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Abstract: Food protein or food-derived peptides may regulate blood glucose levels; however, studies
have shown inconsistent results. The aim of the present study was to characterize subgroups of
individuals with increased risk of type 2 diabetes (T2D) and to investigate the cardiometabolic effects
of fish protein in the same subgroups. We first divided participants into high insuliniAUC and low
insuliniAUC subjects based on their insulin incremental area under the curve (iAUC) levels after a 2 h
oral glucose tolerance test (OGTT), and secondly based on whether they had received 5.2 g salmon
fish protein or placebo for 8 weeks, in a previously conducted randomized controlled trial (RCT). We
then profiled these groups by analyzing plasma metabolomics and peripheral blood mononuclear cell
(PBMC) gene expression. Compared to the low insuliniAUC group, the high insuliniAUC group had
higher plasma concentrations of monounsaturated fatty acids (MUFAs) and glycated proteins (GlycA)
and lower concentrations of glycine and acetate. After intervention with fish protein compared to
placebo, however, only acetate was significantly increased in the low insuliniAUC group. In conclusion,
we identified metabolic biomarkers known to be associated with T2D; also, intervention with fish
protein did not affect cardiometabolic risk markers in subgroups with increased risk of T2D.

Keywords: diabetes; salmon fish protein; fishmeal; metabolome; transcriptome; metabolic profile

1. Introduction

Type 2 diabetes (T2D) is estimated to affect more than 425 million individuals glob-
ally [1]. Impaired insulin secretion due to dysfunctional pancreatic beta-cells and/or
peripheral insulin resistance is established characteristics of T2D, giving dysregulated
metabolism of carbohydrates, fatty acids, and protein [2]. Prediabetes is an early stage of
this continuum and is a high-risk condition for developing T2D [2]. The term prediabetes
is increasingly being used to refer to individuals who are at increased risk of developing
T2D [3]. Individuals with prediabetes have elevated levels of fasting serum insulin and
Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), indicating a direct
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relationship between prediabetes and insulin resistance [4]. However, individuals with pre-
diabetes are a diverse population in terms of pathophysiology and clinical presentation [2]
and may display variations in fasting or postprandial blood glucose concentrations [4].
Excess adipose tissue increases insulin resistance [5], and the prevalence of prediabetes
gradually increases with increasing body mass index (BMI) and waist circumference [4].
Moreover, prediabetes alters serum lipid profiles (increased triglycerides and decreased
high-density lipoprotein (HDL)) and increases cardiac risk ratios (total-cholesterol/HDL-C
and low-density lipoprotein cholesterol (LDL-C)/HDL-C) and resting blood pressure. Thus,
prediabetes is also an important predictor of metabolic syndrome [4]. Individuals with pre-
diabetes and/or metabolic syndrome are at high risk of developing T2D and cardiovascular
diseases [4].

The ability to predict progression from impaired glucose tolerance to T2D is, therefore,
highly valuable for improved prevention. However, identifying those at the highest risk
remains challenging. Some new biomarkers for cardiovascular and T2D risk have been
suggested, including lipoprotein insulin resistance (LP-IR) score [6–8], and circulating
glycoprotein acetyls (GlycA) [6,9] branched-chain amino acids (BCAAs) [6] and glycine [6].
Furthermore, fatty acids are important signaling molecules [10,11], and circulating levels
of several fatty acids are increased with insulin resistance [12]. Increased plasma levels
of monounsaturated fatty acids (MUFAs) are associated with cardiovascular risk [13] and
with increased HbA1c and fasting glucose levels [14]. The effect of fatty acids on diabetic
risk is suggested to be through inflammatory mechanisms [15], oxidative stress [16], and
hepatic de novo lipogenesis [17]. However, prediabetes is still sub-optimally characterized
with respect to a broad risk assessment, and whether these newly suggested biomarkers
are more sensitive to dietary intervention in people with increased risk of T2D is still to
be elucidated.

There is conclusive evidence from randomized controlled trials (RCT) that intensive
lifestyle interventions (diet and/or exercise) [2,18] and medications (such as metformin,
alpha-glucosidase inhibitors, and thiazolidinediones) can delay or prevent the onset of
T2D in high-risk individuals [2]. Observational follow-up of RCT participants has shown
that the beneficial effects of lifestyle interventions may persist over time, improve quality
of life, and are both safe and cost-effective [2,19]. A healthy diet is important for both
the prevention and management of T2D [20]. Food protein or food-derived peptides
have been found to regulate blood glucose levels [21–24]. Although interventions with
fish proteins have shown promising effects on cardiometabolic risk markers [25–29] and
glycemic regulation in human studies [28,30], these observations are inconsistent [26,31–33].
In a recent RCT, Hustad et al. investigated the effect of an 8-week intervention with salmon
fish protein on cardiometabolic risk markers in people with increased risk of T2D [34]. They
found that intervention with salmon fish protein had no effect on glycemic regulation in
individuals with an increased risk of T2D [34]. However, the participants in the study had
large variability in plasma glucose and insulin values. Hence, the lack of a group effect
on glycemic regulation could be due to the heterogeneous nature of prediabetes in the
studied individuals.

The aim of the present study was to characterize subgroups of individuals with in-
creased risk of T2D who participated in the previous intervention study by Hustad et al. [34].
Participants were grouped based on their insulin incremental area under the curve (iAUC)
levels after a 2 h oral glucose tolerance test (OGTT). Metabolome and transcriptome anal-
yses were applied to measure alterations in cardiometabolic risk markers after intake of
salmon fish protein in subgroups with low insuliniAUC and high insuliniAUC.
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2. Materials and Methods
2.1. Subjects

In the present study, we used clinical, metabolome, and transcriptome data from the
FishMeal study [34]. The FishMeal study was a human RCT investigating the effects of
salmon fish protein intake on cardiometabolic risk markers. The inclusion criteria were
non-diabetic men and women ≥20 years and elevated blood glucose defined as either
fasting serum (s)-glucose ≥5.6 mmol/L, 2 h OGTT-s-glucose ≥6.5 mmol/L or HbA1c
≥40 mmol/mol (≥5.8%). People with diabetes were excluded from the study. Further
description of the exclusion criteria is available in Hustad et al. [34]. The participants
were included in an 8-week double-blind, randomized controlled parallel study with 5.2 g
of salmon fish protein (corresponding to 7.5 g of fishmeal) compared with a placebo, as
previously described. The participants were instructed to limit their fish and seafood
intake to a maximum of 150 g per week and otherwise maintain their usual lifestyle habits
throughout the study. The salmon fishmeal contained 69.7 g of protein and 13.2 g of
fat/100 g. A more detailed description of the content can be found in [34].

