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Abstract: Cold-brewed jasmine tea (CB-JT) is regarded to possess characteristic flavors and health
benefits as a novel resource of functional tea beverages. To investigate the molecular mechanisms
underlying CB-JT-mediated protective effects on obesity, we evaluated the serum biochemistry,
histological condition, glucose tolerance, gene expression profile and intestinal microbial diversity in
high-fat diet (HFD)-fed mice. Our results demonstrate that cold-brewed jasmine tea can significantly
attenuate HFD-induced body weight gain, abnormal serum lipid levels, fat deposition, hepatic
injury, inflammatory processes as well as metabolic endotoxemia. CB-JT also modified the microbial
community composition in HFD-fed mice and altered the balance to one closely resembled that of
the control group. The differential abundance of core microbes in obese mice was reversed by CB-JT
treatment, including an increment in the abundance of Blautia, Mucispirillum, and Bilophila as well as a
decrease in the abundance of Alloprevotella. CB-JT was proved to regulate the mRNA expression levels
of lipid metabolism-related genes such as Leptin, Pgc1a Il6, and Il1b in the adipose tissue coupled with
Cyp7a1, Lxra, Srebp1c, and Atgl in the liver. These findings indicate that cold-brewed jasmine tea might
be served as a potential functional tea beverage to prevent obesity and gut microbiota dysbiosis.
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1. Introduction

Recently, obesity has emerged as an increasingly pivotal global health issue, charac-
terized by dyslipidemia, lipid accumulation, metabolic disorder, low-grade inflammation,
and intestinal dysfunction [1]. Obesity has also been linked to multiple metabolic diseases
such as diabetes, hyperglycemia, hepatosteatosis, cardiovascular disease, and even behav-
ioral disorders [2]. Increasing studies have indicated that gut microbiota exhibits a critical
role in developing/preventing obesity through involvement in nutrient digestion, energy
metabolism, and chronic inflammation [3]. Diet has been recently confirmed to modulate
the intestine microbial composition and thus affect the course of obesity [4]. Therefore, ther-
apeutic strategies targeting gut microbes by dietary intervention may effectively combat
overweight, obesity, and other related metabolic diseases.

Sugary drinks, including ready-to-drink tea beverages, contribute considerably to
sugar consumption and overall energy intake, which is closely associated with the onset of
obesity [5]. It is thus expected that by 2025, the global sugar-free tea market will continue
to proliferate due to rising consumer awareness regarding the health benefits of sugar-free
beverages [6]. Meanwhile, a population-based study on functional food has revealed that
customers are reluctant to lower their taste expectations for health attributes [7]. Interest-
ingly, the emergence of cold brewing may improve the recognition of unsweetened tea,
delivering a novel tea beverage with health attributes and a less bitter taste, as documented
for cold-brewed green tea [8]. Cold-brewed tea, originated in Taiwan, is generally brewed
with cold water, exhibiting the inherent health advantages of traditional tea coupled with

Nutrients 2022, 14, 5359. https://doi.org/10.3390/nu14245359 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu14245359
https://doi.org/10.3390/nu14245359
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0001-6700-1313
https://doi.org/10.3390/nu14245359
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu14245359?type=check_update&version=1


Nutrients 2022, 14, 5359 2 of 14

the excellent taste of ready-to-drink beverages. It has been reported that cold-brewed tea
has more bioactive ingredients compared with hot-brewed tea [9]. Cold brewing has also
been proven to prevent/retard the oxidation process of tea polyphenols, protect nutrient
integrity, and maintain premium flavor [10].

Jasmine tea (JT), as a type of Chinese green tea, is commonly processed with jasmine
aroma and thus widely acclaimed for its characteristic aroma [11]. In 2019, the total yield
and gross output value of the JT industry in China reached 1.14 thousand metric tons and
CNY 12.19 billion, respectively, which proved its enormous development potential [12].
JT is also highly valued for its potential health benefits, such as antioxidant effects and
sedative properties [13,14]. Although there are several recent studies regarding anti-obesity
effects of green tea, black tea, and oolong tea in animal models [15–17], the mechanism
attributable to the jasmine tea-mediated protective effect against obesity involving the gut
microbiome has not yet been elucidated.

