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Bikash K. Pradhan 1, Maciej Jarzębski 2 , Anna Gramza-Michałowska 3,* and Kunal Pal 1,*

1 Department of Biotechnology and Medical Engineering, National Institute of Technology,
Rourkela 769008, India; bikashpradhan21@gmail.com

2 Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life
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Abstract: The effect of coffee (caffeinated) on electro-cardiac activity is not yet sufficiently researched.
In the current study, the occurrence of coffee-induced short-term changes in electrocardiogram
(ECG) signals was examined. Further, a machine learning model that can efficiently detect coffee-
induced alterations in cardiac activity is proposed. The ECG signals were decomposed using three
different joint time–frequency decomposition methods: empirical mode decomposition, discrete
wavelet transforms, and wavelet packet decomposition with varying decomposition parameters.
Various statistical and entropy-based features were computed from the decomposed coefficients.
The statistical significance of these features was computed using Wilcoxon’s signed-rank (WSR) test
for significance testing. The results of the WSR tests infer a significant change in many of these
parameters after the consumption of coffee (caffeinated). Further, the analysis of the frequency
bands of the decomposed coefficients reveals that most of the significant change was localized in
the lower frequency band (<22.5 Hz). Herein, the performance of nine machine learning models is
compared and a gradient-boosted tree classifier is proposed as the best model. The results suggest
that the gradient-boosted tree (GBT) model that was developed using a db2 mother wavelet at
level 2 decomposition shows the highest mean classification accuracy of 78%. The outcome of the
current study will open up new possibilities in detecting the effects of drugs, various food products,
and alcohol on cardiac functionality.

Keywords: caffeinated coffee; caffeine; the short-term effect of coffee; ECG; machine learning

1. Introduction

Caffeine is the most widely used psychoactive compound globally. A wide range
of food products (e.g., tea, coffee, energy drinks, soft drinks, chocolate, etc.) contains
caffeine. Coffee is the most usual form of caffeine consumption among these food products.
Also, it is the most researched beverage by the scientific community [1]. The ingestion of
caffeine prompts physiological and behavioral effects in the human body [2]. Many people
experience an active mood and increased concentration after its consumption. Prolonged
exposure to coffee/caffeine also influences various organs and organ systems. Caffeine
stimulates autonomic nervous system (ANS) activities with increased catecholamine se-
cretion. It is essential to understand the chemical nature of caffeine and its mechanism
of absorption in the human body. After ingestion, caffeine gets quickly absorbed in the
gastrointestinal tract [3]. Then, it moves through the cellular membrane and circulates
to tissues. After the liver metabolizes the caffeine, it produces three metabolites, namely
paraxanthine, theophylline, and theobromine [4,5]. The traces of these metabolites can be
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found in the bloodstream within 10–45 min of caffeine consumption [6,7]. Because of its
excellent lipid solubility, caffeine can easily cross the blood–brain barrier and be excreted
through the kidneys in due course of time. Depending upon the level of tissue uptake and
the urinary clearance, the circulatory concentration of these metabolites reduces by 50–70%
within 3–6 h of consumption. Several mechanisms have been reported to explain the effect
of caffeine on human health. However, rarely is there a single mechanism that thoroughly
explains its physiological effects. The most significant mechanism is the interaction of caf-
feine and adenosine. Adenosine is one of the most common vasodilators whose inhibition
may cause reflex sympathetic activation. The consumption of caffeine blocks the adenosine
receptors A1 and A2, influencing the autonomic nervous system (ANS) [8]. This prevents
adenosine metabolism (adenosis) and consequently affects central nervous system (CNS)
activity by releasing catecholamine. Also, the presence of excess adenosine stimulates the
vasomotor, medullary, and respiratory networks [9]. The ANS is responsible for controlling
many of the physiological functions of the body, including the vagal activities. The vagal
activities include the contraction of the heart muscles, maintaining the heart rate, and
the peripheral resistance of the blood vessels. The most common method that is used to
detect alteration in the ANS is heart rate variability (HRV) analysis. Several studies in
the literature have used HRV to find the short-term as well as the long-term effects of
the consumption of caffeine and coffee on the ANS and vagal activities. In their review,
Koenig et al. reported that the consumption of caffeinated beverages increases the HRV
parameters [10]. Dömötör et al. have evaluated the effects of coffee on systolic blood
pressure, deviation in the normal heartbeat interval, and heart rate [11]. The study showed
no significant impact on any of the physiological parameters. In other research, the authors
reported that the detrimental effects of coffee are only due to unhealthy habits such as
smoking, alcohol use, etc. [12]. Also, adjusting these confounding factors weakens the
association between coffee and vagal activities and makes the effect insignificant. Sarshin
et al. have performed a dose-dependent study that found a correlation between the effect
of caffeine on the autonomic cardiac activity at different caffeine dosages [13]. The authors
have reported increased autonomic cardiac activity post-exercise in caffeine consumers.
However, no significant effect of varying dosages of caffeine was observed. Similar results
were found by Karayigit et al., showing improved muscular endurance [14]. Caffeine’s
effect on the risk of cardiovascular diseases was also studied by Calderia et al. [15] and
Gaeini et al. [16]. These studies reported no correlation between coffee and the risk of
cardiovascular diseases. However, an increased QTc interval was reported after consuming
caffeinated beverages in other research. An increased QTc interval is an indicator of arterial
fibrillation [17,18]. Further, it has been reported that the consumption of warm water and
decaffeinated coffee had a similar effect on the cardiac autonomic system as that of caf-
feinated coffee [19]. The findings of the aforesaid studies are mixed and fluctuant, making
the correlation between coffee and cardiac autonomic function unclear. However, much
of the literature suggests that caffeine triggers a change in HRV measures. If this is to be
believed, a significant difference in cardiac functioning is also expected. These changes can
be assessed by analyzing the patterns of the ECG signals.

