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Abstract: Although observational studies have shown positive associations between body mass 

index (BMI) and the risk of atrial fibrillation (AF), the causal relationship is still uncertain owing to 

the susceptibility to confounding and reverse causation. This study aimed to examine the potential 

causality of BMI on AF by conducting a two-sample Mendelian randomization (TSMR) study. 

Methods: The independent genetic variants associated with BMI (n = 303) at the genome-wide sig-

nificant level were derived as instrumental variables (IV) from the Genetic Investigation of An-

thropometric Traits (GIANT) consortium consisting of 681,275 individuals of European ancestry. 

We then derived the outcome data from a GWAS meta-analysis comprised of 60,620 cases and 

970,216 controls of European ancestry. The TSMR analyses were performed in five methods, 

namely inverse variance weighted (IVW) method, MR-Egger regression, the weighted median 

estimator (WME), the generalized summary data-based Mendelian randomization (GSMR), and 

the robust adjusted profile score (RAPS), to investigate whether BMI was causally associated with 

the risk of AF. Results: We found a genetically determined 1–standard deviation (SD) increment of 

BMI causally increased a 42.5% risk of AF (OR = 1.425; 95% CI, 1.346 to 1.509) based on the IVW 

method, which was consistent with the results of MR-Egger regression, WME, GSMR, as well as 

RAPS. The Mendelian randomization assumptions did not seem to be violated. Conclusion: This 

study provides evidence that higher BMI causally increased the risk of AF, suggesting control of 

BMI and obesity for prevention of AF. 
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1. Introduction 

Atrial fibrillation (AF), the most common type of persistent clinical tachyarrhyth-

mia, affected around 46.3 million individuals worldwide in 2016, according to The Global 

Burden of Disease project [1]. The current estimated prevalence of AF in adults is be-

tween 2% and 4% across the world [2], showing a 3-fold rise over the last 50 years based 

on data from the Framingham Heart Study [3]. It is biologically plausible that AF in-

creases the risk of stroke and heart failure [4], resulting in the detrimental consequences 

of quality of life, disability, and even death. Moreover, given its high prevalence, AF is 

reported to be among the most expensive lifetime treatment of all diseases, which causes 

a considerable burden to the healthcare system [5]. 

As a surrogate marker of obesity, body mass index (BMI) has been a significant risk 

factor for obesity-related diseases, including AF. Several observational studies have re-
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ported a positive association between BMI and the risk of AF [6–9]. Nevertheless, it 

should be noted that the observed associations could not be well determined due to the 

limitations of conventional statistical methods, namely potential confounders either or 

both reverse causalities [10]. 

Mendelian randomization (MR) is a method that can be of support to resolve these 

limitations [11–13]. In such cases, MR eliminates systematic biases by selecting genetic 

variants associated with exposure as instrumental variables (IVs), analogous to random-

ized controlled trials (RCT), alleles are allocated randomly at conception according to 

Mendel’s second law [12]. Through that, confounders are randomly distributed 

throughout the population. Followed by identifying the common variants in outcome 

data, the fundamental guideline utilized in MR can be used to contemplate the effect of a 

suspected environmental exposure (e.g., BMI) on disease risk. Given credit to the pri-

marily increased genome-wide association studies (GWASs) in the past decade, other 

studies already used MR to establish causation between common cardiovascular diseases 

and blood pressure [14], tumor necrosis factor levels [15], and other risk factors [16,17]; 

however, the evidence for the effect of BMI on AF is still limited. 

To overcome the limitations of conventional observational studies and shed light on 

whether BMI is a cause of AF, we used a two-sample Mendelian randomization (TSMR) 

approach and estimated associations between single nucleotide polymorphisms associ-

ated with BMI and risk of AF based on two independent publicly available GWASs 

[18,19]. 

2. Materials and Methods 

2.1. Data Source 

The exposure variable data for the genetic variants associated with BMI was derived 

from a GWAS meta-analysis in the Genetic Investigation of Anthropometric Traits 

(https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_da

ta_files., accessed on 28 April 2021) consortium (n = 681,275 individuals of European an-

cestry) [20]; similarly, the outcome variable data for AF was derived from a GWAS me-

ta-analysis in six studies (The Nord-Trøndelag Health Study (HUNT), deCODE, the 

Michigan Genomics Initiative (MGI), DiscovEHR, UK Biobank, and the AFGen Consor-

tium; http://csg.sph.umich.edu/willer/public/afib2018, accessed on 28 April 2021), which 

featured 60,620 AF cases and 970,216 controls of European ancestry [21]. 