Herein, we sought to explore the preventive effect of cold-brewed jasmine tea (CB-JT)
on obesity in C57BL/6J mice fed with a high-fat diet (HFD). The objectives of this study were
to (1) monitor the effect of CB-JT on the serum lipid level, inflammatory process, hepatic
function, glucose intolerance, and gene expression profiling related to lipid metabolism;
(2) assess the impact of CB-JT on the pathological symptoms of the liver, colon, and adipose
tissue; and (3) evaluate gut microbial diversity with CB-JT intervention, thus exploring the
role of gut microbiota in JT-mediated prevention of obesity. Our findings aim to provide a
theoretical basis for the development of an alternative functional beverage that prevents
obesity and benefits human metabolic health.

2. Materials and Methods
2.1. Preparation of Cold-Brewed Jasmine Tea

Jasmine tea in this experiment was purchased from Yunbiao Town, Hengxian, Guangxi,
China. Briefly, fresh tea was preprocessed and mixed with jasmine, and then reheated,
scented, separated, dried, and cooled. CB-JT was obtained by brewing the prepared jasmine
tea leaves with 80-fold (m/v) cold water and steeping for 8 h at 4 ◦C. The tea infusion
was collected prior to further analysis. Tea phenolics and polysaccharides were quantified
using the Folin–Ciocalteu method and phenol-sulfuric acid method, respectively [18].
The concentrations of the major catechins, theanine, and gallic acid in the brews were
also evaluated in duplicate by high-performance liquid chromatography (HPLC). The
experimental program and bioactive contents in CB-JT can be found in Supplementary
Material, Table S1.

2.2. Experimental Animal Design

Twenty-four male C57BL/6 mice (6 weeks old) purchased from Vital River Labora-
tories (Peking, China) were housed in a temperature- and humidity-controlled facility
(temperature 22 ± 1 ◦C and humidity 50 ± 10%) and were randomly divided into three
groups (n = 8) after 1 week adaptation: a normal-chow (NC) group (normal-chow diet
containing 10% calories from fat, D12450J, with pure water, an HFD group (HFD containing
60% calories from fat, D12492, plus pure water), and the JT group, fed HFD with unlimited
CB-JT supplementation as drinking water. The NC diet and HFD were purchased from
Xietong Co., Ltd. (Shanghai, China). Food and water consumption of each group were
measured every 2 days, and body weights were documented once a week. All animal care
and experiments were in accordance with the institutional guidelines for animal use of
Nankai University. The oral glucose tolerance test (OGTT) was further performed after
glucose administration at the 8th week. The blood glucose levels from tail nicks were
monitored at fasting and 2 h post-glucose gavage, and the area under the curve for each
algorithm was computed as well. At the end of the experimental schedule, the fresh fecal
pellets and blood samples were separately harvested, and animals were then euthanized by
cervical dislocation to obtain liver, adipose and colon tissues for subsequent biochemical
and pathological analyses after an overnight fast.
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2.3. Measurement of Serum Parameters and Hepatic Lipid Profiles

The serum concentration of triglyceride (TG), total cholesterol (TC), low-density
lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), glucose as
well as the content of aspartate aminotransferase (AST) and alanine aminotransferase (ALT)
were quantified using commercial test kits (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China). The levels of lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-
α), and interleukin 6 (IL-6) were evaluated with ELISA kits (Cusabio Biotech Co., Ltd.,
Wuhan, China).

2.4. Hematoxylin and Eosin (H&E) Staining

Fresh adipose, liver and colon tissues were fixed in 10% neutral-buffered formalin,
paraffined, embedded, sectioned, H&E stained, and processed for microscopic examination.
The adipocyte area was quantified using ImageJ software.

2.5. Quantification of Gene Expression

Total RNA from epididymal adipose and liver tissue was extracted using TRIzol
Reagent (Ambion, Austin, TX, USA) in line with the manufacturer’s instructions and
reverse-transcribed into cDNA using Revert Aid First Strand cDNA Synthesis Kit (Thermo
Fisher Scientific, Waltham, MA, USA). The mRNA expression levels of lipid metabolism-
related genes were detected using qRT–PCR on the CFX Connect Real-Time System (BIO-
RAD, Hercules, CA, USA). The primers used are provided in Table S2, Supplementary
Material. Relative quantification was normalized using β-actin control and achieved
according to the comparative 2−∆∆Ct method.

