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Abstract: Surface-associated bacterial communities called biofilms are ubiquitous in nature. Biofilms
are detrimental in medical settings due to their high tolerance to antibiotics and may alter the final
pathophysiological outcome of many healthcare-related infections. Several innovative prophylactic
and therapeutic strategies targeting specific mechanisms and/or pathways have been discovered
and exploited in the clinic. One such emerging and original approach to dealing with biofilms is the
use of human milk oligosaccharides (HMOs), which are the third most abundant solid component in
human milk after lactose and lipids. HMOs are safe to consume (GRAS status) and act as prebiotics
by inducing the growth and colonization of gut microbiota, in addition to strengthening the intestinal
epithelial barrier, thereby protecting from pathogens. Moreover, HMOs can disrupt biofilm formation
and inhibit the growth of specific microbes. In the present review, we summarize the potential of
HMOs as antibacterial and antibiofilm agents and, hence, propose further investigations on using
HMOs for new-age therapeutic interventions.

Keywords: human milk oligosaccharides; biofilm; gut microbiota; antimicrobial resistance

1. Introduction

Bacteria possess a unique capability to form biofilms that are ubiquitous in nature. It is
a multistage and elaborate process that begins with bacterial adhesion to surfaces, followed
by the synthesis of extracellular polymeric substance (EPS) matrix, development of micro-
colonies, and finally concludes with the dispersion of the bacterial cells from the initial [1,2].
The morphology of biofilms can be diverse and that mostly relies on the integral bacterial
species and the circumstances under which the biofilm was originally formed [3,4]. The de-
velopment of biofilms protects the bacteria against enzymatic degradation, antimicrobials,
and host defense systems [5,6]. Population heterogeneity, slow metabolic activity, increased
efflux pumps, and presence of persister subpopulations are some of the major factors that
reduce antimicrobial susceptibility in biofilms. Studies show multifold tolerance of biofilms
towards antibiotics compared with planktonic cells that, apart from impairing the treatment
efficacy, also act as a resistant adaptive mechanism for bacterial survival [7]. In clinical
settings, more than 80% of all nosocomial infections are of biofilm origin and they pose
a crucial threat to human health [8–10]. Several biofilm-associated infections are listed in
Table 1.
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Table 1. Major tissue and device-associated biofilm infections.

Biofilm Infection Associated Pathogens References

Tissue-associated infections

Chronic rhinosinusitis

Corynebacterium tuberculostearicum,
Haemophilus influenzae, Lactobacillus sakei,
P. aeruginosa, S. aureus,
Streptococcus pneumoniae

[11,12]

Periodontitis
Fusobacterium nucleatum, Porphyromonus
gingivalis, Tannerella forsythia,
Treponema denticola,

[1,11]

Pharyngitis: Group A Streptococcus (GAS), H. influenzae,
S. aureus

Otitis media GAS, H. influenzae, P. aeruginosa,
S. pneumoniae

Infective endocarditis Lactobacillus lactis, S. aureus

Cystic fibrosis Burkholderia cenocepacia, H. influenza,
P. aeruginosa, S. aureus

Colorectal cancer and ulcerative colitis Bacteriodes fragilis, Enterobacteriaceae, E. coli
Fusobacterium spp., Shigella spp.

Vaginosis Bacteroides, Gardnerella vaginalis,
Mycoplasma

Urinary tract infections
E. coli, Enterobacter spp., Klebsiella
pneumonia, Proteus spp., Staphylococcus
saprophyticus

Prostatitis E. coli

Osteomyelitis E. coli, H. influenzae, Streptococcus agalactiae,
S. aureus, Streptococcus pyogenes

Wound infections P. aeruginosa, S. aureus

Device-associated Infections

Contact lenses P. aeruginosa, S. aureus [13]

Dental implants Aggregatibacter actinomycetemcomitans,
Eikenella corrodens, P. gingivalis, [14]

Endotracheal tubes
Acinetobacter baumannii, Enterobacter spp.,
Enterococcus faecalis, K. pneumoniae, P.
aeruginosa, S. aureus

[15]

Prosthetic joints P. aeruginosa, S. aureus, S. epidermidis [16]

Vascular catheters K. pneumonia, P. aeruginosa,
Coagulase-negative Staphylococci, S. aureus [17]

Vascular grafts P. aeruginosa, S. aureus [18]

The reduced antibiotic susceptibility of the pathogens in biofilms urgently calls for
alternative treatments to manage biofilm-associated tissue and device infections. In order
to tackle the menace of multidrug-resistant biofilms, a diverse and synergistic approach
concerning the contributing factors of biofilm genesis and establishment of antimicrobial
resistance (AMR) is of utmost importance. Lately, the use of chelators, plant extracts,
natural products, nanoparticle coatings, quorum quenchers, and a few others have proved
their potential as preventive strategies against the biofilms of clinically relevant bacteria
using either in vitro or in vivo models [8,9,19]. Because biofilm development is a multistage
process, targeting its initial stages can potentially prevent biofilm formation and further
progression of pathogenic events.