2.2. Instrumental Variable Selection 

The extracted genetic variants were selected as IVs to estimate causal effects of BMI 

on the risk of AF in accordance with the assumptions as follows: (1) being predictive of 

BMI, (2) being independent of confounders, and (3) no alteration of the outcome via an 

independent pathway other than BMI [22]. We firstly applied 751 SNPs associated with 

BMI at a genome-wide significance (p < 5 × 10−8). After pruning for linkage disequilibrium 

(LD) (r2 < 0.001; distance < 1000 kb), we obtained 507 independent SNPs. Each of the 507 

BMI-associated SNPs was then examined the potential violations of the assumptions 2 

and 3 based on the Phenoscanner database [23] 

(http://www.phenoscanner.medschl.cam.ac.uk/, accessed on 30 April 2021). Those SNPs, 

which significantly associated with any known risk factor (e.g., age, cardiovascular dis-

eases, inflammation, dyslipidemia, and diabetes) for AF at a Bonferroni-correction p level 

(p < 9.9 × 10−5; 0.05/507) were excluded from the further analysis. In addition, the SNPs 

with other pleiotropic pathways (e.g., physical inactivity, smoking, and drinking) were 

also removed [24–27]. The remaining SNPs were aggregated with the AF GWAS data-

base, removing 6 SNPs that were not included in the AF database, and 10 palindromic 

SNPs with intermediate allele frequencies. In addition, we used the RacialMR R package 

[28] to perform Cochran’s Q test on the remaining SNPs and excluded 43 heterogeneous 

SNPs. We also examined possible pleiotropy of the selected SNPs by using the MR plei-
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otropy residual sum and outlier (MR-PRESSO) test [29] and the HEIDI (heterogeneity in 

dependent instrument) approach based on the GSMR analysis [30], in which 7 SNPs were 

excluded. In total, we applied 303 valid SNPs as IVs (Supplementary Figure S1). 

2.3. Statistical Analysis 

2.3.1. Mendelian Randomization Analyses 

We employed the inverse variance weighted (IVW) method as the primary analysis 

to evaluate the causal effect between BMI and AF in our TSMR study. IVW calculates the 

exposure-outcome effect corresponding to each SNP using the Wald Ratio method, then 

performs a weighted linear regression with a forced intercept of zero. It achieved higher 

estimate accuracy and test power when IVs satisfied the three underlying assumptions 

[19]. To avoid the interference of unknown and unmeasurable confounders, we per-

formed the MR-Egger regression (MR-Egger) [31], the weighted median estimator 

(WME) [32], the generalized summary data-based Mendelian randomization (GSMR) 

[30], and the robust adjusted profile score (RAPS) [33] to test the robustness of our results.  

A reliable MR-Egger assessment of the causal effect is possible if the strength of the 

genetic instrument does not correlate with the impact of the instrument on the outcome, 

known as the InSIDE (Instrument Strength Independent of Direct Effect) assumption. 

Additionally, it should be noted that the MR-Egger estimate of causal effect will be bi-

ased towards a null result due to the NOME (No Measurement Error) assumption viola-

tion [34]. Therefore, we calculated the ���
�  statistics for assessing NOME violation and 

used simulation extrapolation (SIMEX) [35] to adjust this potential bias when the ���
�  

value is lower than 0.9.  

WME provided a consistent estimate of causality, even when up to 50% of genetic 

variants were invalid. GSMR analysis extends the SMR method using all the top associ-

ated SNPs at a genome-wide significance level for the exposure as IVs to test causality. 

Furthermore, unlike other methods, it accounts for both possible LD between SNPs and 

the sampling errors in the estimated effect sizes of the instruments on the exposures [30]. 

Considering that TSMR is challenged by measurement errors, pleiotropy, weak instru-

ments, and selection bias, RAPS proposes an asymptotically averaged estimator by ad-

justing the contour score to improve robustness and efficiency [33]. 

2.3.2. Sensitivity Analyses 

We calculated the F statistics of the selected 303 SNPs to detect the strength of the 

IVs at a threshold of F > 10, which is typically recommended in MR analysis. The F sta-

tistics was formulated as F=
R2(n - 1 - K)

�1 - R2�K
, where n represents the sample size, K represents 

the number of IVs, and R2 represents the proportion of variation explained by the SNPs in 

the exposure [18]. 

In addition, we assessed the heterogeneities between SNPs using Cochran’s 

Q-statistics derived from the IVW estimate and the I2 statistic. The heterogeneity is more 

likely to be caused by sampling error when the I2-value is closer to zero and is slight 

when the I2-value is less than 0.25 [36]. 

