
Citation: Ma, M.; Zhi, H.; Yang, S.;

Yu, E.Y.-W.; Wang, L. Body Mass

Index and the Risk of Atrial

Fibrillation: A Mendelian

Randomization Study. Nutrients 2022,

14, 1878. https://doi.org/10.3390/

nu14091878

Academic Editor: Raffaele

Antonelli Incalzi

Received: 7 April 2022

Accepted: 27 April 2022

Published: 29 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Article

Body Mass Index and the Risk of Atrial Fibrillation: A
Mendelian Randomization Study
Mi Ma 1 , Hong Zhi 2, Shengyi Yang 1 , Evan Yi-Wen Yu 1,3 and Lina Wang 1,*

1 Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of
Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China;
13330591822@163.com (M.M.); 220203857@seu.edu.cn (S.Y.); evan.y.w.yu@gmail.com (E.Y.-W.Y.)

2 Department of Cardiology, Zhong Da Hospital, Southeast University, Nanjing 210009, China;
101005674@seu.edu.cn

3 CAPHRI Care and Public Health Research Institute, School of Nutrition and Translational Research in
Metabolism, Maastricht University, 6229 Maastricht, The Netherlands

* Correspondence: lnwang@seu.edu.cn

Abstract: Although observational studies have shown positive associations between body mass
index (BMI) and the risk of atrial fibrillation (AF), the causal relationship is still uncertain owing to
the susceptibility to confounding and reverse causation. This study aimed to examine the potential
causality of BMI on AF by conducting a two-sample Mendelian randomization (TSMR) study. Meth-
ods: The independent genetic variants associated with BMI (n = 303) at the genome-wide significant
level were derived as instrumental variables (IV) from the Genetic Investigation of Anthropometric
Traits (GIANT) consortium consisting of 681,275 individuals of European ancestry. We then derived
the outcome data from a GWAS meta-analysis comprised of 60,620 cases and 970,216 controls of
European ancestry. The TSMR analyses were performed in five methods, namely inverse variance
weighted (IVW) method, MR-Egger regression, the weighted median estimator (WME), the general-
ized summary data-based Mendelian randomization (GSMR), and the robust adjusted profile score
(RAPS), to investigate whether BMI was causally associated with the risk of AF. Results: We found
a genetically determined 1–standard deviation (SD) increment of BMI causally increased a 42.5%
risk of AF (OR = 1.425; 95% CI, 1.346 to 1.509) based on the IVW method, which was consistent with
the results of MR-Egger regression, WME, GSMR, as well as RAPS. The Mendelian randomization
assumptions did not seem to be violated. Conclusion: This study provides evidence that higher BMI
causally increased the risk of AF, suggesting control of BMI and obesity for prevention of AF.

Keywords: Mendelian randomization; BMI; atrial fibrillation; causal inference

1. Introduction

Atrial fibrillation (AF), the most common type of persistent clinical tachyarrhythmia,
affected around 46.3 million individuals worldwide in 2016, according to The Global
Burden of Disease project [1]. The current estimated prevalence of AF in adults is between
2% and 4% across the world [2], showing a 3-fold rise over the last 50 years based on data
from the Framingham Heart Study [3]. It is biologically plausible that AF increases the risk
of stroke and heart failure [4], resulting in the detrimental consequences of quality of life,
disability, and even death. Moreover, given its high prevalence, AF is reported to be among
the most expensive lifetime treatment of all diseases, which causes a considerable burden
to the healthcare system [5].

As a surrogate marker of obesity, body mass index (BMI) has been a significant
risk factor for obesity-related diseases, including AF. Several observational studies have
reported a positive association between BMI and the risk of AF [6–9]. Nevertheless, it
should be noted that the observed associations could not be well determined due to the
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limitations of conventional statistical methods, namely potential confounders either or both
reverse causalities [10].

Mendelian randomization (MR) is a method that can be of support to resolve these
limitations [11–13]. In such cases, MR eliminates systematic biases by selecting genetic
variants associated with exposure as instrumental variables (IVs), analogous to randomized
controlled trials (RCT), alleles are allocated randomly at conception according to Mendel’s
second law [12]. Through that, confounders are randomly distributed throughout the pop-
ulation. Followed by identifying the common variants in outcome data, the fundamental
guideline utilized in MR can be used to contemplate the effect of a suspected environmental
exposure (e.g., BMI) on disease risk. Given credit to the primarily increased genome-wide
association studies (GWASs) in the past decade, other studies already used MR to establish
causation between common cardiovascular diseases and blood pressure [14], tumor necro-
sis factor levels [15], and other risk factors [16,17]; however, the evidence for the effect of
BMI on AF is still limited.