Non-digestible oligosaccharides (NDOs) hold high potential in preventing biofilm
formation. They are promising antibacterial and biofilm inhibitory compounds and can be
used as adjuvants with antibiotics in augmentation therapy [20]. They are diverse, mostly
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differing in monosaccharide constituents. These include fructo-oligosaccharides (FOS),
galacto-oligosaccharides (GOS), alginate oligosaccharides (AOS), chitosan oligosaccharides
(COS), pectic oligosaccharides (POS), xylo-oligosaccharides, etc. [21]. Among these, FOS
and GOS are broadly studied for their prebiotic properties, as they enhance the growth
of beneficial microbes [22–24]. NDOs are also reported for their selective anti-adhesive
properties against pathogenic bacteria. They competitively interfere with the recognition
process of host cells by pathogenic bacteria due to their structural similarities with the sur-
face proteins present on host cells [25]. Furthermore, COS in combination with antibiotics
showed enhanced antibacterial and antibiofilm activity. For instance, COS as an adjunct
with florfenicol is effective against resistant swine streptococcus [26]. The adjuvant therapy
involving COS and clindamycin effectively inhibited an S.aureus biofilm [20]. COS and
AOS also showed biofilm inhibitory and anti-virulence properties against Acinetobacter
baumannii and Pseudomonas aeruginosa [27]. AOS alone and in combination with ampicillin
was considered to be very efficient against E. coli [28]. Moreover, AOS that released nitric
oxide was effective in inhibiting biofilm formation in methicillin-resistant S. aureus [28].
Over the last few decades, NDOs have been introduced in food industries as a functional
ingredient in milk products, beverages, desserts, confectionary products, meat products,
and probiotic-based food items. They have also found applications in pharmaceutical in-
dustries, such as bulking agents, cosmetic stabilizers, immunostimulating agents, etc. [29].
However, the safety consideration for the use of NDOs is still in question. For instance,
FOS administration above 20 g/day is reported to have certain side effects such as bloating,
abdominal cramps, diarrhea, etc. Moreover, preclinical studies demonstrate the neurode-
velopmental properties of NDOs, which turn out to be detrimental at clinical levels [30].
Thus, more reproducible studies on the toxicity and tolerability of NDOs are required to
validate their potential efficacy as prebiotics.

On the contrary, human milk oligosaccharides (HMOs) are more suitable and safer
for human consumption and they are already used in infant food, e.g., CARE4U™ [31–33].
They are unconjugated polysaccharides present in breast milk that forms a distinctive class
of complex NDOs and are the first set of prebiotics that are degraded by the intestinal
microbiota [34]. They are the third most abundant constituent of human milk [35] after
lactose, constituting approximately 5–15 g/L of mature breast milk. The amount and
type of HMOs present in human milk depend upon several factors including the genetic
aspects, food habits, nutrient intake, and blood glucose levels of the lactating mother
and the lactating period [36–38]. It was back in the 20th century that the discovery and
importance of HMOs in preventing infectious diseases came to light. Moro, Escherich,
and Tissier were among the first researchers who observed the distinctiveness in the
microbiota composition between bottle-fed and breast-fed infants [36]. Moro concluded
that breast milk contains certain “growth factors” that stimulate intestinal flora in infants.
After 50 years, in 1954 “the growth factor” postulated by Moro was identified by Paul
Gyorgy and Richard Kuhn as N-acetylglucosamine (GlcNAc) [32]. To date, more than
200 structurally distinct HMOs have been identified. The HMOs are tolerant of the acidic
conditions of the stomach and hydrolysis by the digestive enzymes [37]. Undigested HMOs
are conveyed to the large intestine where they are fermented by the gut microbes that
stimulate the growth and development of commensal bacteria, especially Lactobacilli and
Bifidobacteria [33]. HMOs also constitute part of the nonspecific immune response and
could act as immunomodulators [38]. Interestingly, few HMOs can act on proinflammatory
cytokine secretion and promote inflammatory cytokines synthesis. They can prevent
bacterial colonization by establishing an innate immune response leading to the activation
of chemokines or cytokines including interleukin (IL)-1β, IL-8, and IL-17C [39]. The
present review intends to cover the comprehensive understanding of antibacterial as well
as antibiofilm characteristics of HMOs. The intricate interplay between the structures of
HMOs and their therapeutic activities holds great potential in the development of a new
array of interventions to combat dreadful biofilm infections.
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2. Biofilm Formation