The FishMeal human intervention study analyzed data from 74 participants. For the
present study, two participants were excluded due to a lack of data on fasting or 2 h insulin
concentrations, resulting in a study sample of 72 participants.

2.2. Blood Sampling and Biochemical Routine Measures

Venous blood samples were drawn after an overnight fast (≥10 h). Serum was obtained
from silica gel tubes (Becton, Dickinson, and Company, San Jose, CA, USA) and kept at
room temperature for 30–60 min until centrifugation (1500× g, 15 min). Plasma was
obtained from K2EDTA tubes (Becton, Dickinson, and Company), immediately placed on
ice, and centrifuged within 10 min (2000× g, 4 ◦C, 15 min).

Serum concentrations of fasting glucose, insulin, HbA1c, triglycerides, total cholesterol,
LDL-cholesterol, HDL-cholesterol, high-sensitive C-reactive protein (hsCRP), and glucose
and insulin after a 2 h OGTT (75 g glucose load) were measured by standard methods at an
accredited routine laboratory (Fürst Medical Laboratory, Oslo, Norway).

2.3. NMR Spectroscopy

Circulating metabolites, before and after the intervention, were quantified at a high
throughput proton NMR metabolomics facility (Nightingale Health Ltd., Helsinki, Finland),
giving a snapshot of systemic metabolism [35]. The method measures 250 metabolites
(lipoprotein subclasses, fatty acids, glycolysis-related metabolites, amino acids, ketone
bodies, fluid balance markers, and inflammatory markers) in fasting EDTA plasma.

2.4. Isolation of Peripheral Blood Mononuclear Cells and RNA

Peripheral blood mononuclear cells (PBMCs) from blood samples drawn at fasting,
before and after the intervention, were isolated with BD Vacutainer Cell Preparation tubes
(Becton, Dickinson). The method is well-documented for PBMCs isolation with more
than 90% purity. PBMCs were isolated according to the manufacturer’s instructions and
stored at −80 ◦C until RNA isolation. Total RNA was isolated using the RNeasy kit with
QIAshredder homogenization of the cell lysates and DNase treatment using the automated
protocol for the QIAcube according to the manufacturer’s instructions (Qiagen, Valencia,
CA, USA). The quantity and quality of the isolated RNA were analyzed with the NanoDrop
ND-1000 Spectrophotometer (Thermo Fisher Scientific, Gothenburg, Sweden) and the
Agilent RNA 6000 Nano kit using Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA), respectively. Six participants were excluded due to missing PBMCs and
hence RNA, leaving 66 participants for the gene expression analyses.
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2.5. Nanostring Gene Expression Assay

RNA expression analysis was performed using the NanoString nCounter system and
the nCounter Metabolic Pathways Panel (Nanostring Technologies, https://nanostring.
com/support-documents/metabolic-pathways-panel-gene-list/, accessed on 14 October
2022). This panel contains code sets that cover 768 mRNAs annotated to different metabolic
pathways, including 20 reference genes, as well as positive and negative controls. All
gene name abbreviations are listed in Supplementary Table S1. In addition, the panel
was customized by adding 30 additional code sets covering immune and inflammation
response and lipid metabolism-related mRNAs (Supplementary Table S2). The procedure
was performed according to the manufacturer’s instructions for nCounter Panel-Plus with
an RNA input of 75 ng per sample.

Samples with an imaging quality control >75%, binding density between 0.1 and 1.8,
positive control linearity >0.95, and the lowest positive control (0.5 fm) count higher than
2 SD above the negative controls were included. Samples were normalized to remove both
technical and biological variation. The background threshold was set to be the geometric
mean of the negative controls. Each sample was normalized to the mean of its positive
controls relative to the geometric mean of positive controls in all samples. Finally, all
samples were normalized to all 20 reference genes included in the panel (ABCF1, FCF1,
SAP130, MRPS5, COG7, TBP, USP39, EDC3, DHX16, UBB, NRDE2, TLK2, DNAJC14,
POLR2A, SDHA, G6PD, OAZ1, TBC1D10B, STK11IP, and AGK). The quality control and
the technical and biological normalization were performed in the nSolver analysis software
version 4.0 (NanoString Technologies). The stability of the 20 reference genes was assessed
using NormFinder.

2.6. Statistics and Bioinformatics Analyses
2.6.1. Tools

All analyses were performed in R version 4.1.2 and RStudio IDE (https://www.rstudio.
com/, accessed on 2 December 2021). In the following sections, we indicate the packages
and specific functions that were relevant in the following format: package::function (setting).
We used tidyverse tools for data management and visualization [36].

2.6.2. Linear Regression Models

We used the R/Bioconductor software package limma [37] for running the linear
models and assessing differential metabolite concentrations and gene expressions. We
adjusted for age, sex, and BMI in the linear models for the metabolomics data and the gene
expression data. We also included smoking as a covariate in the gene expression analyses.

2.6.3. Pre-Processing

We pre-processed the data to optimize downstream modeling. Metabolite concentra-
tions were log-transformed (base::log1p), centered, and scaled (base::scale). Centering and
scaling were conducted to make metabolites directly comparable in the same downstream
analysis and forest plot visualization. For the intervention data, we centered and scaled
independently the before and after intervention values and then calculated the difference
in metabolites concentration. Gene expression data were log transformed (base::log2).