We performed a leave-one-out analysis as a sensitivity analysis, accompanied with 

IVW to evaluate the combined effect value of the remaining SNPs. If the combined effect 

is consistent with the main effect analysis result, no single SNP has an excessive influence 

on the MR analysis. 

All analyses were performed in R software (Version 4.0.5) using the R package 

(TwoSampleMR, gsmr and simex). Results were presented as the mean effect per 1-SD 

genetically determined increase in BMI together with the 95% confidence interval (CI); a 

two-sided p-value of less than 0.05 was considered statistically significant. 
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3. Results 

3.1. Validity of Instrumental Variables 

We included 303 SNPs explaining 2.5% (��) of the BMI variation as IVs for BMI-AF 

causal estimations. The F-statistics calculating from the first stage of the MR regression 

model was 61 [18,37]. The effect estimates of the associations between each SNP and both 

BMI and AF are reported in the Supplementary Table S1. 

3.2. Mendelian Randomization 

Table 1 shows the MR estimates of increased BMI with risk of AF. In particular, the 

results of five methods illustrated that the risk of AF increased with the increment of 

BMI, and all of them achieved consistently statistical significance. Based on the IVW 

method, we found a causal relationship between BMI and AF risk; a 1-standard devia-

tion (SD) genetically determined increased BMI was causally associated with an addi-

tional 42.5% relative risk of AF (N = 303 SNPs; OR = 1.425; 95% CI = 1.346–1.509; p = 

3.720 × 10−34). The estimates from MR-Egger regression, WME, GSMR, and RAPS anal-

yses were consistent with these results (Table 1, Figures 1 and 2). 

 

Figure 1. Forest plot of six Mendelian Randomization estimators of the effect of body mass index 

on atrial fibrillation. Abbreviations: MR, Mendelian randomization; OR, odds ratio; CI, confidence 

interval; WMS, weighted median estimator; RAPS, the robust adjusted profile score; GSMR, gen-

eralized summary data-based Mendelian randomization; SIMEX, simulation extrapolation. 

Table 1. MR estimates from each method of assessing the causal effect of BMI on the risk of AF. 

MR Method No. of SNPs Beta SE P OR (95%CI) 

Inverse variance weighted 303 0.354 0.029 3.720 × 10-34 1.425 (1.346–1.509) 

MR-Egger 303 0.275 0.095 4.268 × 10-3 1.316 (1.092–1.587) 

Weighted median estimator 303 0.336 0.045 7.330 × 10-14 1.399 (1.281–1.527) 

RAPS 303 0.360 0.030 <1 × 10-6  1.433 (1.350–1.521) 

GSMR 303 0.341 0.018 9.430 × 10-77 1.406 (1.357–1.458) 

MR-Egger SIMEX 303 0.361 0.028 6.180 × 10-30  1.435 (1.357–1.517) 

Note: in the RAPS model, the estimated overdispersion parameter was minimal, so the simple 

model without overdispersion was used. Abbreviations: BMI, body mass index; AF, atrial fibrilla-

tion; MR, Mendelian randomization; SNP, single-nucleotide polymorphism; SE, standard error; 

OR, odds ratio; CI, confidence interval; RAPS, the robust adjusted profile score; GSMR, generalized 

summary data-based Mendelian randomization; SIMEX, simulation extrapolation. 

Since the ���
� -statistic of the combined genetic variants for BMI was 0.778, the 

MR-Egger regression may violate the NOME assumption. Therefore, we performed a 

SIMEX of the MR-Egger estimate, which improved the estimated value of causal effect 

with a value of 1.435 closer to the result obtained by the IVW method (Table 1, Figure 1). 

The test for potential horizontal pleiotropy suggests no significant violation (regression 

intercepts of 0.0012, 95%CI = −0.0015–0.0040, p = 0.380; and −0.0002 95%CI = −0.0010–

0.0006, p = 0.610), for with or without SIMEX correction, respectively. Neither Cochran’s 

Q test nor I2-value supported the presence of heterogeneity for the analyses of BMI with 

AF (Q-statistic, 277.28; p = 0.84; I2 = 8.91%) (Table 2). 
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Table 2. The heterogeneity and pleiotropy tests of the instrumental variables. 

Cochran’s Q Test 
I2 

MR-Egger MR-Egger SIMEX 

Q p Intercept (95%CI) p Intercept (95%CI) p 

277.28 0.84 8.91% 0.0012(−0.0015–0.0040) 0.38 −0.0002 (−0.0010–0.0006) 0.61 

Note: I2 = (Q − df)/Q. Abbreviations: MR, Mendelian randomization; CI, confidence interval; SIMEX, 

simulation extrapolation. 