The electrocardiogram (ECG) is the most widely used non-invasive method that tracks
the changes in electro-cardio physiology and diagnoses cardiac abnormalities. Earlier stud-
ies have addressed the adverse and harmful effects of coffee in the cardiovascular system,
including QRS tachycardia due to caffeine intoxication [20], an increase in the number of
ventricular premature beats [21], a decrease in the right ventricular refractory period [21],
and a decrease in the heart rate [22]. Though the studies mentioned above strongly suggest
changes in electro-cardio physiology after consuming coffee, various authors also have
reported contradicting findings [23,24]. Hence, researchers are now shifting to alternate
methods to find these effects on the cardiac system. Usually, the analysis of the ECG
signals follow several steps, including pre-processing, feature extraction, feature selection,
and classification. The most important aspect of signal pre-processing is removing the
unwanted noise from the recorded signal. The source of the noise may be due to improper
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electrode contact, motion artifacts, muscle contraction, baseline wander, etc. The signal gets
deformed after interfering with the noise, resulting in an abnormal recording. Numerous
noise removal methods that employ advanced state-of-the-art algorithms such as deep
learning, convolutional neural network, adaptive discrete wavelet transform, etc., have
been reported recently [25–27]. However, the denoising methods depend on the type of
noise present within a signal. The details of the denoising method followed in this study are
represented in Section 2.2. The feature that contains the most valuable and discriminative
information of a signal can be obtained either from the time–domain method, frequency–
domain method, joint time–frequency method, or the statistical method. However, these
methods have not yet been sufficiently explored for the prospect of detecting coffee-induced
effects in electro-cardio physiology. In a recent study [28], it has been reported that sta-
tistical and entropy-based features can efficiently see coffee-induced changes in an ECG.
Nevertheless, these features only reflect the variations of the signals in the time domain.
Due to the non-stationary nature of the ECG signal, the time–domain analysis method is
sensitive to the distortion of the waveform. Further, the frequency–domain analysis method
is based on the hypothesis that the input signal is stationary [29], making the application of
the time–frequency analysis method foreseeable. The main advantage of time–frequency
analysis is that it offers a simultaneous signal interpretation in both time and frequency.

Considering these facts, the current study employs time–frequency decomposition-
based methods for the detection of coffee-induced effects on ECG signals. The overview of
the study is represented in Figure 1. The ECG signals were recorded from the volunteers
before and after their consumption of the coffee. Segments of 5 s each were extracted from
the ECG signal recordings. Herein, three widely used decomposition methods, namely
empirical mode decomposition (EMD), discrete wavelet transform (DWT), and wavelet
packet decomposition (WPD), were employed for each 5 s ECG segment. The statistical
and entropy-based features were computed from each decomposed coefficient. Wilcoxon’s
signed-rank test was used to identify the features, which showed a statistically significant
change after coffee consumption. Also, the changes in the extracted features at the different
frequency bands were assessed using the decomposed coefficients. This was performed
in order to find the range of frequencies at which the maximum change in these features
was observed. Further, the two groups of data (before and after applying the stimulus)
were classified using different machine learning algorithms to automatically detect the
alteration in the ECG pattern. The study evaluated the performance of these machine
learning algorithms along with the decomposition-based methods and proposed a machine
learning model that can best detect the coffee-induced short-term effect on the ECG signals.
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2. Materials and Methods
2.1. Dataset

Fifteen male volunteers aged between 18 and 26 years who were students of the
National Institute of Technology Rourkela were included in the current study. All of the
volunteers were leading sedentary life and had no prior history of smoking or alcohol ad-
diction. The inclusion of these selection criteria reduces the effect of lifestyle and addictive
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behavior on the participants’ autonomic nervous system activities. Before recording the
EGC signals, written permission was taken from the Institute Ethical Committee (Letter no:
Ref.# NITRKL/IEC/FORM-2/002; dated 16 August 2017). The details of the experimental
procedure were verbally explained to all of the participants. Thereafter, the volunteers who
were willing to participate in the study were asked to sign a consent form in order to record
their agreement.

2.2. Pre-Processing and Noise Elimination

The participants were informed about the place and timing of the recording in advance.
They were requested to abstain from food for 2 h prior to the recording. On reaching the
recording station on the day of recording, they were asked to sit in a wooden chair in
a relaxed position. The ECG signals were recorded in Lead-I configuration for 5 min
(Category NS) using the Vernier EKG sensor (Vernier Software & Technology Pvt. Ltd.,
Beaverton, OR, USA). After acquiring the pre-stimulus signal, the volunteers were served
a hot cup of coffee (100 mL, 24.89 mg caffeine). After 10 min, the ECG signals were
re-recorded for another 5 min (Category S).

During the acquisition of the ECG signal, the sampling frequency was maintained
at 1000 Hz. A series of low-pass and high-pass filters with cut-off frequencies of 0.01 and
120 Hz were implemented in the acquisition program in order to band-limit the acquired
signal. The powerline noise was rejected by using a notch filter (cut-off frequency: 50 Hz).
The remaining noises (wideband noise) present in the signals were eliminated using the
wavelet denoising technique. For this purpose, the DWT-based denoising method was
employed. The literature has reported that the inverse DWT method can potentially denoise
a signal [30]. Denoising can be done through signal reconstruction by choosing a set of
details and approximation coefficients [31]. The ECG signals were decomposed using
the DWT method (db6, level-8) and reconstructed using the detailed coefficients (D5–D8).
The denoised ECG signals were then downsampled to 360 Hz. From the recorded 5 min
signals, ECG segments of 5 s duration were extracted for further processing. A total of
630 segments were extracted from each group (pre-and post-coffee consumption), which
were subsequently used for further analysis.