To overcome the limitations of conventional observational studies and shed light on
whether BMI is a cause of AF, we used a two-sample Mendelian randomization (TSMR)
approach and estimated associations between single nucleotide polymorphisms associated
with BMI and risk of AF based on two independent publicly available GWASs [18,19].

2. Materials and Methods
2.1. Data Source

The exposure variable data for the genetic variants associated with BMI was derived
from a GWAS meta-analysis in the Genetic Investigation of Anthropometric Traits (https://
portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files,
accessed on 28 April 2021) consortium (n = 681,275 individuals of European ancestry) [20];
similarly, the outcome variable data for AF was derived from a GWAS meta-analysis in six
studies (The Nord-Trøndelag Health Study (HUNT), deCODE, the Michigan Genomics Ini-
tiative (MGI), DiscovEHR, UK Biobank, and the AFGen Consortium;
http://csg.sph.umich.edu/willer/public/afib2018, accessed on 28 April 2021), which
featured 60,620 AF cases and 970,216 controls of European ancestry [21].

2.2. Instrumental Variable Selection

The extracted genetic variants were selected as IVs to estimate causal effects of BMI
on the risk of AF in accordance with the assumptions as follows: (1) being predictive of
BMI, (2) being independent of confounders, and (3) no alteration of the outcome via an
independent pathway other than BMI [22]. We firstly applied 751 SNPs associated with
BMI at a genome-wide significance (p < 5 × 10−8). After pruning for linkage disequilibrium
(LD) (r2 < 0.001; distance < 1000 kb), we obtained 507 independent SNPs. Each of the 507
BMI-associated SNPs was then examined the potential violations of the assumptions 2 and 3
based on the Phenoscanner database [23] (http://www.phenoscanner.medschl.cam.ac.uk/,
accessed on 30 April 2021). Those SNPs, which significantly associated with any known
risk factor (e.g., age, cardiovascular diseases, inflammation, dyslipidemia, and diabetes)
for AF at a Bonferroni-correction p level (p < 9.9 × 10−5; 0.05/507) were excluded from
the further analysis. In addition, the SNPs with other pleiotropic pathways (e.g., physical
inactivity, smoking, and drinking) were also removed [24–27]. The remaining SNPs were
aggregated with the AF GWAS database, removing 6 SNPs that were not included in the
AF database, and 10 palindromic SNPs with intermediate allele frequencies. In addition,
we used the RacialMR R package [28] to perform Cochran’s Q test on the remaining SNPs
and excluded 43 heterogeneous SNPs. We also examined possible pleiotropy of the selected
SNPs by using the MR pleiotropy residual sum and outlier (MR-PRESSO) test [29] and the
HEIDI (heterogeneity in dependent instrument) approach based on the GSMR analysis [30],
in which 7 SNPs were excluded. In total, we applied 303 valid SNPs as IVs (Supplementary
Figure S1).

https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
http://csg.sph.umich.edu/willer/public/afib2018
http://www.phenoscanner.medschl.cam.ac.uk/
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2.3. Statistical Analysis
2.3.1. Mendelian Randomization Analyses

We employed the inverse variance weighted (IVW) method as the primary analysis
to evaluate the causal effect between BMI and AF in our TSMR study. IVW calculates the
exposure-outcome effect corresponding to each SNP using the Wald Ratio method, then
performs a weighted linear regression with a forced intercept of zero. It achieved higher
estimate accuracy and test power when IVs satisfied the three underlying assumptions [19].
To avoid the interference of unknown and unmeasurable confounders, we performed the
MR-Egger regression (MR-Egger) [31], the weighted median estimator (WME) [32], the
generalized summary data-based Mendelian randomization (GSMR) [30], and the robust
adjusted profile score (RAPS) [33] to test the robustness of our results.

A reliable MR-Egger assessment of the causal effect is possible if the strength of the
genetic instrument does not correlate with the impact of the instrument on the outcome,
known as the InSIDE (Instrument Strength Independent of Direct Effect) assumption. Ad-
ditionally, it should be noted that the MR-Egger estimate of causal effect will be biased
towards a null result due to the NOME (No Measurement Error) assumption violation [34].
Therefore, we calculated the I2

GX statistics for assessing NOME violation and used simula-
tion extrapolation (SIMEX) [35] to adjust this potential bias when the I2

GX value is lower
than 0.9.

WME provided a consistent estimate of causality, even when up to 50% of genetic
variants were invalid. GSMR analysis extends the SMR method using all the top associ-
ated SNPs at a genome-wide significance level for the exposure as IVs to test causality.
Furthermore, unlike other methods, it accounts for both possible LD between SNPs and
the sampling errors in the estimated effect sizes of the instruments on the exposures [30].
Considering that TSMR is challenged by measurement errors, pleiotropy, weak instruments,
and selection bias, RAPS proposes an asymptotically averaged estimator by adjusting the
contour score to improve robustness and efficiency [33].