2.6.4. Stratification of the Participants and Metabolome and Transcriptome
Characterization before Intervention

Before the intervention, the participants in the FishMeal study were divided into
three groups based on their insulin incremental area under the curve (iAUC) levels after a
2 h OGTT. We calculated the insulin iAUC using two insulin measurements (fasting and
2 h insulin serum concentration) and the trapezoid method (DescTools::AUC [38]). Partic-
ipants in the lowest tertile (below 33.3%) were classified into the low insuliniAUC group
(n = 24), whereas those in the highest tertile (above 66.6%) to the high insuliniAUC group
(n = 24). The two groups were characterized and compared for metabolic profiling (includ-

https://nanostring.com/support-documents/metabolic-pathways-panel-gene-list/
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ing metabolites and PBMC gene expression profiles). We included all three groups in the
linear modeling and focused on the comparison between the low and high insuliniAUC
groups. The linear model of the group characterizations before intervention (limma::lmFit
followed by limma::eBayes) was defined as: metabolite or gene = insuliniAUC group + co-
variates. We considered that metabolites concentrations and gene transcripts expression
with p < 0.05 (no FDR correction) were different between the low and high insuliniAUC
groups. Supplementary Figure S1 illustrates the outline of the analysis pipeline for the
characterization of the subgroups before intervention.

2.6.5. Analyses of Metabolic and Gene Expression Profiles in the Subgroups
after Intervention

The same metabolites and gene transcripts were measured after intervention with fish
protein or placebo in the low insuliniAUC groups (n = 16 and n = 8, respectively) and the
high insuliniAUC groups (n = 12 and n = 12, respectively). We assessed changes in plasma
metabolite concentrations and changes in PBMC gene expression levels before and after
intervention in the low and high insuliniAUC groups.

We defined the linear model (limma::lmFit followed by limma::eBayes) for the effects of
the fish protein intervention as changes in metabolite or gene =insuliniAUC group + treatment
group + covariates. Then, we computed the estimated coefficient for the contrasts between
fish protein-treated low insuliniAUC vs. placebo-treated low insuliniAUC and fish protein-
treated high insuliniAUC vs. placebo-treated high insuliniAUC. Metabolite concentrations and
gene transcript expressions with p < 0.05 (no FDR correction) were considered altered when
compared to placebo. Supplementary Figure S2 illustrates the outline of the analysis pipeline
of the fish protein intervention.

2.6.6. Gene Set Enrichment Analysis and Competitive Gene Set Testing

We used the list of genes (obtained with limma::lmFit followed by limma::eBayes)
(p values < 0.05, no FDR correction) and searched for “enriched pathways” in order to
understand patterns in gene expression that could be different between the low insuliniAUC
and high insuliniAUC groups and affected by the fish protein intervention. This consisted of
testing if the obtained list of genes over-represented Gene Ontology (GO) terms [39,40] or
KEGG pathways [41] more than expected by chance. The lists of genes were tested with the
limma::kegga function for KEGG pathways and the limma::goana function for GO terms. We
restricted the universe of genes only to genes found in our nCounter panel (Supplementary
Tables S1 and S2). The p-values returned by limma::goana and limma::kegga functions are un-
adjusted for multiple testing because GO terms and KEGG pathways are often overlapping,
and standard methods of p-value adjustment may be very conservative [42].

To broaden our search, we used the Hallmark gene sets from the Molecular Signatures
Database (MSigDB) [43]. The Hallmarks gene sets summarize and represent specific
biological states or processes and display coherent expression [43]. With the Hallmark gene
sets, we performed competitive gene set testing, which allowed us to distinguish the most
important biological process from those that are less important. For this analysis, we used
the Hallmark gene set and the Camera method (limma::camera) [44]. Because the Camera
method also considers fold changes, we could interpret if the biological pathways were up-
or downregulated.

3. Results
3.1. Subgroup Characterization before Intervention

For this exploratory study, 72 individuals with a high risk of T2D (n = 27 males/45 females)
were divided into three groups (tertiles) based on their insulin iAUC values before intervention.
The groups with the lowest and the highest insuliniAUC were compared.

Table 1 shows the anthropometric and biochemical characteristics of the study pop-
ulation before intervention. The median age was 53.0 years in the low insuliniAUC group
and 61.5 years in the high insuliniAUC group. The two groups had similar BMI (median
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BMI in the low insuliniAUC group: 32.4 kg/m2 and high insuliniAUC group: 33.0 kg/m2).
The proportion of women to men was higher in both groups (low insuliniAUC group: 71%
and high insuliniAUC group: 63%). The proportion of participants that used tobacco daily
was higher in the high insuliniAUC group (26.3%) compared to the low insuliniAUC group
(9.1%). We found differences in parameters related to glucose metabolism and insulin
sensitivity (glycemic regulation) between the low insuliniAUC and high insuliniAUC groups
as expected, in which the low insuliniAUC group being the one with the lowest glucose 2 h,
fasting insulin, insulin 2 h, and HOMA-IR and with the highest Matsuda index (Table 1).

Table 1. Anthropometric and biochemical characteristics of subgroups before intervention.

Variable Low Insuliniauc High Insuliniauc p Value

n = 24 n = 24
Sex (n female, %) 17 (71%) 15 (63%)

Tobacco use daily (n, %) 2 (9.1%) 5 (26.3%)
Age (y) 53.0 (46.3–64.0) 61.5 (49.5–65.0) n.s

Weight (kg) 94.9 ± 16.8 100.3 ± 19.0 n.s
BMI (kg m−2) 32.4 (28.9–35.1) 33.0 (31.0–36.4) n.s

f. Glucose (mmol L−1) 5.4 (5.0–5.8) 5.2 (5.1–5.7) n.s
Glucose 2 h (mmol L−1) 4.7 ± 1.1 6.9 ± 1.1 ***

HbA1c (%) 5.8 ± 0.3 5.9 ± 0.3 n.s
f. Insulin (pmol L−1) 56 (44–92) 124 (102–196) ***

Insulin 2 h (pmol L−1) 154 (120–225) 804 (661–1152) ***
Insulin iAUC (pmol h L−1) 113 (60–163) 766 (647–1058) ***

HOMA-IR 2.4 (1.7–3.7) 4.9 (3.7–5.8) ***
Matsuda index 6.9 (4.9–10.7) 1.8 (1.1–2.1) ***

Triglycerides (mmol L−1) 1.4 ± 0.7 1.6 ± 0.6 n.s
Total cholesterol (mmol L−1) 5.3 ± 1.3 5.0 ± 0.8 n.s

HDL-C (mmol L−1) 1.4 (1.2–1.8) 1.2 (1.1–1.4) n.s
LDL-C (mmol L−1) 3.5 (2.6–4.3) 3.3 (2.9–4.2) n.s

