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Abstract: Elevated serum cholesterol levels, either associated or not with increased triglycerides,
represent a risk of developing vascular injury, mostly leading to atherothrombosis-related diseases
including myocardial infarction and stroke. Natural products have been investigated in the last few
decades as they are seen to offer an alternative solution to counteract cardiometabolic risk, due to the
occurrence of side effects with the use of statins, the leading drugs for treating hyperlipidemias. Red
yeast rice (RYR), a monacolin K-rich natural extract, has been found to be effective in counteracting
high cholesterol, being its use accompanied by consistent warnings by regulatory authorities based
on the potential detrimental responses accompanying its statin-like chemical charcateristics. Here
we compared the effects of RYR with those produced by bergamot polyphenolic fraction (BPF), a
well-known natural extract proven to be effective in lowering both serum cholesterol and triglyc-
erides in animals fed a hyperlipidemic diet. In particular, BPF at doses of 10 mg/Kg given orally for
30 consecutive days, counteracted the elevation of both serum LDL cholesterol (LDL-C) and triglyc-
erides induced by the hyperlipidemic diet, an effect which was accompanied by significant reductions
of malondialdehyde (MDA) and glutathione peroxidase serum levels, two biomarkers of oxidative
stress. Furthermore, the activity of BPF was associated to increased HDL cholesterol (HDL-C) levels
and to strong reduction of Proprotein convertase subtilisin/kexin type 9 (PCSK9) levels which were
found increased in hyperlipidemic rats. In contrast, RYR at doses of 1 and 3 mg/Kg, produced
only significant reduction of LDL-C with very poor effects on triglycerides, HDL-C, glutathione
peroxidase, MDA and PCSK9 expression. This indicates that while BPF and RYR both produce serum
cholesterol-lowering benefits, BPF produces additional effects on triglycerides and HDL cholesterol
compared to RYR at the doses used throughout the study. These additional effects of BPF appear
to be related to the reduction of PCSK9 expression and to the antioxidant properties of this extract
compared to RYR, thereby suggesting a more complete protection from cardiometabolic risk.

Keywords: hypercholesterolemia; red yeast rice (RYR); bergamot polyphenolic fraction (BPF);
malondialdehyde (MDA); oxidative stress; proprotein convertase subtilisin/kexin type 9 (PCSK9)

1. Introduction

Hypercholesterolemia, either associated or not to increased triglyceride serum lev-
els, has been clearly shown to represent one of the key players in the development
of atherosclerosis-associated vascular disorders including coronary artery disease and
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stroke [1,2]. On the other hand, a clear correlation exists suggesting that a significant reduc-
tion of low-density lipoprotein cholesterol (LDL-C) is required for both primary prevention
of cardiovascular disorders and reduction of cardiovascular risk in patients with previous
cardiovascular events, including myocardial infarction [3–5].

In the last decades, this was achieved by means of extensive use of very effective drugs
such as the statins, which reduce endogenous biosynthesis of cholesterol, via inhibition of
hydroxy-3-methylglutaryl-CoA reductase (HMGCoA reductase), the key enzyme of the
pathway generating cholesterol from acetyl-CoA [6–8].

This class of drugs, due to their widespread activities in protecting vascular tissues,
(anti-proliferative effects, atherosclerotic plaque stabilizing properties, reduction of vascular
inflammatory biomarkers, etc.), has also been found able to reduce hospitalization and
mortality in high-risk atherosclerotic patients [6,7].

Alongside their beneficial effect in the prevention and treatment of cardiovascular
disorders, the use of statins is however associated to several side effects that include mus-
cular pain, rhabdomyolysis and subsequent elevation of serum creatine phosphokinase
(CPK) [9–11]. This seems to occur in nearly 5% of patients taking statins [12,13]. However,
recent epidemiological studies revealed that nearly 30% of people stop statin treatment
because of muscle aches [13,14]. Moreover, prolonged treatment with statins is also asso-
ciated to increased risk of developing type 2 diabetes and neurological disorders, mostly
characterized by memory loss [14]. Thus, based on the occurrence of these and other side
effects, the use of statins in low-risk subjects is still controversial and alternative and more
safe treatments for lowering serum cholesterol have been suggested in the last few decades,
including nutraceutical supplementation by means of products able to inhibit HMGCoA
reductase [15,16].