2.3.2. Sensitivity Analyses

We calculated the F statistics of the selected 303 SNPs to detect the strength of the IVs
at a threshold of F > 10, which is typically recommended in MR analysis. The F statistics

was formulated as F = R2(n − 1 − K)
(1 − R2)K

, where n represents the sample size, K represents the

number of IVs, and R2 represents the proportion of variation explained by the SNPs in the
exposure [18].

In addition, we assessed the heterogeneities between SNPs using Cochran’s Q-statistics
derived from the IVW estimate and the I2 statistic. The heterogeneity is more likely to be
caused by sampling error when the I2-value is closer to zero and is slight when the I2-value
is less than 0.25 [36].

We performed a leave-one-out analysis as a sensitivity analysis, accompanied with
IVW to evaluate the combined effect value of the remaining SNPs. If the combined effect is
consistent with the main effect analysis result, no single SNP has an excessive influence on
the MR analysis.

All analyses were performed in R software (Version 4.0.5) using the R package
(TwoSampleMR, gsmr and simex). Results were presented as the mean effect per 1-SD
genetically determined increase in BMI together with the 95% confidence interval (CI); a
two-sided p-value of less than 0.05 was considered statistically significant.

3. Results
3.1. Validity of Instrumental Variables

We included 303 SNPs explaining 2.5% (R2) of the BMI variation as IVs for BMI-AF
causal estimations. The F-statistics calculating from the first stage of the MR regression
model was 61 [18,37]. The effect estimates of the associations between each SNP and both
BMI and AF are reported in the Supplementary Table S1.
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3.2. Mendelian Randomization

Table 1 shows the MR estimates of increased BMI with risk of AF. In particular, the
results of five methods illustrated that the risk of AF increased with the increment of BMI,
and all of them achieved consistently statistical significance. Based on the IVW method,
we found a causal relationship between BMI and AF risk; a 1-standard deviation (SD)
genetically determined increased BMI was causally associated with an additional 42.5%
relative risk of AF (N = 303 SNPs; OR = 1.425; 95% CI = 1.346–1.509; p = 3.720 × 10−34). The
estimates from MR-Egger regression, WME, GSMR, and RAPS analyses were consistent
with these results (Table 1, Figures 1 and 2).

Table 1. MR estimates from each method of assessing the causal effect of BMI on the risk of AF.

MR Method No. of SNPs Beta SE p OR (95%CI)

Inverse
variance
weighted

303 0.354 0.029 3.720 × 10−34 1.425
(1.346–1.509)

MR-Egger 303 0.275 0.095 4.268 × 10−3 1.316
(1.092–1.587)

Weighted
median

estimator
303 0.336 0.045 7.330 × 10−14 1.399

(1.281–1.527)

RAPS 303 0.360 0.030 <1 × 10−6 1.433
(1.350–1.521)

GSMR 303 0.341 0.018 9.430 × 10−77 1.406
(1.357–1.458)

MR-Egger
SIMEX 303 0.361 0.028 6.180 × 10−30 1.435

(1.357–1.517)
Note: in the RAPS model, the estimated overdispersion parameter was minimal, so the simple model without
overdispersion was used. Abbreviations: BMI, body mass index; AF, atrial fibrillation; MR, Mendelian randomiza-
tion; SNP, single-nucleotide polymorphism; SE, standard error; OR, odds ratio; CI, confidence interval; RAPS,
the robust adjusted profile score; GSMR, generalized summary data-based Mendelian randomization; SIMEX,
simulation extrapolation.

Figure 1. Forest plot of six Mendelian Randomization estimators of the effect of body mass index on
atrial fibrillation. Abbreviations: MR, Mendelian randomization; OR, odds ratio; CI, confidence inter-
val; WMS, weighted median estimator; RAPS, the robust adjusted profile score; GSMR, generalized
summary data-based Mendelian randomization; SIMEX, simulation extrapolation.
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Figure 2. Scatter plot of SNPs associated with BMI and the risk of AF. The plot related the effect sizes
of the SNP−BMI association (x−axis, SD units) and the SNP−AF associations (y−axis, log (OR)) with
95% confidence intervals. The regression slopes of the lines correspond to causal estimates using three
Mendelian randomization methods (the inverse variance weighted method, MR-Egger regression,
and weighted median estimator). Abbreviations: BMI, body mass index; AF, atrial fibrillation; MR,
Mendelian randomization; SNP, single-nucleotide polymorphism.