ApoA1 (g L−1) 1.7 (1.5–1.8) 1.5 (1.4–1.7) n.s
Apo B (g L−1) 1.1 ± 0.3 1.0 ± 0.2 n.s

hsCRP (mg L−1) 3.4 (2.1–4.6) 4.2 (2.6–7.3) n.s
Systolic BP (mm Hg) 117 ± 13 123 ± 17 n.s
Diastolic BP (mm Hg) 69 (58–78) 71 (66–78) n.s

*** p < 0.001 low insuliniAUC vs. high insuliniAUC. Parametric data are expressed as mean ± SD, and non-
parametric data as median and interquartile range. Differences between tertiles were assessed using an ANOVA
with Tukey posthoc test for parametric variables or Kruskal-Wallis rank sum test with Pairwise Wilcoxon Rank
Sum Tests for non-parametric variables. Abbreviations: ApoA1: apolipoprotein A-I, Apo B: apolipoprotein B,
BMI: body mass index, BP: blood pressure, f.: fasting, HbA1c: hemoglobin A1c, HDL-C: high-density lipoprotein
cholesterol, HOMA-IR: homeostatic model assessment for insulin resistance, hsCRP: high sensitivity C-reactive
protein, iAUC: incremental Area Under the Curve, LDL-C: low-density lipoprotein cholesterol, n.s: not significant.

3.2. Subgroup Differences in Metabolic Profile before Intervention

To characterize individuals in the two subgroups (low insuliniAUC and high insuliniAUC),
we measured the plasma concentration of 250 metabolites. Compared to the low insuliniAUC
group, the high insuliniAUC group had a higher ratio of MUFAs to total fatty acids (MUFA%)
(Figure 1), lower levels of glycine and acetate, and a higher level of the inflammatory marker
GlycA (Figure 2). Although there were no significant differences between the low insuliniAUC
and high insuliniAUC groups regarding BCAAs, we observed a tendency to a higher individual
(p = 0.09 for valine) and total BCAAs (p = 0.10) in the high insuliniAUC group compared to the
low insuliniAUC group (Figure 2).
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Figure 1. Fatty acids profile in plasma before intervention. The forest plot displays the normalized
beta coefficients (mean difference) and 95% confidence interval for the difference between the low
insuliniAUC and high insuliniAUCgroups. Estimates on the left and right side of the zero-line translate
to lower and higher in the high insuliniAUC group compared to the low insuliniAUC group, respec-
tively. Color denotes the p value. Abbreviations: DHA: Docosahexaenoic acid, DHA%: Ratio of
docosahexaenoic acid to total fatty acids, iAUC: incremental Area Under the Curve, LA: Linoleic acid,
LA%: Ratio of linoleic acid to total fatty acids, MUFA: Monounsaturated fatty acids, MUFA%: Ratio
of monounsaturated fatty acids to total fatty acids, Omega-3%: Ratio of omega-3 fatty acids to total
fatty acids, Omega-6%: Ratio of omega-6 fatty acids to total fatty acids, PUFA: Polyunsaturated fatty
acids, PUFA%: Ratio of polyunsaturated fatty acids to total fatty acids, SFA: Saturated fatty acids,
SFA%: Ratio of saturated fatty acids to total fatty acids, Unsaturation: Degree of unsaturation.

There were no differences in total cholesterol levels or lipid composition of lipoproteins
between the low insuliniAUC and high insuliniAUC groups (Supplementary Figure S3)
neither on the LP-IR score (data not shown). Despite this, we observed a tendency coherent
with higher LP-IR score in the high insuliniAUC compared to the low insuliniAUC group:
higher levels of large very low-density lipoproteins (VLDL) particles and lower levels of
large HDL particles (Supplementary Figure S4). See Supplementary Table S3 for more
information about all the NMR metabolites, fold-changes, p values, and adjusted p values.
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Figure 2. Amino acids, glycolysis-related metabolites, ketone bodies, and inflammation markers
concentration in plasma before intervention. The forest plot displays the normalized beta coefficients
(mean difference) and 95% confidence interval for the difference between the low insuliniAUC and
high insuliniAUC groups. Estimates on the left and right side of the zero-line translate to lower and
higher in the high insuliniAUC group compared to the low insuliniAUC group, respectively. Color
denotes the p value. Abbreviations: BCAA: Branched-chain amino acids, iAUC: incremental Area
Under the Curve.

3.3. Subgroup Differences in Gene Expression before Intervention

We measured the gene expression of 778 gene transcripts involved in immunometabolism
in PBMCs to investigate if the observed differences in insulin sensitivity and metabolites
between the groups could be associated with differences in gene expression. We found
39 genes with a different expressions between the low insuliniAUC and high insuliniAUC
groups at a nominal significance level of 0.05 (Figure 3). CPT1A (carnitine palmitoyl transferase
1A) was the most differentially expressed gene in terms of p value (p = 0.0004) and fold change
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(log2 fold-change = 0.24) and was higher expressed in the high insuliniAUC group compared to
the low insuliniAUC group (Figure 3). However, none of the genes were significantly different
between the groups after adjustment for false discovery rate (FDR < 0.1). See Supplementary
Table S4 for more information about all the tested gene transcripts, fold-changes, p values, and
adjusted p values.
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Figure 3. Volcano plot of differentially expressed genes before intervention. The linear model was
adjusted by age, sex, BMI, and daily use of tobacco. Genes with p value < 0.05 (no FDR correction)
and with an absolute fold change above 1.10 were highlighted. Genes on the left side of the volcano
plot are down-regulated, and those on the right are up-regulated in the high insuliniAUC group
compared to the low insuliniAUC group. Abbreviations: ACAT1: acetyl-CoA acetyltransferase 1,
ADH4: alcohol dehydrogenase 4 (class II) pi polypeptide, ADH6: Alcohol dehydrogenase 6 (class V),
ALOX12: arachidonate 12-lipoxygenase 12S type, APOC2: apolipoprotein C2, BCL2L1: BCL2 such as
1, CD36: CD36 molecule (alternatively FAT: Fatty acid traslocase, or SCARB3: Scavenger receptor class
B member 3), CPT1A: carnitine palmitoyltransferase 1A, DERA: deoxyribose-phosphate aldolase,
FOLR1: folate receptor alpha, GPX1: glutathione peroxidase 1, HSPE1: heat shock protein family E
(Hsp10) member 1, iAUC: incremental Area Under the Curve, ITGB5: integrin subunit beta 5, MYC:
MYC proto-oncogene, bHLH transcription factor, NR1H4: nuclear receptor subfamily 1 group H
member 4 (alternatively FXR: Farnesol Receptor HRR-1), OTC: ornithine transcarbamylase, PDCD1:
programmed cell death 1, PDK4: pyruvate dehydrogenase kinase 4, PGAM2: phosphoglycerate
mutase 2, RIMKLA: ribosomal modification protein rimK such as family member A, SDSL: serine
dehydratase like, SLC6A18: solute carrier family 6 member 18, STK3: serine/threonine kinase 3, TK2:
thymidine kinase 2, TPR: translocated promoter region, nuclear basket protein.