2.3. ECG Decomposition Methods
2.3.1. Empirical Mode Decomposition

Empirical mode decomposition (EMD) is an iterative method that splits a signal
into different frequency bands (intrinsic mode function, IMF [32]) and a residue, which
corresponds to the trend of the signal. The method can extract instantaneous frequency
information from nonlinear, non-stationary signals. It engages several computational
stages that start with computing the upper and lower envelopes of a time-series signal
(x(t)) using cubic spline interpolation. The mean (m) of the lower and upper envelopes
are then subtracted from the original signal to obtain the first component (h(t) = x(t) −m).
The signal component, h(t), is regarded as an IMF if the upper and lower envelopes of
h(t) are symmetric and the number of zero-crossings as well as the number of extrema are
equal or differ at most by one [33]. Once the signal component is identified as an IMF, it is
subtracted from the original signal in order to get the residue. The next IMF is calculated by
following the above steps with the residue as the input signal. This process continues until
the final residue becomes constant, or the extraction of any additional IMF is not possible.

2.3.2. Discrete Wavelet Transform

In signal processing, discrete wavelet transform is a widely used feature extraction
technique [27]. The main idea behind this decomposition method is to divide an original
signal into different resolutions by using low pass and high pass filters. The time–frequency
resolution of the original waveform can be achieved using a mother wavelet ‘Ψ(t)’. In
the first level of decomposition, the signal is decomposed into approximate (the low
pass-filtered signal component) and detailed (the high pass-filtered signal component) coef-
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ficients [34]. Thereafter, the approximate coefficients are decomposed into the approximate
and detailed coefficients (Figure 2). There are two ways of decomposing the original signal;
i.e., either using an undecimated or a decimated method. Herein, the decimated DWT was
employed, where the time resolution of the decomposed signal is halved. Consequently, the
frequency resolution of the decomposed signal is doubled from the value of the previous
level. The number of nodes that are obtained after an ‘n’ level of decomposition is n + 1.
The absolute function that is used to obtain the time–frequency resolution using the mother
wavelet is represented in Equation (1):

Ψ(t) =
1√

s
Ψ(t− u)/s (1)

where Ψ(t) is the mother wavelet, s is scale, and u is the translation parameter.
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2.3.3. Wavelet Packet Decomposition

Wavelet packet decomposition is an extension of DWT [35]. Unlike DWT, where
the decompositions only occur in the approximate coefficients, WPD decomposes both
the approximate and detailed coefficients (Figure 3). Since WPD can be represented as a
continuous-time wavelet decomposition, sampled at the various frequency in each decom-
position level, it shows better frequency resolution than DWT. A WPD of level n produces
2n wavelet coefficients, which is much higher when compared to the outcome of DWT,
where only n + 1 number of coefficients are generated. Similar to DWT, herein, the deci-
mated WPD was followed. The wavelet decomposition function for a given decomposition
level ‘n’ and time ‘tn’ is represented by Equation (2).

dntn = x(t)Ψn

(
t− tn

2n

)
(2)

where x(t) is the input signal and Ψn is the decomposition filter at level n.

2.4. Feature Extraction and Selection

Feature extraction is an essential and vital step in any classification-based study [36].
It is used to extract the most informative, non-redundant values from a signal that will
be used as input to the classification algorithm. Three types of features, namely lower-
order statistical (LOS) features (mean, variance, and median) [36], higher-order statistical
(HOS) features (kurtosis and skewness) [37], and entropy-based features (Shannon entropy,
log energy entropy, Tsallis entropy, and Rényi entropy) [38], were extracted from each
coefficient (DWT and WPD) and IMF (EMD) of the 5 s ECG signals. In other words, nine
features (Figure 4) were computed from each decomposed signal and IMF. A statistical
analysis method called Wilcoxon’s signed-rank test (WSR) was followed to obtain the
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significant features from the pool of features. The WSR test is a nonparametric statistical
testing method that is purely designed for two-paired datasets (before and after) where
the features show a non-normal behavior. The normality of the features was tested using
the Shapiro–Wilk test [39]. A feature is considered statistically significant in the WSR test
when the p-value is less than 0.05.
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2.5. Classification Using Machine Learning Models

Machine learning is a technology that is used to develop computer algorithms that
emulate human intelligence. It can deal with complex problems where conventional
methods (e.g., statistical, observational, computational, etc.) are ineffective. Thus, it has
been effectively used in diverse fields such as computer vision, disease detection, time-series
data analysis, object and image classification, pattern recognition, etc. The present study
employed nine different machine learning (ML) models, namely the generalized logistic
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model (GLM), linear regression (LR), decision tree (DT), naïve Bayes (NB), random forest
(RF), gradient-boosted tree (GBT), support vector machine (SVM), fast large margin (FLM),
and deep learning (DL). A brief description of these ML models can be found in [38,40].
Herein, the employed DL model was based on a multi-layer feed-forward neural network.
The model was trained using stochastic gradient descent, which uses a back-propagation
algorithm. These models were developed using RapidMiner software (Educational Version
9.5, RapidMiner Inc., Boston, MA, USA). The auto model provides a visual environment for
developing automated classification and prediction models. Automatic feature engineering
(AFE) was also applied during the model design. The AFE is a robust utility that helps to
internally select a subset of features that are best suitable for the model performance. This
can be achieved by creating hundreds of ML models and comparing the model performance
with each possible feature combination [41]. Finally, the model with optimal features was
considered. AFE helps in enhancing the performance of an ML model.