2.6. Gut Microbiota Analysis

Metagenomic DNA was extracted from fecal pellets, followed by 16S rRNA amplifica-
tion of the variable 4 (V4) regions using an Illumina MiSeq platform (Novogene Genomics
Technology Co. Ltd., Beijing, China) with the universal primers 341F and 806R. The am-
plicons were extracted, purified, quantified, and then clustered with the Uparse software,
where the sequences with ≥97% similarity were clustered into operational taxonomic
units (OTUs). The representative sequences were identified to perform further species
taxonomic analysis.

2.7. Statistical Analysis

The effects of CB-JT on observed variables were exhibited as means ± SEM and
calculated using GraphPad Prism 5 Software (GraphPad, San Diego, CA, USA) and SPSS
20.0 (SPSS Inc., Chicago, IL, USA). The gut microbiota diversity including alpha diversity,
beta diversity, gut microbial composition, linear discriminant analysis (LDA) effect size
(LEfSe), Spearman’s correlation, redundancy analysis (RDA) and functional prediction was
analyzed on the Novogene Bioinformatics platform (Beijing, China). Two-tailed Student’s
t-tests were used when comparing the statistical differences between two groups, and
one-way analysis of variance (ANOVA) test was used to compare among three groups.
p values < 0.05 were considered statistically significant.

3. Results
3.1. CB-JT Suppressed HFD-Induced Abnormal Body Weight Gain, Organ Weight and Food Intake

To evaluate the preventive effect of CB-JT on the obesity process, the obesity-related
parameters in HFD-fed mice supplemented with CB-JT for 8 weeks were measured.
Figure 1A,B show that starting on the 4th week of HFD feeding, body weights in the
JT group were notably lower than those in the HFD group (p < 0.05). In comparison with
the HFD group, the significant decreases in the perirenal fat indices (perirenal fat weight to
body weight ratio), epididymal fat indices (epididymal fat weight to body weight ratio) and
liver indices (liver weight/body weight ratio) of the JT group were as shown in Figure 1C–E.
No significantly statistical difference in food intake and water consumption among NC,
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HFD, and JT groups was evident (Figure 1F,G). The higher energy intake resulting from the
higher energy density in the HFD group is noted in Figure 1H,I, whereas the significantly
elevated energy efficiency (weight gain/energy intake ratio) driven by HFD feeding was
reversed by CB-JT intervention with statistical significance (p < 0.05).
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Figure 1. CB-JT suppressed HFD-induced abnormal body weight gain, organ weight and food intake.
(A) Body weight during the 8-week intervention (n = 8). (B) Body weight gain. (C) Liver weight/body
weight. (D) Perirenal fat weight/body weight. (E) Epididymal fat weight/body weight. (F) Water
consumption. (G) Food intake. (H) Energy intake. (I) Energy efficiency. NC: normal-chow group,
HFD: high-fat diet group, JT: jasmine tea group. Data are expressed as the mean ± SEM. The mean
value with different letters indicates significant differences (p < 0.05). HFD vs. NC: ** p < 0.01,
*** p < 0.001; JT vs. HFD: # p < 0.05, ## p < 0.01, ns for no significance.

3.2. CB-JT Improved the Serum Biochemical Parameters in HFD-Fed Mice

Obesity is usually accompanied by altered plasma lipid profiles, inflammation, dysg-
lycemia, endotoxemia as well as functional impairment of non-adipose tissue. As shown in
Figure 2A–D, serum TC, TG and LDL-C levels were noticeably raised in the HFD group by
2.12, 1.81, and 1.26 times, respectively, compared with the NC group; CB-JT intervention
reduced the levels of circulating TC, TG and LDL-C (p < 0.05, p > 0.05, p < 0.05). No
evidence was found for significant variation in HDL levels among the NC, HFD, and JT
groups. Figure 2E,F indicate that 60 min after the glucose injection, blood glucose values
were significantly lowered by CB-JT, and the area under the curve (AUC) of blood glucose
decreased in mice fed with CB-JT compared with the HFD group (p < 0.05). CB-JT treatment
inhibited HFD-induced increment in fasting blood glucose levels (Figure 2G). These results
indicated that HFD remarkably disrupted glucose homeostasis, while CB-JT markedly
alleviated HFD-driven abnormal glucose metabolism. Furthermore, HFD significantly
raised the circulating IL-6, TNF-α, and LPS levels (p < 0.05 for all analyses) compared with
those of the NC group, while decreases in the endotoxin and inflammatory cytokine levels
were observed in the JT group with statistical significance (Figure 2H,J). CB-JT was also
proved to remarkably improve the increased levels of hepatic injury indicators, including
AST and ALT in mice with HFD feeding (Figure 2K,L).