3.4. Gene Set Enrichment Analysis and Competitive Gene Set Testing before Intervention

To understand patterns in gene expression between the low insuliniAUC and high
insuliniAUC groups, we performed a gene enrichment analysis including the 39 genes with
different expression (p < 0.05, without FDR correction) and using KEGG pathways and
Gene Ontology (GO) terms. The top three KEGG pathways that showed enrichment in the
high insuliniAUC compared with the low insuliniAUC group were thyroid cancer, ribosome,
and fatty acid degradation (Table 2). In concordance, the top three GO terms (molecular
function) were rRNA binding, large ribosomal subunit rRNA binding, and core promoter
sequence-specific DNA binding. Furthermore, we performed a competitive gene set test
(CAMERA) using the hallmark gene sets from MSigDB. Comparing the low insuliniAUC
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and high insuliniAUC, we found that the two most important altered gene sets were those
related to MYC targets V1 (FDR = 0.0005) and MYC targets V2 (FDR = 0.02), which were
both downregulated in the high insuliniAUC group (Table 3).

Table 2. Enriched KEGG pathways and top 5 GO terms before intervention.

Pathway Name Ratio p Value Genes Symbol

KEGG Pathway ID

hsa05216 Thyroid cancer 4/12 2.00 × 10−3 MYC, MAPK1, TP53, TPR
hsa03010 Ribosome 2/2 2.45 × 10−3 RPLP0, RPL23
hsa00071 Fatty acid degradation 4/17 8.02 × 10−3 ACAT1, ADH4, ADH6, CPT1A
hsa05219 Bladder cancer 3/14 2.89 × 10−2 MYC, MAPK1, TP53

GO term ID

GO:0019843 rRNA binding 3/3 1.17 × 10−4 NPM1, RPLP0, RPL23
GO:0070180 large ribosomal subunit rRNA binding 2/2 2.45 × 10−3 RPLP0, RPL23

GO:0001046 core promoter sequence-specific
DNA binding 3/7 3.55 × 10−3 MYC, NPM1, TP53

GO:0003735 structural constituent of ribosome 2/3 7.12 × 10−3 RPLP0, RPL23

GO:0003723 RNA binding 7/50 9.25 × 10−3 HSPE1, IMPDH2, NPM1,
RPLP0, TP53, TPR, RPL23

For KEGG pathways and GO terms (molecular function), we performed a gene enrichment analysis using the list
of 39 differentially expressed genes (p value < 0.05, no FDR correction) obtained with the adjusted linear model
as input. All the analyses were performed using the genes in the nCounter Human Metabolic Pathways Panel
plus 30 additional genes from the custom panel (Supplementary Tables S1 and S2). The displayed pathways
are differentially expressed in the high insuliniAUC group compared to the low insuliniAUC group. Pathways are
sorted by p value. The ratio column represents the number of genes with differential expression in that set and
the total number of genes in that pathway. The symbols of the differentially expressed genes in each pathway
are shown.

Table 3. Top 10 differentially expressed hallmark gene sets (MSigDB) before intervention.

Hallmark (MSigDB) Gene Sets Number of Genes in the SET Direction p Value FDR

MYC targets V1 22 Down 1.18 × 10−5 5.92 × 10−4

MYC targets V2 6 Down 9.73 × 10−4 2.43 × 10−2

IL6 JAK STAT3 signaling 19 Up 3.15 × 10−3 5.05 × 10−2

Epithelial mesenchymal transition 11 Up 5.12 × 10−3 5.05 × 10−2

TGF beta signaling 4 Up 5.63 × 10−3 5.05 × 10−2

Wnt beta catenin signaling 4 Down 6.05 × 10−3 5.05 × 10−2

TNFA signaling via NFKB 31 Up 1.55 × 10−2 1.11 × 10−1

Apoptosis 21 Up 2.63 × 10−2 1.64 × 10−1

Protein secretion 6 Up 3.26 × 10−2 1.69 × 10−1

Interferon gamma response 28 Up 3.37 × 10−2 1.69 × 10−1

Angiogenesis 2 Up 4.46 × 10−2 2.03 × 10−1

For hallmark gene sets, we performed a competitive gene set test named CAMERA. The analysis was performed
using the genes in the nCounter Human Metabolic Pathways Panel plus 30 additional genes from the custom panel
(Supplementary Tables S1 and S2). The displayed gene sets are differentially expressed in the high insuliniAUC
group compared to the low insuliniAUC group. Gene sets are sorted by p value. The Direction column indicates
if the gene set is down- or up-regulated in the high insuliniAUC group compared to the low insuliniAUC group.
Abbreviations: FDR: False Discovery Rate, IL6: Interleukin-6, JAK: Janus Kinase, MSigDB: Molecular Signature
Database, MYC: Myc proto-oncogene bHLH transcription factor, NFKB: Nuclear factor-kappa B, STAT3: Signal
Transducer and Activator of Transcription 3, TGF beta: Transforming Growth Factor Beta, TNFA: Tumor Necrosis
Factor-Alpha.

3.5. Characterization of the Study Population in the Different Intervention Groups

We further investigated the effect of intervention with salmon fish protein on car-
diometabolic risk markers in the low insuliniAUC and high insuliniAUC subgroups. Table 4
shows the anthropometric and biochemical characteristics of the study population allocated
into distinct groups (low insuliniAUC and high insuliniAUC) and treatments (placebo or fish
protein) before the intervention. We observed the same pattern in glucose metabolism and
insulin sensitivity as before subdividing into intervention groups: individuals in both low
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insuliniAUC groups had lower glucose 2 h, fasting insulin, insulin 2 h, and HOMA-IR and
higher Matsuda index, compared to individuals in the high insuliniAUC groups (Table 4).
We did not find significant differences in glycemic regulation (glucose, insulin, HOMA-IR,
and HbA1c) after the intervention between individuals receiving a placebo or fish protein
for the low insuliniAUC or the high insuliniAUC groups (data not shown).

