supplement containing HT and PC on ASVD and CVD markers, such 

as dyslipidemia (high TC, high LDL-C, low HDL-C, and high TG), in primary prevention 

in an adult population. The intake of three capsules daily, which contained HT (9.9 mg) 

and PC (195 mg), for an 8-week period significantly decreased the plasma levels of 

LDL-C and TG and significantly increased the HDL-C levels in an adult population 

with dyslipidemia without co-adjuvant treatment, and no adverse effects were ob-

served, even though they frequently occur when using lipid-lowering drugs (e.g., my-

opathies, renal dysfunction, hepatic dysfunction, rhabdomyolysis, flushing, itching, gas-

trointestinal irritation, and stomach ulcers) [56–61]. In addition, the supplement resulted in 

a high adherence to the treatment among the participants (>90%). As observed in our 

previous article, the supplement containing HT and PC produced a significant improve-

ment in ASVD and CVD markers, such as endothelial dysfunction, arterial prehyperten-

sion and hypertension (both systolic blood pressure (SBP) and diastolic blood pressure 

(DBP)) as well as circulating plasma levels of oxLDL [14]. Several studies have shown 

improvements in dyslipidemia following the intake of HT [9,37,49,62–67] or PC 

[46,68–73]. However, most of the studies that have evaluated the effects of these bioactive 

compounds were performed in vitro or in experimental animals 

[37,49,50,52,62,63,67,71,74]; only some have involved humans [9,38,64,65,73], and even 
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fewer have evaluated these compounds outside food matrices [14,66,68,75] or studied 

their combined synergistic effect [14]. 

An example of this is the study of Cao et al., who observed how dyslipidemia 

could be prevented by 17-week of supplementation with HT. The study evaluated the ef-

fects of various doses of HT (low-dose: 10 mg/kg/day, and high-dose: 50 mg/kg/day) vs. 

metformin (225 mg/kg/day) in mice with diverse metabolic disorders induced by a high-

fat-diet (HFD), or in mice with obesity and type 2 diabetes mellitus (T2DM) (db/db-model 

mice). Low-dose HT produced significantly decreased fasting glucose levels in the db/db-

model mice that were similar to those of the metformin group. In Cao et al.’s study, low- 

and high-dose HT notably and significantly improved the lipid profile in both the HFD 

and db/db mice without adverse effects, while metformin did not produce this positive 

effect in those mice. All the lipid variables were significantly increased under HFD treat-

ment and effectively improved after treatment with both low- and high-dose HT (de-

creased plasma LDL-C levels (p < 0.01), decreased plasma TG levels (p < 0.01), reduced 

plasma free fatty acid levels (p < 0.01), increased plasma HDL-C levels and improved 

LDL-C/HDL-C ratios (p < 0.01)). As in our study, due to an increase in the plasma HDL-

C levels, a significant reduction in TC was not observed by Cao et al. In addition, HT 

supplementation could decrease lipid deposits within the livers and muscle tissues of 

the HFD mice, through the inhibition of the sterol regulatory element-binding protein 

1c/fatty acid synthase (SREBP–1c/FAS) pathway, reducing SREBP-1c levels, a well-

known regulator of fatty acid and cholesterol synthesis in the liver [52]. 

The improvement of dyslipidemia with HT has also been reported in other studies, 

such as the study of Tabernero et al., where they evaluated the effect of HT and its lipo-

philic derivatives in rats with diverse metabolic disorders induced by a cholesterol-rich 

diet. The hypercholesterolemic diet was supplemented with 0.04% HT in the different HT 

groups. After 8-week, a significant reduction in the plasma levels of LDL-C and TC was 

observed in the HT groups, and there was not a significant decrease in plasma TG [62]. 

This amelioration of dyslipidemia with HT was also observed in the study of Zhang et 

al., in which HT was administered at a dose of 10 mg/kg/day orally to mice for 16-weeks. 

After this period of time, a marked and significant reduction in the plasma levels of the 

lipid parameters (TC, LDL-C, and TG) and an increase in the plasma levels of HDL-C 

were observed in the HT group, compared to the control group (by approximately 17.4% 

(p = 0.004), 15.2% (p = 0.003), 17.9% (p = 0.009), and 26.9% (p = 0.033), respectively)). HT 

improved hepatic steatosis and lipid deposition. The possible pathways for improving 

lipemia include the regulation of cholesterol metabolism via decreasing the phosphor-

ylation of p38, followed by the activation of AMP-activated protein kinase (AMPK) and 

inactivation of nuclear factor-kappa B (NF-κB), which, in turn, trigger the blockade of 

sterol regulatory element-binding protein 2/proprotein convertase subtilisin/kexin type 

9 (SREBP2/PCSK9) and the upregulation of low-density lipoprotein receptor 

(LDLR), apolipoprotein A-I (ApoAI), and ATP-binding membrane cassette transport 

protein A1 (ABCA1). These steps finally lead to a reduction in LDL-C and an increase in 

HDL-C in the circulation [67]. 