Nutrients 2022, 14, 5359 5 of 14

Nutrients 2022, 14, x FOR PEER REVIEW 5 of 15 
 

 

treatment inhibited HFD-induced increment in fasting blood glucose levels (Figure 2G). 
These results indicated that HFD remarkably disrupted glucose homeostasis, while CB-JT 
markedly alleviated HFD-driven abnormal glucose metabolism. Furthermore, HFD sig-
nificantly raised the circulating IL-6, TNF-α, and LPS levels (p < 0.05 for all analyses) com-
pared with those of the NC group, while decreases in the endotoxin and inflammatory 
cytokine levels were observed in the JT group with statistical significance (Figure 2H,J). 
CB-JT was also proved to remarkably improve the increased levels of hepatic injury indi-
cators, including AST and ALT in mice with HFD feeding (Figure 2K,L). 

 
Figure 2. CB-JT improved the serum biochemical parameters in HFD-fed mice. (A) Serum TC. (B) 
Serum TG. (C) Serum LDL-C. (D) Serum HDL-C. (E) Blood glucose. (F) Area under the curve of 
blood glucose. (G) Serum glucose. (H) Serum LPS. (I) Serum IL-6. (J) Serum TNF-α. (K) Serum ALT. 
(L) Serum AST. NC: normal-chow group, HFD: high-fat diet group, JT: jasmine tea group. Data are 
expressed as the mean ± SEM. The mean value with different letters indicates significant differences 
(p < 0.05). HFD vs. NC: * p < 0.05, ** p < 0.01; JT vs. HFD: # p < 0.05, ## p < 0.01, ns for no significance. 

3.3. CB-JT Attenuated HFD-Induced Histological Injury 
A histological examination was further performed to probe the preventive effect of 

CB-JT supplementation on HFD-induced fat accumulation and inflammation. As illus-
trated in Figure 3A,B, HFD feeding promoted adipocyte hypertrophy and raised adipo-
cyte size compared to that in NC-fed mice (p < 0.05), while fat accumulation in HFD-mice 
was reversed by CB-JT intervention (p < 0.05). Additionally, liver histologic analysis sug-
gested that significant hepatic lipid accumulation and balloon-like structures (yellow ar-
rows) emerged in the HFD group, but these histological changes were effectively im-
proved by CB-JT treatment. The histology score of liver tissue also showed that the hepatic 
injury was notably alleviated in the JT group (Figure 3C). Moreover, HFD feeding also 

Figure 2. CB-JT improved the serum biochemical parameters in HFD-fed mice. (A) Serum TC.
(B) Serum TG. (C) Serum LDL-C. (D) Serum HDL-C. (E) Blood glucose. (F) Area under the curve of
blood glucose. (G) Serum glucose. (H) Serum LPS. (I) Serum IL-6. (J) Serum TNF-α. (K) Serum ALT.
(L) Serum AST. NC: normal-chow group, HFD: high-fat diet group, JT: jasmine tea group. Data are
expressed as the mean ± SEM. The mean value with different letters indicates significant differences
(p < 0.05). HFD vs. NC: * p < 0.05, ** p < 0.01; JT vs. HFD: # p < 0.05, ## p < 0.01, ns for no significance.