Red yeast rice (RYR) is a natural extract obtained via fermentation of white rice with
the yeast Monascus purpureus mold that has widely been used to reduce serum cholesterol in
patients [17,18]. The properties of RYR for lowering serum cholesterol remain to be clarified.
However, evidence exists that RYR extract contains significant amounts of monacolin K,
which is structurally identical to lovastatin, thereby suggesting a statin-like response in
patients undergoing treatment with RYR [19]. To date, clinical data suggest an efficacy of
RYR in lowering serum cholesterol which has been determined in a range from 14% to
24% with a satisfactory safety profile, though causality between therapy and side effects
described in several studies remains to be confirmed [18–20]. However, a European Food
Safety Authority (EFSA) Scientific Panel, in 2018, highlighted several warnings in vulnera-
ble populations (e.g., pregnant women) and concluded “to be unable to identify a dietary intake
of monacolins from RYR, not giving rise to concerns about potentially harmful effects to health for
the general population, and as appropriate, for vulnerable subgroups of the population” [21].

Thus, based on this conclusion, it is necessary to identify better nutraceutical solutions
to attenuate the potential risk of using RYR as a first line nutraceutical approach and
to counteract potential side effects and uncertainties deriving from elevated amounts of
monacolin K in final preparations.

Based on this preliminary evidence, the present study was addressed to evaluate the
potential synergistic response in a formulation containing lower concentration of RYR
either associated or not to bergamot polyphenolic fraction (BPF) a well characterized
natural extract deriving from bergamot juice which has been found to produce consistent
hypolipidemic response both in animal settings and in patients [15,16,22–26]. This was
achieved in rats fed a hyperlipidemic diet.

2. Materials and Methods
2.1. Plant Material
2.1.1. Red Yeast Rice (RYR)

RyR extract (NLT 3% Monacolin K) was purchased from Giellepi S.p.A (Milano, Italy).
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2.1.2. Preparation of BPF

C. bergamia Risso & Poiteau fruits were collected in the Calabrian region, from plan-
tations that cover 90 km long costal area located between Reggio Calabria and Bianco.
Bergamot juice (BJ) was obtained from peeled-off fruits by industrial pressing and squeez-
ing. The depletion of oil fraction from juice was obtained through the stripping and
the clarification by ultra-filtration; the subsequent loading on suitable polystyrene resin
columns (Mitsubishi Chemical, Weekday, Japan Standard Time) that absorbed polyphenol
compounds of MW between 300 and 600 Da [22]. The elution of polyphenol fractions
was carried out through a mild KOH solution. Subsequently, the neutralization of phy-
tocomplex was obtained through the filtration on cationic resin at acidic pH. Finally, it
was vacuum dried and minced to the desired particle size to obtain BPF powder. The
analysis of BPF powder was performed through HPLC to evaluate the flavonoid and other
polyphenols content. Furthermore, in the toxicological analyses the presence of pesticides,
heavy metals, phthalates and synephrine was not found (data not shown) [22]. Standard
microbiological evaluation showed the absence of mycotoxins and bacteria. All proce-
dures have been performed according to the European Community Guidelines concerning
dietary supplements.

2.1.3. High-Pressure Liquid Chromatography (HPLC) Analysis

High-pressure liquid chromatography (HPLC) analysis was performed on Fast 1200
HPLC system (Agilent Technologies, 5301 Stevens Creek Blvd Santa Clara, USA) equipped
with DAD detector and ZORBAX Eclipse XDB-C18 column—50 mm. Two µL of sample
(BPF diluted in 50% ethanol and filtered through a 0.2 µm filter) was injected eluting with
a two solvent gradient of water and acetonitrile. Different gradients were used for the
determination of flavonoid content or possible fumocumarin contaminants. The flow-rate
was 3 mL/min and the column was maintained at 35 ◦C. The detector was monitored
at 280 nm. Flavonoid and furocumarin pure standards were purchased from Sigma-
Aldrich (Burlington, MA, USA). Brutieridin and melitidin were identified according to Di
Donna [22,23]. The estimated concentration of the five main flavonoids was: neoeriocitrin
(77,700 ppm), naringin (63,011 ppm), neohesperidin (72,056 ppm), melitidin (15,606 ppm)
and brutieridin (33,202 ppm) [22].