A crossover clinical trial with 60 prehypertensive men conducted by Lockyer et al. 

evaluated the effects of a phenolic-rich olive leaf extract (136.2 mg of oleuropein; 6.4 mg of 

HT) on lipid profiles, among other variables, during 6-week of treatment, followed by 4-

week of washout. In the phenolic-rich olive leaf extract group, after 6-week, the research-

ers reported a reduction in the plasma levels 308 of TC (−0.32 (±SD 0.70) mmol/L, p = 0.002), 

LDL-C (−0.19 (±SD 0.56) mmol/L, p = 0.017), and TG (−0.18 (±SD 0.48) mmol/L, p = 0.008)); 

however, no significant changes were observed in the differences between the study 

treatments. Although these lipid-lowering effects were obtained in subjects who did not 

suffer from dyslipidemia, the researchers suggest that the possible mechanisms by 

which these lipid-lowering effects occur include a decrease in the activities of key cho-

lesterol-regulatory enzymes, such as 3-hydroxy-3-methylglutaryl coenzyme A reductase 

(HMGR) (the main target of statins) and acyl-coenzyme A: cholesterol acyltransferase 
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(ACAT), resulting in decreased cholesterol biosynthesis, impacting the flow of bile (in-

creasing biliary cholesterol and bile acid concentrations) and leading to its increased fecal 

excretion [66]. 

On the other hand, with respect to the results observed with PC on lipid profiles, some 

authors, such as Kang et al., have observed improvements in dyslipidemia in mice, 

with these metabolic disorders induced by a HFD. Their study evaluated the effects of 

administering various doses of PC (low-dose: 10 mg/kg/day, and high-dose: 100 

mg/kg/day) to these mice for 12-week. After PC administration, at both doses, there 

was a significant decrease in the plasma levels of TG, TC, and LDL-C, and a significant 

increase in those of HDL-C (low-dose: 14%, 16%, 42%, and 19%, respectively, and 

high-dose: 23%, 25%, 67%, and 35%, respectively) compared with the control HFD (n = 6) 

[46]. A pomegranate leaf extract (PLE) rich in PC produced improvements in the lipid 

profile in a mouse model in which hyperlipidemia and obesity were induced by a HFD. The 

treatment group was provided with 400 or 800 mg/kg/day of PLE for 5-week. The 

results after 5-week were very encouraging. Apart from the improvements in the other 

parameters evaluated, the study showed a marked and significant reduction in the plasma 

levels of TC and TG, and a significant improvement in the TC/HDL-C ratio (low-dose: 

approximately 35% (p < 0.01) and 56% (p < 0.01), respectively, and high-dose: approxi-

mately 29% (p < 0.05), 60% (p < 0.01), and 24% (p < 0.05), respectively)) versus the HFD 

group (n = 11). PLE also significantly attenuated the rise in plasma TG and inhibited intesti-

nal fat absorption in these mice. PLE showed a significant difference in decreasing the ap-

petite of obese mice fed a HFD but showed no effect in mice fed a normal diet [70]. 

In clinical trials, such as the one conducted by Esmaillzadeh et al., in 22 patients with 

T2DM and dyslipidemia, 14 women (63.6%) and eight men (36.4%) presented improve-

ments in their lipid profiles after the consumption of 40 g/day of a concentrated pome-

granate juice (CPJ) rich in PC for 8-weeks. Although these results showed a significant 

reduction in the plasma levels of TC (approximately 4%; p = 0.006) and LDL-C (approx-

imately 8%; p = 0.006), and the LDL-C/HDL-C (approximately 10%; p < 0.001) and 

TC/HDL-C ratios (approximately 6%; p < 0.001), there were no significant changes in the 

plasma levels of TG or HDL-C versus the control group (pre-study period of 8-weeks 

without CPJ). There were no significant changes between these two periods. The research-

ers suggested, as a possible mechanism for the improvement of dyslipidemia through the 

consumption of a CPJ rich in PC, that a reduction in the liver’s levels of cholesterol esters 

but not an elevation in the fecal excretion of cholesterol or bile acids might affect choles-

terol biosynthesis in the liver [73]. Along the same lines are the results observed by Es-

trada-Luna et al., in women with acute coronary syndrome (ACS), who took a daily dose 

of 20 g of microencapsulated pomegranate (MiPo) rich in PC for 4-week. After the con-

sumption of MiPo by 11 subjects, there was an improvement in the lipid profiles in the fast-

ing and postprandial conditions, among other parameters evaluated, as evidenced by a sig-

nificant reduction in the plasma TG (p < 0.05; 16%, 8%, and 42% at 0, 4, and 8 h, respec-

tively), TC (p < 0.05; between 8% and 15% at all of the three registered times), and LDL-C 

levels. The most important decrease reported with MiPo treatment was in the plasma 