2.6. Validation and Evaluation of the ML Models

The performance of the ML models was evaluated using various matrices, namely
accuracy, sensitivity, specificity, precision, and F-measure [42]. It is customary to validate
the performance of the trained ML model with an independent set of data, also known as
the validation set. The auto model uses a “multiset holdout” validation method that splits
the input data in a 60:40 ratio. Here, the first part was used for training, and the second
part was used for testing. The test data was further divided into seven subsets, and the
performance of the developed model was computed using each subgroup. Then, the final
performance was assessed as the average of all cases.

3. Results
3.1. EMD Analysis

In EMD, six IMFs were computed from each of the ECG segments. Figure 5 represents
the typical IMFs of two 5 s ECG signals recorded before and after the consumption of
coffee. Several statistical and entropy-based features were computed from each of the IMFs.
Since most of the extracted features showed a non-normal behavior in the Shapiro–Wilk
test [39] a nonparametric testing method (WSR) was used to test the statistical significance
of these features. The list of significant features (p-value < 0.05) obtained from each IMF is
represented in Figure 6. Finally, these features were used as the input for the classification
models. While evaluating the performance of the ML models, the number of IMFs varied
from one to six and the ML model that showed the optimum performance (in terms of
accuracy) in each case is tabulated in Table 1. Other performance indices, namely the AUC,
precision, F-measure, sensitivity, and specificity of the most accurate models, are also listed
in Table 1. It was observed that the DL model showed a maximum accuracy of 57.50%
when the number of IMFs was 4. The details of all of the ML models that were developed
have been given in Supplementary Material Table S1.

Table 1. Classification performance of the best ML models generated from the EMD-based processing
of the ECG signals at different decomposition levels.

No. of IMFs ML Model Accuracy Precision F-Measure Sensitivity Specificity AUC

1 DL 56.11 ± 2.11 54.08 ± 1.59 65.21 ± 0.89 82.22 ± 2.48 30.00 ± 6.02 0.615 ± 0.055

2 GBT 53.61 ± 2.52 52.77 ± 1.91 59.25 ± 3.64 67.78 ± 7.24 39.44 ± 5.34 0.579 ± 0.019

3 FLM 53.89 ± 2.67 53.10 ± 2.26 59.69 ± 2.02 68.33 ± 4.21 39.44 ± 6.63 0.551 ± 0.041

4 DL 57.50 ± 2.32 57.12 ± 2.08 58.48 ± 3.01 60.00 ± 4.65 55.00 ± 3.04 0.587 ± 0.047

5 DL 53.06 ± 2.06 52.10 ± 1.39 61.84 ± 1.75 76.11 ± 3.17 30.00 ± 3.62 0.565 ± 0.050
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3.2. DWT Analysis

The DWT-based decomposition was performed on each of the 5 s ECG signals us-
ing a range of decomposition levels (levels: 2–5) and Daubechies mother wavelets (db2,
db4, db6, and db8). A representation of the obtained decomposed signals after level-4
decomposition using db4 is represented in Figure 7. Nine different features were extracted
from each of the decomposed signals. Due to the non-normal distribution of many of
the features in the Shapiro–Wilk test, the WSR test was employed to test the statistical
significance of each of the features. In DWT, each coefficient belongs to a certain frequency
band [43]. The statistically significant features that were obtained from each of the decom-
posed signals/coefficients at the level-5 decomposition (with each Daubechies wavelet) are
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represented in Figure 8. It was observed that most of the significant changes are seen in
the lower frequency bands (<22.5 Hz), irrespective of the mother wavelet used. Figure 9
represents the percentage change in the mean values of the significant features in the lower
frequency bands (<22.5 Hz). It is evident from the figures that the entropy value (except
that of TE) has increased in the frequency range 0–5.62 Hz and 11.25–22.5 Hz. Besides this,
a decrease in the kurtosis and an increase in the variance were observed in the frequency
range of 0–5.62 Hz and 11.25–22.5 Hz, respectively. However, only a rise in entropy (LEE
and RE) was seen in the frequency range of 5.62–11.25 Hz. The statistically important fea-
tures that hold the discriminative information for the ECG signals pre- and post-stimulus
conditions (coffee consumption) were then applied as input for the ML models. Table 2
illustrates the ML models that showed the best performance in each case after varying
the level of decomposition and the mother wavelet. The highest performance accuracy
of 78.33% ± 0.76% was achieved by the GBT model when the db6 mother wavelet was
employed at the decomposition level of 2. The details of each ML model developed using
the DWT method are provided in Supplementary Materials Tables S2–S5. The results
suggested that the highest accuracy (78.33% ± 0.76%) was obtained in the GBT model
while using the db6 mother wavelet at level-2 decomposition.
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frequency bands of the ECG signal after DWT decomposition.

Table 2. Classification performance of the best ML models generated from the DWT-based processing
of the ECG signals at different decomposition levels.