Since the I2
GX-statistic of the combined genetic variants for BMI was 0.778, the MR-

Egger regression may violate the NOME assumption. Therefore, we performed a SIMEX
of the MR-Egger estimate, which improved the estimated value of causal effect with a
value of 1.435 closer to the result obtained by the IVW method (Table 1, Figure 1). The test
for potential horizontal pleiotropy suggests no significant violation (regression intercepts
of 0.0012, 95% CI = −0.0015–0.0040, p = 0.380; and −0.0002 95% CI = −0.0010–0.0006, p
= 0.610), for with or without SIMEX correction, respectively. Neither Cochran’s Q test
nor I2-value supported the presence of heterogeneity for the analyses of BMI with AF
(Q-statistic, 277.28; p = 0.84; I2 = 8.91%) (Table 2).

Table 2. The heterogeneity and pleiotropy tests of the instrumental variables.

Cochran’s Q Test
I2

MR-Egger MR-Egger SIMEX

Q p Intercept (95% CI) p Intercept (95% CI) p

277.28 0.84 8.91% 0.0012(−0.0015–0.0040) 0.38 −0.0002 (−0.0010–0.0006) 0.61

Note: I2 = (Q − df )/Q. Abbreviations: MR, Mendelian randomization; CI, confidence interval; SIMEX, simulation
extrapolation.

In addition, there was no single SNP showing a significant impact on the MR estima-
tion results based on leave-one-out analysis, with all significant estimates ranging from
1.42 to 1.43 (Supplementary Table S2). Figure 3 shows the distribution of the increased BMI
effect on AF risks was symmetrical when a single SNP was used as an IV.
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Figure 3. Funnel plot to assess the robustness. Scattering points represented the effect estimated using
a single SNP as an instrumental variable. The vertical lines denoted the overall estimate obtained by
the inverse variance weighted estimate and the MR-Egger regression.

4. Discussion

In this TSMR study, we found a positive causality between the BMI and risk of AF,
showing an average of 42.5% increased risk of AF with per 1-SD increment of in BMI.
Our findings are in line with previous observational studies [38,39]. Given the random
distribution of genotypes in the general population with respect to BMI, as well as the fixed
nature of germline genotypes, these results should be less susceptible to confounding and
reverse causation than those generated by observational studies.

Although the pathophysiological mechanisms sustaining the effect of BMI on AF
have yet to be elucidated entirely, as the surrogate marker of obesity, the findings in
previous studies suggest obesity may contribute to this unfortunate outcome through
multi-pathways, such as hemodynamic changes, altering epicardial adipose tissue, atrial
remodeling, and inflammation [40,41].

Excessive adipose accumulation increases total and central blood volume to help
perfuse excess tissue, which results in a high cardiac output state and left ventricular (LV)
enlargement. In most obese individuals, augmentation of cardiac output predisposes to
heart structure remodeling, which lays up the basis for AF [42,43]. In addition, neurohu-
moral and metabolic disorders caused by obesity, including increased insulin resistance,
activation of the renin–angiotensin–aldosterone system, and autonomic dysfunction, also
drive cardiac changes in the structure and function [44]. In recent years, the role of epi-
cardial adipose tissue, providing paracrine and autocrine functions in the development
of AF, has been recognized [45,46]. The adipokines secreted by epicardial fat may have a
significant pro-fibrotic effect on the atrial myocardium and could facilitate atrial myocardial
remodeling [46,47]. Other probable mechanisms, such as fat infiltration, inflammation, and
oxidative stress, caused by epicardial fat are also implicated in the initiation and mainte-
nance of arrhythmogenesis [45]. Although the mechanism has not been confirmed, studies
have shown that the amount of pericardial fat is associated with an increased prevalence of
AF [48]. In addition, the systemic pro-inflammatory state characterized by obesity is an
essential contributor as inflammation is strongly related to AF [49].

This TSMR analysis had several strengths; (1) Compared with traditional observa-
tional studies, the MR method enabled us to provide more reliable effect estimates as it
reduced the impact of confounders and reverse causality; (2) the included summary data
were based on individuals of European descent, which largely mitigated the effects of
population stratification; (3) the identification and selection of the IVs were through a
rigorous procedure, which reduced the bias due to the unsuitable IVs.
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Our study also had certain limitations: (1) we were unable to perform a stratified
analysis upon gender and age due to the lack of individual information in secondary data;
(2) the MR method assumes a linear association of exposure-outcome effect; hence the
nonlinear relationship between BMI and AF risk was unable to be assessed; (3) the European
ancestry of the samples hampered the promotion of our findings to other populations.

5. Conclusions

In summary, this TSMR study supports the genetic causality between the increased
BMI and AF risks. This finding adds to further evidence that maintaining a healthy BMI is
critical for individuals at risk of AF.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nu14091878/s1, Figure S1: Flow chart for quality con-
trol of the instrumental variables for MR analysis; Table S1: Characteristics of the SNPs associated
with BMI and with AF; Table S2: The combined effect estimators of the remaining 302 SNPs obtained
by IVW after removing each SNP.
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