3.3. CB-JT Attenuated HFD-Induced Histological Injury

A histological examination was further performed to probe the preventive effect of
CB-JT supplementation on HFD-induced fat accumulation and inflammation. As illustrated
in Figure 3A,B, HFD feeding promoted adipocyte hypertrophy and raised adipocyte size
compared to that in NC-fed mice (p < 0.05), while fat accumulation in HFD-mice was
reversed by CB-JT intervention (p < 0.05). Additionally, liver histologic analysis suggested
that significant hepatic lipid accumulation and balloon-like structures (yellow arrows)
emerged in the HFD group, but these histological changes were effectively improved by
CB-JT treatment. The histology score of liver tissue also showed that the hepatic injury was
notably alleviated in the JT group (Figure 3C). Moreover, HFD feeding also induced inflam-
matory infiltration (red arrows) with intact crypt structures and similar numbers of crypt
goblet cells, indicating low-grade inflammation in the HFD-fed group. CB-JT significantly
reduced the inflammatory area and attenuated inflammatory cell infiltration. Histopatho-
logical scores of colon tissues demonstrated that CB-JT supplementation partially alleviated
or completely reversed HFD-induced colonic histological damage (Figure 3D).
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Figure 3. CB-JT attenuated HFD-induced histological injury. (A) Representative images of histological
sections of epididymal fat, liver, and colon tissues. Yellow arrows: balloon-like structures in liver
tissues; red arrows: inflammatory infiltration in colonic tissues. (B) Average adipocyte area of
epididymis adipose. (C) Histology score of liver. (D) Histology score of colon tissues. NC: normal-
chow group, HFD: high-fat diet group, JT: jasmine tea group. Data are expressed as the mean ± SEM.
The mean value with different letters indicates significant differences (p < 0.05).

3.4. CB-JT Regulated HFD-Induced Abnormal Expression of Lipid Metabolism-Related Genes

To determine whether CB-JT treatment normalized lipogenesis and lipolysis at the
gene transcript levels, some key genes for lipogenic mediators in liver and epididymal
adipose tissues were next quantified. As shown in Figure 4A, HFD upregulated the
mRNA levels of critical lipogenic genes (Leptin, Il6, and Il1b) by 3.06, 2.98 and 4.68 times,
respectively, with significant difference in date compared to the NC group. A 0.25-fold
decrease in the mRNA expression of Pgc1a was also noticed in adipose tissues compared
to that in the NC group (p < 0.05). Figure 4B shows that the hepatic gene expression of
Cyp7a1, Lxra, Ppara, and Atgl was significantly suppressed in mice fed with HFD, and the
mRNA level of Srebp1c was promoted by HFD feeding compared to its respective level in
NC-fed mice with statistical significance. However, CB-JT treatment significantly inhibited
HFD-induced differential expression of Leptin, Il6, and Il1b in adipose tissue and Cyp7a1,
Lxra, and Atgl in liver as well (p < 0.05 for all analyses).

3.5. CB-JT Modulated HFD-Induced Gut Microbiota Disorder

Growing evidence has supported the correlation between gut microflora and metabolic
diseases. Figure 5A,B shows that the Shannon and Simpson indices of the HFD group
differed significantly from those of the mice on normal chow, whereas the changes in
the corresponding parameters were remarkably inhibited by JT treatment and recovered
to normal levels. The gut microflora composition in response to the different dietary
interventions is shown in the Venn diagram (Figure 5C), where NC, HFD, and JT groups
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exhibited 361, 377, and 290 unique OTUs, respectively, and shared 636 overlapping OTUs.
To understand the effect CB-JT on the gut microbiota structure, principal coordinate analysis
(PCoA) was then conducted with PC1 of 38.35% and PC2 of 20.39% (Figure 5D). The graphs
also signified that the gut bacterial structure in the NC, HFD, and JT groups was clustered
separately and classified into three distinct clusters, implicating a dramatic impact of CB-JT
on gut microbial composition in the HFD group.
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(A) Relative mRNA expression in the epididymal adipose tissue. (B) Relative mRNA expression in
the liver tissue. Expression levels were normalized to β-ACTIN and expressed as relative fold changes
in comparison with the NC group (mean ± SEM). NC: normal-chow group, HFD: high-fat diet group,
JT: jasmine tea group. The mean value with different letters indicates significant differences (p < 0.05).