2.2. Animal Studies

Male Wistar rats (Harlan Laboratories Ltd., Fullinsdorf, Switzerland), weighing
180–200 g, were used for the experiments. The animals were kept under stable and con-
trolled conditions (temperature, 22 ◦C; humidity, 60%) with water ad libitum. Animal care
was in accordance with Italian regulations on protection of animals used for experimental
and other scientific purposes (D.M. 116192), as well as with the European Community
guidelines [23].

The effects of BPF, or RYR on total cholesterol, LDL-C, high density lipoprotein
cholesterol (HDL-C), triglycerides, malondialdehyde (expressing peroxidative damage)
and paraoxonase were evaluated in Wistar rats fed a hypercholesterolemic diet composed
of a standard diet (Harlan Laboratories Ltd., Fullinsdorf, Switzerland), supplemented with
cholesterol 2% (pur. 95%, Sigma-Aldrich, Burlington, MA, USA), 0.2% cholic acid (min.
98%, Sigma-Aldrich, Burlington, MA, USA) and 4.8% palm oil. Moreover, the effect of
these treatments on proprotein convertase subtilisin/kexin type 9 (PCSK9) levels were
also studied.

The rats were divided into five groups of 10 animals each:
Group 1 (normolipidemic controls) was kept on a standard diet (Harlan) for 30 days.
Group 2 (hyperlipidemic controls) received the hypercholesterolemic diet for 30 days.
Group 3 received the hypercholesterolemic diet for 30 days; from the 1st to the

30th day, each rat was administered by gavage with BPF (10 mg/kg/rat daily, same route).
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Groups 4 and 5 received the hypercholesterolemic diet for 30 days; from the 1st to the
30th day, each rat was administered by gavage with RYR extract (3 and 1 mg/kg/rat daily,
respectively, same route).

During the experiment, animals were weighed weekly, and 24 h food consumption
was recorded daily. On day 29, rats were individually housed in metabolic cages. At the
end of the study, the animals were fasted overnight; blood samples were collected from the
penile vein of the rats and serum was separated and stored at −20 ◦C until analyzed. The
analysis of serum T-CHOL, LDL-C and HDL-C, triglycerides, MDA and paraoxonase was
performed as described below.

2.3. Blood Measurements

At the baseline and after 4 weeks of the experimental protocol, a 12 h fasting morning
blood sample was collected, processed and stored at −80 ◦C. All serum marker concen-
trations or activities were measured using classical methods and commercial assay kits,
according to the manufacturers’ instructions. Assay kits for total cholesterol, LDL-C, HDL-
C, triglycerides, malondialdehyde (MDA), paraoxonase and glutathione peroxidase were
purchased from Novamedical S.R.L. (Reggio Calabria, Italy). All the laboratory tests were
performed in a blinded manner in respect to the assigned treatment.

2.4. PCSK9 Measurements

For proprotein convertase subtilisin/kexin type 9 (PCSK9) assay one serum aliquot
from each rat was tested by colorimetric enzyme-linked immunosorbent assay from R&D
Systems (Minneapolis, MN, USA). The minimal limit of detection was 125 pg/mL, the
mean intra- and inter-assay coefficient of variation was at the accepted threshold of less
than 8%.

2.5. Statistical Analysis

In case of homogenous set of data ANOVA was performed to determine the treatment
effects, and Dunnett’s test was employed as appropriate. In case of heterogeneous data,
F test was carried out to determine which pairs of groups are heterogeneous. This was
followed by Cochran’s or Student’s t tests, as appropriate. The analysis was performed by
the Statistical analysis add-in component of Microsoft Excel 2007.

3. Results

Administration of hyperlipidemic diet in rats (Group 2) produced, compared to
control group (Group 1) an elevation of serum levels of total cholesterol, LDL-C (Table 1)
and an elevation of serum paraoxonase activity, MDA and PCSK9 expression, an effect
accompanied by reduction of HDL-C levels and of glutathione peroxidase, an endogenous
antioxidant enzyme. These effects were found significantly attenuated by treating rats with
BPF 10 mg/Kg daily for 30 consecutive days (Group 3; Table 1, Figures 1 and 2). In fact BPF,
according to previous evidence, significantly reduces the levels of serum total and LDL-C,
an effect associated to reduced triglycerides, MDA, PCSK9 and paraoxonase activity. In
addition, BPF increased HDL-C and glutathione peroxidase, as previously described.