Level Wavelet Used ML Model Accuracy Precision F-Measure Sensitivity Specificity AUC

2

db2 GBT 75.28 ± 0.62 88.55 ± 3.90 70.20 ± 1.31 58.33 ± 3.40 92.22 ± 3.62 0.830 ± 0.020
db4 GBT 70.00 ± 2.11 67.00 ± 2.98 72.59 ± 1.50 79.44 ± 4.21 60.58 ± 6.63 0.794 ± 0.009
db6 GBT 78.33 ± 0.76 75.89 ± 2.01 79.31 ± 1.53 83.33 ± 5.20 73.33 ± 4.21 0.866 ± 0.029
db8 GBT 73.61 ± 0.98 74.61 ± 3.04 73.11 ± 2.55 72.22 ± 7.08 75.00 ± 6.21 0.807 ± 0.017

3

db2 GBT 72.50 ± 3.73 77.44 ± 2.19 69.54 ± 5.29 63.33 ± 7.71 81.67 ± 1.52 0.810 ± 0.048
db4 GBT 76.94 ± 3.20 79.91 ± 4.60 75.83 ± 3.04 72.22 ± 2.78 81.67 ± 5.05 0.850 ± 0.041
db6 GBT 75.83 ± 3.49 75.18 ± 5.09 76.33 ± 2.90 77.78 ± 3.93 73.89 ± 7.24 0.839 ± 0.033
db8 GBT 73.06 ± 2.11 87.62 ± 3.76 66.56 ± 3.62 53.89 ± 5.05 92.22 ± 3.04 0.817 ± 0.030

4

db2 GBT 72.50 ± 3.73 77.44 ± 2.19 69.54 ± 5.29 63.33 ± 7.71 81.67 ± 1.52 0.810 ± 0.048
db4 GBT 72.50 ± 3.85 82.28 ± 6.84 67.71 ± 4.67 57.78 ± 5.34 87.22 ± 6.09 0.817 ± 0.053
db6 GBT 69.72 ± 3.85 72.54 ± 4.77 67.65 ± 5.33 63.89 ± 8.56 75.56 ± 6.33 0.778 ± 0.034
db8 DL 64.44 ± 3.34 64.38 ± 3.66 64.62 ± 3.35 65.00 ± 4.65 63.89 ± 5.20 0.695 ± 0.051

5

db2 GBT 70.00 ± 1.58 71.65 ± 3.40 68.96 ± 1.24 66.67 ± 3.40 73.33 ± 5.41 0.771 ± 0.032
db4 GBT 71.11 ± 0.62 74.18 ± 2.16 69.21 ± 1.05 65.00 ± 3.17 77.22 ± 3.62 0.773 ± 0.023
db6 GBT 68.89 ± 3.04 69.09 ± 2.53 68.60 ± 4.09 68.33 ± 6.69 69.44 ± 3.40 0.776 ± 0.041
db8 GBT 66.67 ± 2.41 68.15 ± 3.99 65.42 ± 3.16 63.33 ± 6.33 70.00 ± 6.63 0.752 ± 0.023

NB: Color scale used in the table (column-wise): minimum value
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3.3. WPD Analysis

The WPD-based decomposition was employed for each of the 5 s ECG signals. For
this purpose, the level of decomposition and Daubechies mother wavelets were varied in a
similar way as was described in the case of DWT. Figure 10 shows a typical representation
of the decomposed ECG signals after level-3 decomposition using the db6 mother wavelet.
Many of the features that were extracted from the WPD coefficient showed a non-normal
distribution in the Shapiro–Wilk test. Similar to DWT, the coefficients of WPD contain a
certain frequency band that depends on the sampling frequency and the level of decom-
position (Figure 3). A representation of the significant features that were obtained from
each frequency band at the level-5 decomposition is given in Figure 11. It was observed
that most of the changes in the ECG signal after the consumption of coffee were confined
to the lower frequency band (<22.5 Hz). Figure 12 represents the percentage change in the
mean value of the significant features from the aforesaid lower frequency band. This was
irrespective of the type of mother wavelet that was used during the decomposition process.
It is evident from Figure 12 that a rise in the variance value was observed in the frequency
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band 5.62–22.5 Hz. Most of the entropy values (except TE) also showed a hike after the
consumption of coffee. Moreover, a decrease in kurtosis was also observed in the frequency
ranges of 5.62–11.25 Hz and 16.87–22.5 Hz.
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For a decomposition level “L”, the features that hold discerning information for
the ECG signal before and after applying the stimulus (coffee) were used as an input
into the ML models. Table 3 illustrates the models that showed the best accuracy when
the decomposition level and type of Daubechies wavelet were varied. The GBT model
developed using the db2 mother wavelet and a decomposition level of 4 showed the highest
performance accuracy of 73.33% ± 1.16%. The details of each ML model created using the
WPD-method are provided in Supplementary Materials Tables S6–S9.

Table 3. Classification performance of the best ML models generated from the WPD-based processing
of the ECG signals at different decomposition levels.

Level Wavelet Used ML Model Accuracy Precision F-Measure Sensitivity Specificity AUC

2

db2 GBT 71.11 ± 4.21 69.37 ± 3.76 72.22 ± 4.12 75.56 ± 4.56 66.67 ± 3.93 0.794 ± 0.053

db4 GBT 69.17 ± 2.67 74.92 ± 3.85 65.15 ± 3.58 57.78 ± 4.56 80.56 ± 3.93 0.774 ± 0.032

db6 GBT 67.78 ± 5.93 70.59 ± 7.51 65.45 ± 6.62 61.11 ± 6.51 74.44 ± 6.63 0.715 ± 0.064

db8 GBT 71.67 ± 1.58 67.12 ± 1.35 74.99 ± 1.59 85.00 ± 3.17 58.33 ± 2.78 0.828 ± 0.025