The distinct differences in microbial composition between the three groups were next
assessed at various phylum and genus levels. Figure 5E,F shows that the gut microflora
was dominated by Bacteroidetes and Firmicutes, which is consistent with findings in the
previous literature [19]. LEfSe analysis was then conducted to classify specific phylo-
types that were significantly associated with HFD and CB-JT treatments. As illustrated in
Figure 5G, a total of 23 OTUs were screened as phylogenetic types, whose relative abun-
dance varied significantly with HFD feeding and CB-JT treatment. Pathogenic taxa, in-
cluding Lachnospiraceae, Firmicutes, Clostridiales, and Clostridia, were enriched in the HFD
group, in contrast with the mice on normal chow, while higher levels of some beneficial
phylotypes including Bacteroides, and Alloprevotella were observed in the JT group.
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Figure 5. CB-JT modulated HFD-induced gut microbial disorder. (A) Shannon index. (B) Simpson
index. (C) Venn diagrams of OTUs in the gut microbiota among groups. (D) PCoA. (E) Bacterial
taxonomic composition at the phylum level. (F) Bacterial taxonomic composition at the genus level
(G) LEfSe analysis (LDA score > 4). NC: normal-chow group, HFD: high-fat diet group, JT: jasmine
tea group. Data are expressed as the mean ± SEM. The mean value with different letters indicates
significant differences (p < 0.05).

Specifically, the composition of phyla and the predominant genera (top 10 relative
abundance) of the different treatments can be seen in Figure 6A,B. CB-JT treatment markedly
lowered the abundance of Firmicutes and Proteobacteria as well as the ratio of Firmicutes to
Bacteroidetes (F/B) in the HFD group with statistical differences. Additionally, HFD feeding
inhibited the growth of Alloprevotella and enriched the abundance of Blautia, Bacteroides,
Mucispirillum, and Bilophila in comparison to the levels found in the NC group (p < 0.05 for
all analyses). In contrast, the significantly expressed genera including Blautia, Alloprevotella,
Mucispirillum, and Bilophila were remarkably mitigated by CB-JT supplementation with
statistical significance. The results demonstrated that CB-JT treatment reversed the HFD-
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driven abnormal abundance of specific bacteria and promoted the sustained enrichment of
beneficial bacteria, thus regulating gut microbiota dysbiosis.
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Figure 6. The abundance of predominant bacteria in intestine flora profiling of HFD-fed mice differed
after CB-JT treatment. (A) Relative enrichment of top bacterial phyla and Firmicutes to Bacteroidetes
(F/B) ratio. (B) Relative enrichment of dominant genera. NC: normal-chow group, HFD: high-fat diet
group, JT: jasmine tea group. The mean value with different letters indicates significant differences
(p < 0.05).

3.6. Correlation Analysis and Predictive Function Profiling of Gut Microbiota

The correlations between gut microbiota and obesity indicators were estimated with
Spearman’s correlation analysis, and the results are illustrated in a heatmap (Figure 7A).
Weight gain and the circulating concentrations of TC and TG were positively correlated
with Bacteriodes, Bilophila, and Butyricimonas, and exhibited a negative correlation with
Faecalibaculum, Akkermansia, and Ruminococcaceae. Bilophila was observed to be positively
associated with the levels of AST, ALT, and IL-6, demonstrating that Bilophila might relate
to HFD-induced hepatic injury and inflammatory development. RDA was applied to
assess the correlation between environmental attributes and gut microbiota structure
during CB-JT treatment in HFD-fed mice (Figure 7B). RDA1 explained 46.68% of the
variation, while RDA2 represented 17.54% of the variation. The enriched area varied widely
within the NC and HFD groups, whereas a slighter differential enrichment was observed
with CB-JT treatment. According to previous study, vector arrows were labeled with the
corresponding environmental factors, and the length of the arrows indicated the relative
influence [20]. This finding showed that the CB-JT preventive effect on HFD-driven obesity
might be related to serum lipid levels, endotoxin, and liver function. Moreover, the relative
abundance of Verrucomicrobia, Tenericutes, Firmicutes, Fusobacteria, and Actinobacteria showed
a negative association with obesity-related parameters such as blood lipids and weight
gain, whereas Acidobacteria, Deferribacters, Proteobacteria Euryarchaeota, and Bacteroidetes
exerted positive relationships with circulating IL-6 and ALT levels, contributing to hepatic
injury and inflammation.

Functional annotation of prokaryotic taxa (FAPROTAX) analysis was applied to per-
form the functional prediction (Figure 7C). CB-JT intervention reverted the differentially
enriched pathways related to pathogens, nitrogen respiration, nitrate respiration, hy-
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drogenotrophic methanogenesis, methanogenesis, methanogenesis by CO2 reduction with
H2, acetoclastic methanogenesis, dark hydrogen oxidation, and nitrate reduction caused by
HFD feeding.
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treatment, * p < 0.05, ** p < 0.01. (B) RDA analysis. (C) Predictive function profiling of gut microbiota.
NC: normal-chow group, HFD: high-fat diet group, JT: jasmine tea group.