In addition, there was no single SNP showing a significant impact on the MR esti-

mation results based on leave-one-out analysis, with all significant estimates ranging 

from 1.42 to 1.43 (Supplementary Table S2). Figure 3 shows the distribution of the in-

creased BMI effect on AF risks was symmetrical when a single SNP was used as an IV. 

 

Figure 2. Scatter plot of SNPs associated with BMI and the risk of AF. The plot related the effect 

sizes of the SNP−BMI association (x−axis, SD units) and the SNP−AF associations (y−axis, log (OR)) 

with 95% confidence intervals. The regression slopes of the lines correspond to causal estimates 

using three Mendelian randomization methods (the inverse variance weighted method, MR-Egger 

regression, and weighted median estimator). Abbreviations: BMI, body mass index; AF, atrial fi-

brillation; MR, Mendelian randomization; SNP, single-nucleotide polymorphism. 

 

Figure 3. Funnel plot to assess the robustness. Scattering points represented the effect estimated 

using a single SNP as an instrumental variable. The vertical lines denoted the overall estimate ob-

tained by the inverse variance weighted estimate and the MR-Egger regression. 
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4. Discussion 

In this TSMR study, we found a positive causality between the BMI and risk of AF, 

showing an average of 42.5% increased risk of AF with per 1-SD increment of in BMI. Our 

findings are in line with previous observational studies [38,39]. Given the random dis-

tribution of genotypes in the general population with respect to BMI, as well as the fixed 

nature of germline genotypes, these results should be less susceptible to confounding and 

reverse causation than those generated by observational studies. 

Although the pathophysiological mechanisms sustaining the effect of BMI on AF 

have yet to be elucidated entirely, as the surrogate marker of obesity, the findings in 

previous studies suggest obesity may contribute to this unfortunate outcome through 

multi-pathways, such as hemodynamic changes, altering epicardial adipose tissue, atrial 

remodeling, and inflammation [40,41].  

Excessive adipose accumulation increases total and central blood volume to help 

perfuse excess tissue, which results in a high cardiac output state and left ventricular 

(LV) enlargement. In most obese individuals, augmentation of cardiac output predis-

poses to heart structure remodeling, which lays up the basis for AF [42,43]. In addition, 

neurohumoral and metabolic disorders caused by obesity, including increased insulin 

resistance, activation of the renin–angiotensin–aldosterone system, and autonomic dys-

function, also drive cardiac changes in the structure and function [44]. In recent years, the 

role of epicardial adipose tissue, providing paracrine and autocrine functions in the de-

velopment of AF, has been recognized [45,46]. The adipokines secreted by epicardial fat 

may have a significant pro-fibrotic effect on the atrial myocardium and could facilitate 

atrial myocardial remodeling [46,47]. Other probable mechanisms, such as fat infiltration, 

inflammation, and oxidative stress, caused by epicardial fat are also implicated in the in-

itiation and maintenance of arrhythmogenesis [45]. Although the mechanism has not 

been confirmed, studies have shown that the amount of pericardial fat is associated with 

an increased prevalence of AF [48]. In addition, the systemic pro-inflammatory state 

characterized by obesity is an essential contributor as inflammation is strongly related to 

AF [49]. 

This TSMR analysis had several strengths; (1) Compared with traditional observa-

tional studies, the MR method enabled us to provide more reliable effect estimates as it 

reduced the impact of confounders and reverse causality; (2) the included summary data 

were based on individuals of European descent, which largely mitigated the effects of 

population stratification; (3) the identification and selection of the IVs were through a 

rigorous procedure, which reduced the bias due to the unsuitable IVs. 

Our study also had certain limitations: (1) we were unable to perform a stratified 

analysis upon gender and age due to the lack of individual information in secondary 

data; (2) the MR method assumes a linear association of exposure-outcome effect; hence 

the nonlinear relationship between BMI and AF risk was unable to be assessed; (3) the 

European ancestry of the samples hampered the promotion of our findings to other 

populations. 

5. Conclusions 

In summary, this TSMR study supports the genetic causality between the increased 

BMI and AF risks. This finding adds to further evidence that maintaining a healthy BMI 

is critical for individuals at risk of AF. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/article/10.3390/nu14091878/s1, Figure S1: Flow chart for quality control of the in-

strumental variables for MR analysis; Table S1: Characteristics of the SNPs associated with BMI 

and with AF; Table S2: The combined effect estimators of the remaining 302 SNPs obtained by IVW 

after removing each SNP. 
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