3

db2 GBT 69.44 ± 1.96 88.39 ± 4.35 59.43 ± 4.02 45.00 ± 4.97 93.89 ± 3.04 0.787 ± 0.033

db4 GBT 67.22 ± 2.88 84.19 ± 7.31 56.51 ± 4.69 42.78 ± 5.05 91.67 ± 4.38 0.769 ± 0.048

db6 GBT 69.44 ± 3.80 70.82 ± 5.09 68.63 ± 3.10 66.67 ± 1.96 72.22 ± 6.51 0.786 ± 0.050

db8 GBT 66.94 ± 4.75 65.92 ± 4.67 68.07 ± 4.55 70.56 ± 6.09 63.33 ± 6.63 0.733 ± 0.047

4

db2 GBT 73.33 ± 1.16 73.13 ± 3.02 73.50 ± 2.50 74.44 ± 7.45 72.27 ± 6.51 0.795 ± 0.046

db4 GBT 66.11 ± 4.24 65.77 ± 4.01 66.39 ± 4.78 67.22 ± 6.92 65.00 ± 5.05 0.730 ± 0.027

db6 GBT 68.61 ± 3.75 76.72 ± 7.07 63.25 ± 3.69 53.89 ± 2.48 83.33 ± 5.89 0.724 ± 0.052

db8 GBT 62.22 ± 2.28 59.47 ± 1.99 67.15 ± 1.65 77.22 ± 3.04 47.22 ± 5.20 0.685 ± 0.033

5

db2 GBT 63.61 ± 2.48 67.50 ± 4.60 59.41 ± 2.53 53.33 ± 4.12 73.89 ± 6.39 0.698 ± 0.032

db4 DL 64.17 ± 3.85 64.12 ± 4.01 64.27 ± 3.74 64.44 ± 3.62 63.89 ± 4.39 0.679 ± 0.050

db6 GBT 61.39 ± 4.33 70.25 ± 9.33 51.28 ± 4.35 40.56 ± 3.17 82.22 ± 7.24 0.696 ± 0.064

db8 GBT 63.06 ± 3.34 66.29 ± 2.54 58.48 ± 6.44 52.78 ± 9.42 73.33 ± 3.73 0.650 ± 0.054

NB: Color scale used in the table (column-wise): minimum value
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We have also analyzed the performance of the ML models using all of the features
irrespective of the IMFs, decomposition level, and mother wavelets. This was done in order
to validate the efficiency of the proposed feature selection method. Table 4 represents the
performance of the best two ML models in terms of accuracy. The details of all of the other
model performances are given in Supplementary Material Table S10.
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Table 4. Classification performance of the best two ML models after feeding all extracted features in
each decomposition method individually and simultaneously.

Decomposition
Method Used ML Model Accuracy Precision Recall F-Measure Sensitivity Specificity AUC

EMD
DL 56.9 ± 2.2 57.2 ± 2.9 56.7 ± 4.6 56.8 ± 2.2 56.7 ± 4.6 57.2 ± 6.7 0.576 ± 0.038

GLM 53.6 ± 2.1 52.8 ± 1.5 67.8 ± 5.0 59.3 ± 2.7 67.8 ± 5.0 39.4 ± 3.6 0.573 ± 0.021

DWT
GBT 76.9 ± 2.7 84.5 ± 2.6 66.1 ± 6.0 74.0 ± 3.8 66.1 ± 6.0 87.8 ± 2.5 0.859 ± 0.041
DL 70.6 ± 2.7 69.6 ± 3.4 73.3 ± 1.5 71.4 ± 2.0 73.3 ± 1.5 67.8 ± 5.0 0.800 ± 0.035

WPD
DL 68.3 ± 6.1 69.5 ± 6.9 65.6 ± 5.4 67.5 ± 6.1 65.6 ± 5.4 71.1 ± 7.0 0.759 ± 0.049

GBT 66.9 ± 3.6 68.7 ± 3.9 62.8 ± 9.3 65.3 ± 5.2 62.8 ± 9.3 71.1 ± 6.4 0.767 ± 0.043

EMD + DWT + WPD
GBT 69.7 ± 4.9 66.3 ± 3.9 80.0 ± 6.6 72.5 ± 4.8 80.0 ± 6.6 59.4 ± 4.6 0.790 ± 0.045
DL 68.9 ± 2.9 71.1 ± 3.5 63.9 ± 5.9 67.2 ± 3.7 63.9 ± 5.9 73.9 ± 4.6 0.775 ± 0.027

4. Discussions

In this study, three joint time–frequency decomposition methods have been compared
for the detection of short-term coffee-induced changes in ECG patterns. ECG segments of
5 s duration from the participants in the pre- and post-stimulus conditions were obtained.
This segment-based analysis is a well-documented method. ECG segments of different
lengths have been used in various studies [44–46]. Though there is no clinical evidence
that is in support of choosing a duration of 5 s, Sinha et al. compared the performance of
the classification model at different signal lengths. They found optimum results when the
signals of 5 s duration were used [47]. Thus, a segment of 5 s duration was chosen in this
study. The ECG segments were decomposed using the EMD, DWT, and WPD methods.
The features that were extracted from the decomposed coefficients were then classified
using several ML models (e.g., GLM, LR, DT, NB, RF, GBT, SVM, FLM, and DL). The
performance evaluation is represented in Tables 1–3. The decomposition parameters were
varied in order to find out the most suitable number of IMFs in EMD and the decomposition
levels in the case of DWT and WPD. It is common to choose a mother wavelet that shows
structural similarity with the original signal [48]. Herein, different mother wavelets from
the Daubechies family (db2, db4, db6, and db8) were chosen for the analysis. This is due to
the structural similarity that they possess with the QRS-complex of the ECG signal [49,50].
Though the coefficients that were obtained after the decomposition process reveal the
characteristics of the ECG signal, for a better interpretation it is inevitable to find various
features that hold the valuable and discriminative information between the two groups
of data [38].