4. Discussion

Obesity is a worldwide metabolic disease linked to nonalcoholic fatty liver disease
(NAFLD) and hypertension as well as various cancers. The excessive availability of sugar-
sweetened drinks was associated with higher risk of overweight and obesity [21]. Tea
beverages are known to contain a variety of polyphenols, polysaccharide, and theanine,
which have strong anti-obesity properties [22]. Dietary supplementation with sugar-free
functional tea alternatives is thus a feasible strategy for obesity prevention. A compar-
ative study found that the dominant phenolics such as catechins and chlorogenic acid
in jasmine/green tea exhibited higher levels than those in oolong tea and black tea [23].
Previously, jasmine tea epicatechins were found to exert hypolipidemic effects in HFD-fed
hamsters, which is consistent with current findings in a mouse model [24]. Apart from
dominant catechins, novel polysaccharide sub-fractions from jasmine tea were also proved
to have anti-hyperglycemic and antioxidant capacity in a recent study, which further cor-
roborates the health attributes of jasmine tea [13]. Meanwhile, considering the multiple
advantages of cold-brewed jasmine tea, including better characteristic flavors, higher levels
of unoxidized bioactive components, and portable convenience for future development, we
thus speculate that CB-JT may support metabolic health as a widely consumed functional
tea beverage [10,11]. In our study, a C57/BL6J obese model was established to examine
the potential of CB-JT in preventing obesity and the molecular mechanism involved. The
mice in the JT group were given ad libitum CB-JT to simulate the most commonly used
pattern of tea consumption for the human body, and the daily consumption of dominant
catechins in our animal experiment was approximately equivalent to the intake of 2 cups of



Nutrients 2022, 14, 5359 11 of 14

tea a day in humans, according to the dose conversion criteria of body surface area [25].
As expected, food intake and water consumption were not notably affected by jasmine
tea in a free-feeding context, while CB-JT at this free intake dose significantly alleviated
HFD-driven weight gain, lipid deposition, and dyslipidemia, which was in line with former
studies reported for green tea, black tea, and oolong tea [26]. The increased concentrations
of TC might be associated with the excess mobilization of fatty acids from peripheral
deposits to the liver, thus leading to hepatic steatosis [27]. The elevated AST and ALT levels
also suggested hepatic injury caused by HFD feeding, and CB-JT significantly suppressed
the increase in these indicators for NAFLD. HFD has been proven to cause impaired in-
testinal integrity and increase the leakage of microbiota-derived LPS, thus resulting in
systemic inflammation that intensifies obesity pathogenesis [28]. Simultaneously, our find-
ings showed that CB-JT attenuated metabolic endotoxemia, glucose metabolic dysfunction,
and systemic inflammatory response, marked by lower levels of LPS, glucose tolerance and
proinflammatory factors, respectively.

Liver and adipose tissue are essential organs for energy metabolism. A considerable
amount of evidence has shown that obesity is usually accompanied with the abnormal
expression of some critical genes involved in the processes of adipogenesis, lipogenesis,
and lipolysis in liver and epididymal adipose tissues [29]. Some anti-obesity therapies
have been reported to exert their efficacy against obesity by modulating gene expression
involved in fatty acid biosynthesis and lipid metabolism [30]. CB-JT-mediated regulation
(activation/repression) of differentially expressed genes driven by HFD feeding was then
detected. Cyp7a1 and Atgl usually are involved in bile acid synthesis, cholesterol accumula-
tion and energy metabolism regulation [31,32]. Ppara can repress inflammation and reduce
the expression of Tnfa, Il6 and Il1b by inhibiting the nuclear factor κB pathway [33]. Pgc1a
plays a key role in regulating insulin sensitivity as an essential transcriptional regulator
in mitochondrial and metabolic processes [34]. Leptin is primarily responsible for regulat-
ing lipid metabolism, angiogenesis, insulin sensitivity and inflammatory processes [35].
Lxra shows well-defined roles in mediating lipogenesis and regulating glucose homeosta-
sis [36]. Srebp1c contributes to lipid homeostasis and fatty acid synthesis [37]. In our study,
HFD promoted significantly differential expression of Cyp7a1, Lxra, Ppara, Atgl, Pgc1a,
Leptin, Srebp1c, Il6, and Il1b, whereas CB-JT inhibited the differential expression of Lxra,
Cyp7a1, Atgl, Srebp1c, Leptin, Il6, and Il1b. This result suggests that CB-JT prevented the
development of obesity profiling partially by regulating cholesterol accumulation, energy
metabolism, insulin sensitivity, and inflammatory processes.