Table 4. Anthropometric and biochemical characteristics of the study population in the different
intervention groups.

Low Insuliniauc
Placebo

Low Insuliniauc
Fish Protein

High Insuliniauc
Placebo

High InsuliniAUC
Fish Protein p Value

n = 8 n = 16 n = 12 n = 12
Sex (n female, %) 5 (62%) 12 (75%) 9 (75%) 6 (50%)

Tobacco use daily (n, %) 2 (25%) 0 (0%) 2 (10%) 3 (25%)
Age (y) 56.9 ± 13.9 52.1 ± 10.6 59.0 ± 9.2 56.1 ± 10.6 n.s

Weight (kg) 92.9 ± 19.6 95.9 ± 15.8 97.0 ± 13.9 104.0 ± 23.3 n.s
BMI (kg/m2) 30.2 (28.5–34.1) 32.8 (29.4–35.7) 34.1 (31.2–36.0) 32.9 (30.8–37.6) n.s

f. Glucose (mmol L−1) 5.8 (5.0–6.2) 5.2 (5.0–5.6) 5.3 (5.0–5.7) 5.2 (5.1–5.8) n.s
Glucose 2 h (mmol L−1) 4.9 ± 1.1 4.7 ± 0.4 6.8 ± 1.4 6.9 ± 0.8 **, ###

HbA1c (%) 5.9 (5.7–6.1) 5.8 (5.7–5.9) 5.7 (5.6–5.8) 5.9 (5.7–6.3) n.s
f. Insulin (pmol L−1) 73 ± 65 66 ± 61 139 ± 70 147 ± 62 **, ###

Insulin 2 h (pmol L−1) 148 (133–228) 164 (115–218) 764 (685–1152) 861 (661–1171) ***, ###
Insulin iAUC (pmol h L−1) 116 (73–163) 113 (53–159) 766 (647–1058) 830 (638–1078) ***, ###

HOMA-IR 2.2 (1.6–3.2) 2.4 (1.8–3.7) 4.3 (3.4–8.6) 5.1 (4.4–7.6) ###
Matsuda index 6.2 (4.6–11.2) 6.8 (5.1–8.6) 1.8 (1.2–2.2) 1.7 (1.1–2.0) ***, ###

Triglycerides (mmol L−1) 1.2 ± 0.4 1.5 ± 0.4 1.6 ± 0.7 1.6 ± 0.4 n.s
Total cholesterol (mmol L−1) 5.0 ± 0.8 5.4 ± 1.6 4.9 ± 0.8 5.2 ± 0.8 n.s

HDL-C (mmol L−1) 1.5 (1.2–1.8) 1.4 (1.2–1.8) 1.3 (1.1–1.5) 1.2 (1.0–1.3) n.s
LDL-C (mmol L−1) 3.2 ± 0.6 3.7 ± 1.0 3.1 ± 0.2 3.8 ± 1.0 n.s

ApoA1 (gL−1) 1.8 (1.5–1.8) 1.7 (1.5–1.8) 1.6 (1.4–1.7) 1.5 (1.4–1.6) n.s
ApoB (gL−1) 0.9 ± 0.2 1.1 ± 0.2 1.0 ± 0.2 1.1 ± 0.2 n.s

hsCRP (mg L−1) 4.0 ± 2.4 3.5 ± 3.1 4.6 ± 3.0 5.4 ± 3.1 n.s
Systolic BP (mm Hg) 119 ± 16 116 ± 13 124 ± 20 122 ± 13 n.s
Diastolic BP (mm Hg) 68 ± 13 70 ± 11 70 ± 8 71 ± 11 n.s

** p < 0.01 and *** p < 0.001 low insuliniAUC placebo vs. high insuliniAUC placebo. ### p < 0.001 low insuliniAUC
fish protein vs. high insuliniAUC fish protein. Parametric data are expressed as mean ± SD, and non-parametric
data as median and interquartile range. Differences between groups were assessed using an ANOVA with Tukey
posthoc test for parametric variables or Kruskal-Wallis rank sum test with Pairwise Wilcoxon Rank Sum Tests
for non-parametric variables. Abbreviations: ApoA1: apolipoprotein A-I, Apo B: apolipoprotein B, BMI: body
mass index, BP: blood pressure, f: fasting, HbA1c: hemoglobin A1c, HDL-C: high-density lipoprotein cholesterol,
HOMA-IR: homeostatic model assessment for insulin resistance, hsCRP: high sensitivity C-reactive protein, iAUC:
incremental Area Under the Curve, LDL-C: low-density lipoprotein cholesterol, n.s: not significant.

3.6. Effect on Metabolic Profile after Fish Protein Intervention

We investigated the effect on plasma metabolites after 8-weeks of salmon fish protein
intake compared to placebo in the low insuliniAUC and high insuliniAUC subgroups. We
observed that fish protein-treated low insuliniAUC participants had higher acetate levels
than placebo-treated low insuliniAUC participants (Figure 4). We did not find any other
significant changes in plasma metabolites in the low insuliniAUC or high insuliniAUC groups
after the intervention (Supplementary Figures S5–S7). See Supplementary Tables S5 and S6
for more information about all the NMR metabolites, fold-changes, p values, and adjusted
p values.
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Figure 4. Changes in amino acids, glycolysis-related metabolites, ketone bodies, and inflammation
markers concentration in plasma after the intervention. The forest plot displays the normalized
beta coefficients (mean difference) and 95% confidence interval for the differences between the fish
protein-treated low insuliniAUC group and placebo-treated low insuliniAUC group (triangles) and
the differences between the fish protein-treated high insuliniAUC group and placebo-treated high
insuliniAUC group (circles). Estimates on the left and right side of the zero-line translate to lower and
higher in individuals that received the fish protein than those that received the placebo, respectively.
Color denotes the p value. Abbreviations: BCAA: Branched-chain amino acids, iAUC: incremental
Area Under the Curve.