Treatment of rats with RYR (3 and 1 mg/Kg for 30 consecutive days; Groups 4 and 5,
respectively) reduced total cholesterol, LDL-C and paraoxonase (Table 1). However, when
comparing the effect of RYR with BPF, we found BPF to better counteract diet-induced
hyperlipidemia. Indeed, RYR produced no effect in triglycerides, HDL-C, MDA levels and
glutathione peroxidase. In addition, RYR produced and very poor effects in PCSK9 when
compared to BPF, thereby confirming that BPF is able to produce a better protection against
diet-induced hyperlipidemia (Figures 1 and 2).
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Table 1. The effect of BPF (10 mg/Kg daily; n = 10; Group 3) or RYR (3 and 1 mg/Kg daily; n = 10
for each group; Groups 4 and 5, respectively) on serum T-CHOL, LDL-C and HDL-C, triglycerides,
malondialdehyde (MDA) paraoxonase and glutathione peroxidase in rats fed a hyperlipidemic diet.
Groups 1 and 2 (n = 10 for each group represent animals receiving standard or hyperlipidemic diet,
respectively. Data are expressed as mean ± SD. * p < 0.05 Control (Group 1) vs. Hyperlipidemic rats
(Group 2); § p < 0.05 Hyperlipidemic (Group 2) vs. BPF, RYR 3 and 1 mg (Groups 3–5). Abbreviations.
BPF: Bergamot Poliphenolic Fraction; RYR: Red yeast rice; T-CHOL: Total Cholesterol; LDL-C: Low
density lipoprotein cholesterol; HDL-C: High density lipoprotein-cholesterol.

Study Groups
Serum

T-CHOL
(mg/dL)

Serum
LDL-C

(mg/dL)

Serum
HDL-C
(mg/dL)

Serum
Triglycerides

(mg/dL)

Serum
Paraoxonase

(nmol/mL/min)

Glutathione
Peroxidase

(U/mL)

Group 1
Standard diet (n = 10) 110 ± 12 34 ± 6 41 ± 6 145 ± 16 85 ± 6 186 ± 5

Group 2
Hyperlipidemic diet (n = 10) 196 ± 14 * 117 ± 10 * 32 ± 8 * 235 ± 18 * 132 ± 8 * 175 ± 4 *

Group 3
Hyperlipidemic diet + BPF

10 mg/Kg (n = 10) 154 ± 12 § 73 ± 8 § 46 ± 7 § 175 ± 15 § 102 ± 10 § 214 ± 4 §

Group 4
Hyperlipidemic diet + RYR

(3 mg/Kg) (n = 10) 164 ± 14 § 83 ± 7 § 38 ± 5 215 ± 19 106 ± 9 § 192 ± 5

Group 5
Hyperlipidemic diet + RYR

(1 mg/Kg) (n = 10) 176 ± 14 § 94 ± 11 § 36 ± 6 222 ± 16 116 ± 5 § 194 ± 6
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Figure 1. The effect of BPF (Group 3) or RYR (Groups 4 and 5) in PCSK9 serum levels in rats
fed a hyperlipidemic diet (Group 2) compared to control rats (Group 1).*: p < 0.05 Control
(Group 1) vs. Hyperlipidemic rats (Group 2); §: p < 0.05 Hyperlipidemic (Group 2) vs. BPF or
RYR (Groups 3–5). Abbreviations. BPF: Bergamot Poliphenolic Fraction; RYR: Red yeast rice;
PCSK9: Proprotein convertase subtilisin/kexin type 9.
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Figure 2. The effect of BPF (Group 3) or RYR (Groups 4 and 5) on MDA serum levels in rats
fed a hyperlipidemic diet (Group 2) compared to control rats (Group 1). *: p < 0.05 Control
(Group 1) vs. Hyperlipidemic rats (Group 2); §: p < 0.05 Hyperlipidemic (Group 2) vs. BPF or
RYR (Groups 3–5), respectively. Abbreviations. BPF: Bergamot Poliphenolic Fraction; RYR: Red yeast
rice; MDA: malondialdehyde.

4. Discussion

Our data show, for the first time, that BPF leads to a better hypolipidemic response
when compared to RYR in rats fed a hyperlipidemic diet. In particular, our data demonstrate
that BPF reduces both LDL-C and triglycerides, alongside with an elevation of HDL-C,
as previously found in animal settings and patients with hyperlipidemia [15,16,24–27]. In
contrast, the effect of RYR was limited to the reduction of LDL-C with no responses found
in our model on triglycerides and HDL-C. On the other hand, the effect of BPF was higher
to the one found in animals treated with RYR at doses used throughout the study.