Functional components in tea beverages, such as polyphenols and theanine, are usu-
ally poorly absorbed, and thus the health benefits of tea beverages may be attributed
to the interaction between these bioactive ingredients with gut microflora. Additionally,
gut microbiota has been confirmed to regulate obesity traits recently [38]. We further
hypothesized that CB-JT might prevent obesity partially by modulating gut flora. Our
results show that gut microbial diversity in the JT-treated mice remained at a high level
in comparison to that of the HFD group, which was consistent with the capacity of green
tea to increase levels of gut microbiota diversity, as reported previously [39]. CB-JT also
reverted HFD-induced higher levels of the F/B ratio, indicating an anti-obesity capacity
as reported in [40]. Furthermore, the increased relative abundance of Proteobacteria has
been reported to be associated with LPS release, recognized as an indicator of NAFLD
mediated by the gut–liver axis [41]. Enriched growth of Proteobacteria was observed in the
HFD group, while CB-JT noticeably inhibited the differential expression of Proteobacteria.
Blautia, the most enriched genus, depicted a positive association with the levels of AST,
serum lipids and inflammatory factors [42]. The relative abundance of Faecalibaculum and
Bacteroides presented a contrary tendency during the HFD feeding and CB-JT treatment.
Faecalibaculum, a pro-inflammatory bacterium, was raised by HFD feeding and positively
correlated with inflammatory factors [43]. Conversely, Bacteroides was promoted by CB-JT
treatment, presenting a potential for suppressing the release of cytokines and development
of autoimmune diseases [44]. As reported, Alloprevotella, enriched in mice supplemented
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with CB-JT, is widely recognized as a beneficial bacterium for producing short-chain fatty
acids (SCFAs) and protecting liver function [45]. Bilophila has also been documented to be
involved in SCFA synthesis, adipocyte differentiation, lipoprotein hydrolysis, and lipid
metabolism [46]. Mucispirillum has been considered to participate in energy metabolism
and contribute to the generation of free fatty acids coupled with SCFAs [47]. Our results
also indicated that CB-JT suppressed the relative abundance of Bilophila and Mucispiril-
lum, which is consistent with the bacteriostatic effects of quercetin and resveratrol [48].
In the Spearman analysis, three strains of detrimental bacteria in HFD-mediated obesity
were identified. Butyricimonas was positively correlated with weight gain and LPS release,
which has been proven to involve the butyrate production pathway and inflammation [49].
Erysipelotrichaceae was also positively associated with the obesity index. A previous re-
port has also shown that Erysipelotrichaceae may be enriched with HFD feeding via the
extraction of more energy from the diet, and thus re-shape the lipid profiles and exacerbate
obesity [50].

In our study, cold-brewed jasmine tea was found to neutralize the HFD-induced ad-
verse effects on lipid metabolism and gut microbiota profile. Our findings might provide a
novel perspective for the prevention of obesity and related metabolic diseases. Neverthe-
less, further clinical validation is required to evaluate the long-term efficacy of cold-brewed
jasmine tea and develop a supportive nutritional recommendation.

5. Conclusions

In conclusion, this study indicated that cold-brewed jasmine tea attenuated weight
gain, abnormal serum blood levels, fat accumulation, inflammation, glucose intolerance,
metabolic endotoxemia, as well as differentially expressed genes related to lipid metabolism.
CB-JT treatment also improved the gut microbial diversity, reshaped the gut microbial
composition, promoted beneficial bacteria such as Alloprevotella and Bacteroides, and inhib-
ited the growth of pathogenic bacterial taxa including Blautia, Bilophila and Mucispirillum.
Our findings offer evidence that cold brewed-jasmine tea could serve as a functional tea
beverage resource for the prevention of obesity and gut microbiome dysbiosis.
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