3.7. Effect on Gene Expression after Fish Protein Intervention

Fold changes in gene expression were evaluated from before to after intervention
with fish protein compared to placebo in the low insuliniAUC and high insuliniAUC groups.
We found nine genes with altered expression in the fish protein-treated low insuliniAUC
group compared to the placebo-treated low insuliniAUC group and 14 genes with altered
expression in the fish protein-treated high insuliniAUC group compared to placebo-treated
high insuliniAUC group, with a significance level below 0.05. After adjusting for FDR,
none of the genes showed significant changes. Fold changes in gene expression during
dietary interventions are typically not large, and in our study, the most altered genes in
terms of fold change were AMDHD1 (Amidohydrolase Domain-Containing Protein 1, log2
fold-change = 0.43) and CD274 (CD274 molecule, log2 fold-change = −0.43) in the fish
protein-treated low insuliniAUC compared to placebo-treated low insuliniAUC group. At the
same time, ABCA1 (ATP Binding Cassette Subfamily A Member 1, log2 fold-change = 0.32)
and IDO1 (Indoleamine 2,3-Dioxygenase 1, log2 fold-change = −0.51) were the most altered
genes in the fish protein-treated high insuliniAUC group compared to placebo-treated high
insuliniAUC group (Figure 5). We did not conduct gene enrichment analysis due to the
small number of differentially expressed genes after the intervention. See Supplementary
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Tables S7 and S8 for more information about all the genes, fold changes, p values, and
adjusted p values.
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Figure 5. Differentially expressed genes in the low insuliniAUC and high insuliniAUC groups after the
intervention. The figure shows the differentially expressed genes (p value < 0.05, no FDR correction)
after the intervention in the low insuliniAUC and high insuliniAUC groups, sorted by fold change (blue
dots). The genes with altered expression were obtained using a linear model adjusted for covariates
(age, sex, BMI, and daily use of tobacco). Fold change represent the difference in PBMCs gene
expression between fish protein-treated low insuliniAUC and placebo-treated low insuliniAUC group
(left panel) and the difference between fish protein-treated high insuliniAUC and placebo-treated
high insuliniAUC (right panel). Abbreviations: ABCA1: ATP binding cassette subfamily A member
1, AGXT: alanine-glyoxylate and serine-pyruvate aminotransferase, AMDHD1: amidohydrolase
domain containing 1, CD274: CD274 molecule, CD84: CD84 molecule, COX7C: cytochrome c oxidase
subunit 7C, DEPTOR: DEP domain containing MTOR interacting protein, DERA: deoxyribose-
phosphate aldolase, ECHS1: enoyl-CoA hydratase, short chain 1, ERN1: endoplasmic reticulum to
nucleus signaling 1, GAPVD1: GTPase activating protein and VPS9 domains 1, GOT1: glutamic-
oxaloacetic transaminase 1, IDH3G: Isocitrate Dehydrogenase (NAD(+)) 3 Non-Catalytic Subunit
Gamma, IDO1: indoleamine 2,3-dioxygenase 1, iAUC: incremental Area Under the Curve, L2HGDH:
L-2-hydroxyglutarate dehydrogenase, LAG3: lymphocyte activating 3, NAT8L: N-acetyltransferase 8
like, PAH: phenylalanine hydroxylase, PKLR: pyruvate kinase L/R, PRKAB2: protein kinase AMP-
activated non-catalytic subunit beta 2, PSPH: phosphoserine phosphatase, RPS6KB2: ribosomal
protein S6 kinase B2, STK3: serine/threonine kinase 3.

4. Discussion

In the present study, we investigated the metabolic and gene expression profile of
subgroups of participants with different insulin responses to identify biomarkers of car-
diometabolic risk and further determine whether any of these subgroups respond to an
8-week intervention with fish protein. Before the intervention, we found that the plasma
level of GlycA and MUFAs, and the gene expression of CPT1A were higher, and glycine
and acetate levels were lower in individuals in the high insuliniAUC group compared to
individuals in the low insuliniAUC group. After the intervention, only acetate was increased
in the low insuliniAUC group treated with fish protein compared to the placebo-treated low
insuliniAUC group. However, none of the metabolites and gene transcripts before and after
the intervention were significantly altered after adjustment for FDR, and hence the results
should be carefully interpreted.

We found that GlycA levels were higher in the high insuliniAUC group, that is, the
group with less insulin response (increased 2 h glucose, fasting insulin, 2 h insulin, and re-
duced Matsuda index), compared to the low insuliniAUC group before intervention. GlycA
is shown to be positively correlated with insulin resistance, BMI, markers of metabolic syn-
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drome, and the ratio of leptin to adiponectin [45,46]. Furthermore, GlycA is associated with
different inflammatory markers and is considered a biomarker of systemic inflammation
and subclinical vascular inflammation [47]. Hence, GlycA is suggested as a new biomarker
of cardiometabolic disease and T2D risk [19,22]. Although GlycA levels were higher in the
high insuliniAUC group compared to the low insuliniAUC group, we did not observe any
significant difference in hsCRP between the groups (Tables S1 and S4). The high insuliniAUC
group showed a tendency to a higher hsCRP concentration, and possibly we did not reach
statistical significance due to a small sample size, intra-individual variations in hsCRP, or
hsCRP did not capture the whole inflammatory process in our participants. This suggests
that GlycA may act as a more precise risk marker of CVD and T2D compared to hsCRP [48].
Epidemiological studies supporting this hypothesis found that the association between
GlycA and cardiovascular events, or T2D, was slightly attenuated by the addition of hsCRP
to the regression model [48].

Before the intervention, we found that the high insuliniAUC group had a higher level of
MUFAs to total fatty acids ratio compared to the low insuliniAUC group. In the NHANES
study, the higher plasma concentrations of SFAs and MUFAs were associated with elevated
HbA1c and fasting glucose levels [14], which is in line with our results. Furthermore, previous
research has also shown that higher MUFA levels and lower PUFA and linolic acid levels
are associated with increased cardiovascular risk in the FINNRISK study [13]. Hence, high
circulating MUFA and low PUFA levels are linked to increased cardiovascular risk.