The reason for a better performance of BPF when compared to RYR still remains to be
better clarified. However, antioxidant properties of BPF and its subsequent activity against
overexpression of PCSK9 seem to play a role.

Accumulated evidence has shown that BPF, a polyphenolic rich extract obtained from
bergamot juice, produces consistent activities in regulating serum levels of cholesterol and
triglycerides acting at different levels in the lipid metabolism [15,16,24–27]. In particular,
data show that BPF reduces the activity of pancreatic cholesteryl ester hydrolase, a key
enzyme in the absorption of cholesterol acting at the intestinal level [24]. In addition, the
lipid transfer protein system in regulated by BPF, leading to better lipid transport into the
bloodstream [25]. Furthermore, it was be found that the capability of the liver to release in
blood vessel non-oxydized LDL occurs in patients with hyperlipidemia and liver steatosis,
thereby playing a role in the regulation of the lipoprotein traffic in hepatic tissue [27].
Finally, BPF has been found to contain several glycosylated polyphenols such as bruteri-
dine and melitidine which have been proven to antagonize the endogenous formation
of HMGCoA reductase, the key enzyme which generate endogenous cholesterol [23–27],
thereby contributing to serum cholesterol reduction. All these activities seem to involve
the formation of free radical species, as also shown by data collected in our experiments
here. In fact, the effect of BPF was associated to reduction of serum levels of MDA, a
well recognized biomarker of oxidative stress. This effect did not occur in animals treated
with RYR.
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The effect of BPF was also associated to reduced expression of PCSK9 in animals fed
an hyperlipidemic diet, thus suggesting that this effect may significantly contribute in the
better reduction produced by this extract when compared to RYR.

The role of PCSK9 in the regulation of cholesterol metabolism and the relative car-
dioprotective action has been widely studied in the last few years [28–30]. In particular,
evidence has been collected showing that PCSK9 modulates LDL-C concentrations by
binding to hepatic LDL receptors, facilitating their catabolism [28–31], thereby increasing
circulating LDL-C. This is also confirmed by the evidence that newly approved PCSK9
inhibitors reduce LDL receptor degradation and lower LDL-C by >50% [32–34], thus offer-
ing an additional therapeutic option for patients not meeting LDL-C treatment goals with
diet and maximally tolerated lipid-lowering therapy. Several recent studies also showed
the key role of natural derivatives and the importance of microbiota to inhibit the PCSK9,
through its transcriptional and epigenetic regulation and the subsequent up-regulation
of low-density lipoprotein receptor expression, thus increasing LDL metabolism [35–41].
Interestingly, statin therapy itself increases serum PCSK9 levels [42], a finding that may
in part explain the nonlinear relationship between statin dose and LDL-C reduction and
the intra-individual LDL-C response to statin therapy [43,44]. This could explain our data
with BPF and RYR in PCSK9 expression in hyperlipidemic rats. In fact, hypelipidemia
is accompanied by elevation of PCSK9 [28]. This effect, in our hands, is antagonized by
BPF alone but not by RYR. The reason of this discrepancy is unclear. However, being the
effect of RYR mainly due to the presence of lovastatin, it is likely that an overexpression of
PCSK9 may attenuate the reduction of LDL-C seen in animals treated with RYR. On the
other hand, elevation of PCSK9 occurs under conditions of increased oxidative stress and
inflammation [45]. This also explains the better response found with BPF compared to RYR.
In fact, being BPF a powerful antioxidant action in vivo, it is likely that this extract leads to
a reduced formation of free radical species in liver tissue [26], an effect accompanied by
reduced expression of PCSK9. This, in turn, leads to a better efficacy of BPF compared to
RYR in modulating serum cholesterol and PCSK9.

5. Conclusions

Our data show that BPF produces consistent benefits in reducing serum cholesterol
and triglycerides compared to RYR in animals fed a hyperlipidemic diet. This better
performance seems to results from a better antioxidant profile, an effect associated to
reduced expression of PCSK9, and this may represent a new perspective in nutraceutical
supplementation in hyperlipidemic states. Obviously, the study takes into account the
potential bias and imprecision of data collected in animal models that need to be confirmed
in clinical studies to be carried out in patients.
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