Various feature extraction methods have been reported in the literature for detecting
the effects of coffee on cardiac physiology (Table 5). However, the most studied features are
the ECG-based morphological features. This includes the amplitude metrics (e.g., P-wave,
T-wave, R-peak, etc.) and wave intervals (e.g., RR interval, QTc interval, etc.). Uddin
et al. have used the amplitude of R-peak, P-wave, and T-wave to evaluate the changes in
ECGs after caffeine consumption [51]. The authors observed no significant increase in the
values of R-peak. However, the amplitude of the P- and T-wave had decreased. In another
research paper, QTc interval was used to evaluate the changes in the electrocardiography
and detect whether caffeine results in cardiac arrhythmias [52,53]. This is because the QTc
prolongation is an indicator of increased cardiac risk. However, they found no significant
change in the QTc interval. The results that were reported in [17,54,55] contradicted those
aforesaid findings with a substantial increase in the QTc after consumption of the caffeinated
beverage. Table 5 compares the findings of various studies that have used morphological
features in order to evaluate the cardiac change after coffee consumption. The comparison
among these studies infers that the correlation between caffeine/coffee consumption and
an alteration in electro-cardio physiology is not equivocal. The reason may be that the
morphological features are not efficient in tracking the minute changes in the ECG patterns.
In our previous study [28], it has been reported that the statistical and entropy-based
features that are obtained from 5 s ECG segment can efficiently detect the variation in
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ECG patterns due to coffee-induced short-term effects. These features reflect only the
changes in the time domain. No attempt was made to study the variation in the frequency
domain’s information within ECG signals. Hence, herein these said feature extraction
methods and the joint time–frequency decomposition methods were employed. The lower
order statistical features (such as mean and variance) are of lower complexities and are
independent of the fiducial points of the ECG signals. The higher-order statistical features,
such as skewness and kurtosis, are related to the signal’s shape and contain amplitude
and phase information [28]. In an ECG signal, the skewness measures the symmetry of
the signal around the R-peak, whereas the kurtosis represents whether the distribution of
a signal is heavy or light-tailed compared to the normal distribution [56]. The inclusion
of entropy-based features provides information regarding the rate of generation of the
information in a dynamic system. It can be used as a measure of complexity in biomedical
signal analysis [21,57]. Entropy-based features have also been employed in [58] to measure
the changes in the nonlinear HRV measures after caffeine ingestion. This study observed
an increase in the variance and entropy (except TE) values in both wavelet-based methods
(Figures 9 and 12). Likewise, in the case of EMD, the entropy values (except TE) were
significantly higher in the first two IMFs. Interestingly, in the higher IMFs only a few
features have shown significant change. This reflects an increase in the irregularity of the
ECG patterns post-coffee consumption. Moreover, a higher level of entropy also reflects an
increase in the degree of uncertainty in the ECG patterns after the consumption of coffee.

Table 5. Comparison of the various studies on the detection/classification of coffee/caffeine-induced
changes in the cardiac autonomic and electrocardiographic parameters.

Problem Methods Parameters/Features Results/Observation Reference

Coffee/caffeine-
induced changes in

the cardiac
autonomic function

HRV analysis

Time–domain parameters:
RMSSD, SDNN, pNN50,

mean RRI
Frequency domain parameters:

HF, LF

A reduced trend in the HRV
vagal indexes was observed for

people who consumed
≥3 cups of coffee/day

[12]

HRV analysis

Vagal parameters: heart rate,
blood pressure

Time–domain parameters:
pNN50, RMSSD

Frequency domain parameters:
HF, LF. VLF, LF/HF

Lower HR, higher blood
pressure, a significant rise in

HF power,
significant rise in

time–domain parameters

[59]

HRV analysis

Nonlinear parameters:
correlation dimension,

approximate entropy, detrend
fluctuation parameters

Coffee and cola showed no
significant effect on the
nonlinear parameter of

the HRV

[58]

ECG morphology-based
statistical analysis

Electrocardiographic
parameters: R-peak, P-wave,

and T-wave

No significant increase in the
amplitude of R-peak, decrease
in the value of P- and T-peaks

[51]

ECG morphology-based
statistical analysis

Vagal parameters: heart rate,
blood pressure.

Electrocardiographic
parameters:

RR interval, QTc interval

No changes in the diastolic
blood pressure,

decrease in the heart rate, no
change in QTc interval

[52]

ECG morphology-based
statistical analysis

Electrocardiographic
parameters: mean RR interval,

QTc interval

No significant prolongation in
the QTc interval, a significant

decrease in the heart rate
[53]
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Table 5. Cont.

Problem Methods Parameters/Features Results/Observation Reference

Coffee/caffeine-
induced changes in

the cardiac
autonomic function

ECG morphology-based
statistical analysis

Vagal parameters: blood
pressure, heart rate.

Electrocardiographic
parameters: PR interval, QRS

duration, QTc interval

No significant change in any
parameter after having the

energy drink
[24]

ECG morphology-based
statistical analysis

Vagal Parameters and ECG
morphological parameters

Increased blood pressure
(systolic and diastolic) and

prolonged QTc interval
[54]

ECG morphology-based
statistical analysis

Vagal parameters: blood
pressure, heart rate

Electrocardiographic
parameters: PR interval, QRS

duration, QTc interval

An increase in systolic
blood pressure,

no significant change in the
electrocardiography

parameters

[60]

ECG morphology-based
statistical analysis

Vagal parameters: systolic and
diastolic blood pressure

Electrocardiographic
parameters: QT interval

Increased heart rate, blood
pressure (systolic and

diastolic), and QT interval
[55]

ECG morphology-based
statistical analysis

Vagal parameters: blood
pressure, heart rate

Electrocardiographic
parameters: PR interval, QRS

duration, QTc interval

Prolonged QTc interval and
increased blood pressure
(systolic and diastolic).