CPT1A was upregulated in the high insuliniAUC group compared to the low insuliniAUC
group before intervention and was one of the most differentially expressed genes in terms
of the p value. The CPT1A protein, a key regulatory enzyme of β-oxidation, is in the outer
membrane of the mitochondria. CPT1A facilitates the translocation of long-chain fatty acids
across the mitochondrial membrane for fatty acid β-oxidation. Hence, our results may
reflect a shift in metabolic sources from carbohydrates to fatty acids in the high insuliniAUC
group. In accordance with our observations, the Framingham Heart Study (FHS) Off-
spring Cohort found a positive association between mRNA expression of CPT1A in whole
blood with fasting glucose and triglycerides, as well as BMI. Moreover, it was described
that fat intake was negatively associated with CPT1A methylation, therefore, increasing
CPT1A gene expression [49]. In an animal study, mitochondrial dysfunction caused by a
high-fat diet was linked to insulin resistance in muscle, implying that excessive CPT1A
activity overloads the mitochondria resulting from incomplete oxidation of long-chain fatty
acids [50].

In our population, we found a tendency for a higher BCAAs plasma concentration in
the high insuliniAUC group compared to the low insuliniAUC group before the intervention
(Figure 2). We reached significance for valine and total BCAAs without age, sex, and BMI
correction (data not shown). Both BCAAs and aromatic amino acids have been positively
correlated with insulin resistance in T2D [51,52], and BCAAs are suggested as a metabolic
signature associated with insulin resistance [53,54]. Increased levels of BCAAs may be a
causal factor for developing insulin resistance and T2D by hampering insulin signaling
pathways [55], and the accumulation of toxic BCAA metabolites triggers mitochondrial
dysfunction [56].

Before the intervention, the individuals in the high insuliniAUC group had lower levels
of plasma glycine compared to the low insuliniAUC group. In line with our results, most
studies suggest an inverse association between glycine and prediabetes and T2D [51].
People with nondiabetic insulin resistance or impaired glucose tolerance have reduced
circulating glycine [52]. It is unclear if reduced levels of glycine have an active role in the
development of T2D, but it has been observed that interventions with delayed or reversed
T2D (bariatric surgery or physical activity) are associated with an increase in circulating
glycine concentrations [57–59]. Furthermore, glycine supplementation has been shown to
give enhanced insulin response and glucose tolerance [60,61]. The consumption of 5.2 g of
salmon protein (corresponding to 7.5 g fishmeal) was enough to significantly increase the
post-prandial concentration of several amino acids, especially glycine [62]. However, in
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the present intervention study lasting for 8 weeks, we did not find an effect of fish protein
on glucose metabolism, insulin response, or plasma glycine concentration in subgroups of
individuals with increased T2D risk. Our fishmeal supplement provided 389 mg of glycine
per day, which is considerably lower than the dosages used by others, including 1 mmol
glycine/kg lean body mass (~5.63 g for a 75 kg patient) [60] and 5 g of glycine [61]. There
are many metabolic effects of circulating glycine, and glycine supplementation may impact
glucose tolerance [59]. Current evidence point to a glycine effect in the brain via dorsal
vagal complex N-methyl-D-aspartate (NMDA) receptors, systemically reducing oxidative
stress and inflammatory response and increasing insulin secretion in the islets via glycine
receptors (GlyRs) [59].

Increased glucose levels promote reactive oxygen species (ROS) overproduction [63],
resulting in morphological changes in mitochondria [64]. Excessive ROS could damage
the proteins, lipids, and DNA in the mitochondria, leading to mitochondrial dysfunction
and reduced mitochondria biogenesis [64]. Several studies have found a link between
mitochondrial dysfunction and insulin resistance in various tissues [64]. We found a down-
regulation in the Myc targets V1 and V2 pathways in the high insuliniAUC group (Table 3),
which could be a sign of reduced mitochondrial biogenesis, as Myc induces mitochondrial
biogenesis and increases mitochondrial function through many pathways [65]. Moreover,
alterations in the oxidizing environment of the endoplasmic reticulum (ER) can induce ER
stress. There is evidence that beta-cell ER stress in patients with T2D can cause beta-cell
dysfunction by decreasing insulin synthesis and secretion [66]. This could be a reason for
the ribosome-enriched pathway found in the high insuliniAUC group before intervention
(Table 2).

We observed lower concentrations of acetate in the high insuliniAUC compared to the
low insuliniAUC group before intervention (Figure 2). In contrast, acetate was associated
with prediabetes and T2D in other studies [51]. Acetate is a short-chain fatty acid produced
by microbiota. The microbiome is a potential source of biologically active metabolites,
frequently linked with diet composition [67]. It has been shown in healthy subjects that
prebiotics increased plasma glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) con-
centrations, whereas postprandial plasma glucose response decreased after a standardized
meal [68]. In another RCT, healthy individuals treated with long-chain MUFAs derived
from fish oil increased GLP-1 secretion. The proposed mechanism is linked to gut micro-
biota producing short-chain fatty acids that act through the G protein-coupled receptors
expressed on enteroendocrine cells, enteric neurons, and enteric leukocytes [69]. In our
study, acetate was increased in the low insuliniAUC group after fish protein intervention
compared to placebo treatment, while no change was observed in the high insuliniAUC
group. Recent studies show that gut microbial composition may help to identify individuals
who may benefit from dietary interventions [70].

This study has several strengths and limitations. One strength is the detailed profiling of
both metabolites and gene expressions in subgroups of people with increased T2D risk. The
small number of participants in the phenotypic subgroups in the intervention is a limitation
of the study, giving a higher risk of both false positive and false negative findings. The results
from small studies cannot be generalized to the population as a whole. Furthermore, the
inclusion criteria for participation were increased risk of T2D, and hence the lack of a healthy
control group is a limitation of the present study. Lastly, the short-term duration of the present
study does not reflect the long-term effects. Despite this, we were able to identify metabolic
biomarkers (GlycA, MUFA %, glycine, and acetate), as well as candidate gene expression
patterns in the group of participants that displayed high insuliniAUC.
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5. Conclusions

In conclusion, our results support that several plasma metabolites (GlycA, MUFA %,
glycine, and acetate) may serve as biomarkers to predict the progression of T2D; however,
the usefulness of these needs further testing and validation in prospective studies. Whether
these newly suggested biomarkers are more sensitive to dietary interventions in people
with increased risk of T2D is still to be elucidated.

Results from this and similar intervention studies are important for hypothesis gener-
ation in terms of pathophysiology and clinical manifestation in subgroups of individuals in
heterogeneous populations.
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