LDL-C levels, in both the fasting and postprandial conditions, at any time on the treat-

ment curve (27% in the fasting conditions (p < 0.05), and 36% at 4 h (p < 0.05) and 35% at 

8 h in the postprandial conditions (p < 0.05)) compared to those in the pre-supplementa-

tion conditions. The fasting plasma levels of HDL-C significantly increased by 11% (p 

< 0.05). These improvements may be due, according to the researchers, to the activation of 

peroxisome proliferator-activated receptor-α (PPAR-α) and peroxisome proliferator-ac-

tivated receptor-γ (PPAR-γ), to t h e  overexpression of lipoprotein lipase (LPL) activity, 

and possibly, to a reduction in the intestinal absorption of TG [68]. 

The improvements in dyslipidemia observed with the administration of only these 

bioactive compounds are of great importance since atherogenic dyslipidemia (abnor-

mal changes in the plasma lipid profile, such as a decrease in HDL-C levels and increase 

in TG and LDL-C levels) is strongly associated with ASVD and the progression of CV 
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complications [76]. The following are among several reasons for this strong association: 

the elevation of the plasma levels of LDL-C is one of the primary mechanisms in initiating 

the development of ASVD by inducing its entrance and retention in the arterial intima 

and leading to extracellular cholesterol accumulation and the formation of cholesteryl 

ester droplet-engorged macrophage foam cells with transformation to an inflammatory 

and prothrombotic phenotype in the blood vessels. These major pathways favor the for-

mation of a plaque necrotic core, containing cellular and extracellular debris and LDL-C-

derived cholesterol crystals, in addition to increasing the risk of LDL-C’s oxidation to  

oxLDL [77–80]. This is a relevant consideration, as high circulating plasma levels of  

oxLDL is one of the most important markers in the atherogenic process [81], is associ-

ated with all stages of ASVD [81], and is a predictor of future CV events, in both CVD-

symptomatic subjects [82,83] and apparently healthy or CVD-asymptomatic subjects [79]. 

A reduction in the plasma levels of HDL-C decreases its antiatherogenic capacity 

(reverse LDL-C transport, antioxidant effects by inhibiting LDL-C oxidation, vas-

odilation, anti-inflammatory effects, antithrombotic effects, antiapoptotic effects, vas-

cular endothelial repair, etc.). This highlights the inverse relationship that exists be-

tween low plasma levels of HDL-C and CV risk [84], the former behaving as an independ-

ent predictor of CVD [84–88]. In addition, an increase in the plasma levels of TG, giving 

rise to hypertriglyceridemia, is atherogenic through multiple mechanisms, some of 

which contribute to the formation of lipid deposits in the arterial intima, increasing 

monocyte activity, stimulating the synthesis of proinflammatory cytokines and 

procoagulant factors, and promoting endothelial dysfunction [89]. Hypertriglyceridemia 

also contributes to atherogenesis through its association with other metabolic alterations, 

such as the reduction of plasma HDL-C levels or the elevation of the plasma levels of 

small and dense LDL-C, to name a few [89]. In addition, atherogenic dyslipidemia 

influences the development of important early markers of CV risk, such as endothelial dys-

function [8,90–94] or high circulating plasma levels of oxLDL [94–96]. In the development 

of endothelial dysfunction, there has been speculation that certain mechanisms may be in-

volved, such as the overexpression of the enzyme nicotinamide adenine dinucleotide phos-

phate (NADPH) oxidase, the activation of c-Jun N-terminal kinase 2 (JNK2) [97,98], an 

increase in the production of superoxide anion radical (O2−) [98], an increase in the 

production of asymmetric dimethylarginine (ADMA) [99], and a rise in the circulating 

plasma levels of oxLDL [100], among other reactive oxygen species (ROS) [100]. On the 

other hand, subjects with dyslipidemia per se present higher plasma levels of oxLDL 

than those without these pathologies, as elevated plasma lipid levels are a strong predic-

tor of high circulating plasma levels of oxLDL in diverse types of populations [77,101,102]. 

Consequently, the described improvements in the plasma lipid profiles of dyslipidemic 

subjects could contribute significantly to the reduction of endothelial dysfunction and high 

circulating plasma levels of oxLDL, improvements observed in the current study that we 

reported in our previous article [14]. One possible limitation of this study is the sample 

size. 

5. Conclusions 

The daily intake of a supplement containing HT (9.9 mg) and PC (195 mg) for 8-weeks 

was shown to improve dyslipidemia in an adult population with metabolic disorders. 

Therefore, the regular consumption of a supplement composed of HT and PC may reduce 

the CV risks that these subjects face. Further clinical trials are needed to confirm the 

favorable effects of these polyphenols in humans. 
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