[17]

Decomposition based
analysis (DWT

and WPD)
Statistical and entropy features

Increase in the variance and
entropy-features, the changes

are mostly reflected in the
lower frequency range in the

ECG signal (<22.5 Hz)

Proposed
Study

Automatic
detection of the
coffee-induced
changes in the
ECG signals

ECG segment based
statistical analysis Statistical and entropy features Accuracy: 75% (random forest

classifier) [28]

ECG signal
decomposition-based

statistical analyses.
(EMD, DWT, and WPD)

Statistical and entropy features
Accuracy: 78%

(gradient-boosted tree
classifier)

Proposed
Study

In other research [12,58,59], the changes in the frequency–domain parameters have
been well evaluated in HRV analyses to detect alterations in the autonomic nervous system
(ANS) after caffeine intake. However, the variation in the statistical measures in different
frequency bands has not yet been satisfactorily explored. It has also been reported that the
most useful information in an ECG signal lies within the frequency range of 0–30 Hz [61].
The highest amplitude of a normal P and T wave occurs at 3 Hz, whereas for the QRS
complex, it is 15 Hz. Hence, it is quite expected that the variation in the ECG patterns
will be more pronounced in this frequency range. We found similar results when the
variations in the said features (those which were statistically significant) were compared in
the different frequency bands. Our results (Figures 8 and 11) suggest most of these changes
are localized in the lower frequency bands (<22.5 Hz) irrespective of the type of mother
wavelet that was used. The EMD method was overlooked for the frequency band analysis
as the frequency range of the IMFs is non-uniform [62].

The current study also proposes an ML model for detecting alteration in the ECG signal
pattern due to coffee-induced short-term effects. Several state-of-the-art ML models have
been compared in order to find the best classifier that can efficiently detect the alterations
in cardiac electrophysiology. The study proposes that the GBT classifiers, when employed
to the features obtained after DWT decomposition (using db6 mother wavelet and level-2
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decomposition), show the best performance (Table 2). In Table 5 the proposed method was
compared with other reported literature.

In the research of Pradhan and Pal [28], the performance of different tree-based ML
models was tested in order to detect coffee-induced short-term effects. The results suggested
that random forest was the best ML model with mean accuracy, sensitivity, and AUC of
75.1%, 75.0%, and 84.4%, respectively. The GBT model, as proposed in the current study,
shows a mean accuracy, sensitivity, and AUC of 78.33%, 83.3%, and 86.6%, respectively.
In order to validate the efficiency of the feature selection method that was used in the
current study, we have also assessed the performance of these models when all of the
extracted features were used as inputs. In the case of DWT and WPD, the GBT showed
better performance with the proposed feature selection method. Interestingly, the DL
showed an increased performance with the larger feature set compared to when the feature
selection method was employed. This result was expected as the deep learning model
performs comparatively better with larger datasets. However, the performance of the DL
models was lower than that of the GBT model. Lastly, when the EMD-based decomposition
method was used, the ML models performed poorly compared to the performance of the
wavelet-based methods.

5. Limitations, Future Work, and Conclusions

This study shows a new way to detect alterations in ECG signals due to coffee-induced
short-term physiological effects. To the best of our knowledge, this is the first study
that compares various joint time–frequency decomposition methods (EMD, DWT, and
WPD) in order to investigate the influence of coffee on electro-cardio physiology. The
results obtained in the statistical analysis confirm that many features possess statistically
discriminative information in different frequency bands of the ECG signals in the pre-and
post-stimulus conditions. Also, it was observed that most of these changes are localized
in the lower frequency band (<22.5 Hz), where the signal contains the majority of the
information. This confirms the alteration in cardiac activity after the consumption of coffee.
However, these results are unable to express the exact change in the ECG morphological
features. Also, the study suggested a range of frequencies in which most of the changes in
the statistical parameters were localized. However, information about the exact frequency
value is lacking. It is worth noting that our experiment was performed in a controlled
environment. Hence, changes in the environmental conditions, physical status, habitual
information, and caffeine/coffee dosage may produce different results. Hence, the effects of
these parameters on electro-cardio physiology and the model performance will be explored
in the future. A potential extension to this study would be to design an ML model that
can detect the influence of coffee and predict the dosage by observing the changes in
the ECG signal patterns. Caffeine possesses an ergogenic effect and is found to improve
performance in many sports, including rifle shooting [63], swimming [64], handball [65],
weightlifting [66], etc. However, the World Anti-Doping Agency (WADA) has not included
caffeine in its prohibited list but rather in its monitoring program [67]. This study, in the
future, maybe employed to find the caffeine dosage in athletes by using their ECG signals.
Numerous other advanced state-of-the-art decomposition methods such as variable mode
decomposition [68], flexible analytic wavelet transform [58], and classification methods
will be explored in the future. A limitation of the current study can be the large feature set
as it is associated with longer training time and large memory. Hence, as future work, it
will be interesting to see how advanced deep learning algorithms such as recurrent neural
networks and convolutional neural networks can be employed in the current data set and
how they impact the classification’s performance. The findings of this study will open up
new possibilities for drug and alcohol detection in the human body with the help of ECG
signals. The current research can also be employed in the future to recognize the changes in
cardiac activities after the consumption of other caffeinated beverages (e.g., tea, cola, soft
drinks, etc.), drugs, and alcohol.
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