The intense involvement of bacterial biofilms in chronic infections has always drawn
the much-needed attention of the scientific community to understand its development
and antimicrobial resistance mechanisms. Biofilm development in bacteria is dependent
on specific environmental factors where they transition themselves from a free-floating
planktonic to a surface-attached sessile form (Figure 1). In general, the degree of adhesion
of bacteria on biotic or abiotic surfaces is determined by several forces such as Brownian
motion, van der Waals forces, hydrodynamic interactions, etc. [40]. In Staphylococci, surface
proteins, such as SasX, FnBPA, FnBPB, Bap, etc., collectively termed microbial surface
components, recognizing adhesive matrix molecules (MSCRAMMs) are involved in the
initial attachment [41]. In P. aeruginosa, the surface attachment is mediated by type-IV pili
using twitching movement, the absence of which results in aberrant biofilm formation [42].
The WspA protein of P. aeruginosa recognizes substrate receptors upon surface contact and
initiates c-di-GMP synthesis. At a high concentration, c-di-GMP promotes CdrA and cup
fimbrial adhesins production, which along with other components of a biofilm matrix such
as B-band LPS, Psl exopolysaccharides, and eDNA enhance surface adherence [43].
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Figure 1. Stages of biofilm formation on a biotic surface. (1) Bacteria approach the host cells and
bind to specific receptor proteins. (2) After binding, bacteria start multiplying and secrets EPS that
(3) eventually forms the microcolonies, and (4) the biofilm develops into a more complex 3D structure.
In (5) and (6), the cycle, thus, continues with the dispersion of bacteria from the biofilm.

Once adhered, the bacterial cells secrete EPS that encases the cells and facilitates
multilayered biofilm formation. The biofilm matrix consists of exopolysaccharides, proteins,
nucleic acids, and other polymers that strengthen the biofilm structure as well as provide
protection against antibiotic stress and the host immune response [44]. A study carried
out on K. pneumonia showed that lactamase enzymes present in the biofilm matrix of the
wild strain inhibited the penetration of ampicillin, whereas its absence in the mutant strain
could not prevent its filtration [45]. As the cells proliferate and develop microcolonies,
the biofilm gradually shapes into a 3-dimensional, mushroom-like structure equipped
with small channels for transporting nutrients, water, and waste at different layers of the
biofilm matrix [5]. Depending on the physicochemical conditions prevailing in different
parts of the biofilm, the cell density along with their gene expression varies promptly.
The outermost regions retain the metabolically active cells, while at the core, the cells
are largely nongrowing and are in the dormant phase. Among these dormant cells, the
persister population possesses high tolerance toward antibiotics and is extremely difficult
to eradicate [46]. Eventually, the dispersion of the non-surface-attached biofilm cells takes
place via signal-mediated hydrolysis of the EPS layer that spreads to a new environment.
These dispersed cells, being highly virulent, are believed to cause acute infections [47].

In a biofilm, the population density, metabolic activity, and dislodging of cells are
regulated by quorum sensing (QS). The QS in S. aureus is mediated by autoinducing
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peptides (AIP) regulated by the agr locus. Agr downregulates MSCRAMMs formation,
which in turn encourages the dispersion of biofilm biomass and also upregulates toxin
production. This is advantageous for bacteria in regulating acute infections. During chronic
infections, the QS signaling is irreversibly inactivated, which leads to extensive biofilm
growth with a loss of ability to disseminate from the surface of infection. Staphylococci
spp. also possess a LuxS/AI-2 mediated QS system. It produces an AI-2 autoinducer that
regulates virulence, capsule synthesis, antibiotic susceptibility, and biofilm formation. It is
reported that LuxS controls polysaccharide intercellular adhesin (PIA)-dependent biofilm
formation by repressing rbf expression [48].

In P. aeruginosa, the las QS system regulates the structure of the biofilm matrix. In lasI
mutants, flat and undifferentiated biofilms were dominant compared with the wild-type
strain [49]. AHL-mediated QS systems in P. aeruginosa control the release of eDNA and Pel
polysaccharides in biofilms. QS also controls the synthesis of rhamnolipids in P. aeruginosa
in the center of the mushroom cap of the biofilm, which favors cell dispersion by disrupting
the non-covalent interactions between matrix molecules and biofilm cells.

3. Different Classes of HMOs and Their Receptors

The molecular structure of HMOs is the principal factor for their lectin specificity
expressed on human cells and their distinctive metabolism by gut microbes. The struc-
tural variability in HMOs is attributed to monosaccharide constituents, rate of polymer-
ization, charge, and acetylation. In general, monosaccharides including glucose, galactose,
N-acetylglucosamine, fucose, and sialic acid make up the HMO molecules (Figure 2).
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(B) β-D-Galactopyranose, (C) Sialic acid (Neuraminic acid), (D) L-Fucose, (E) N-acetylglucosamine.

A lactose molecule forms the backbone of all HMOs [32,34]. The lactose residue is
further modified by the addition of N-acetylglucosamine by β1–3 or β1–6 bonds. β1–3 link-
ages elongate the fundamental structure into linear patterns, whereas β1–6 bonds introduce
branching. Two enzymes, namely fucosyltransferase and sialyltransferase, are involved
in the alteration of the basic structure of HMOs. They catalyze the addition of fucose
and/or sialic acid through alpha 1-2,3,4 and alpha 2-3,6 bond formation at the terminal
position [50,51]. HMOs are broadly classified into three categories, fucosylated, sialylated,
and neutral (Figure 3), based on the presence of sialic acid and fucose residues [52].
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Neutral HMOs comprise 42–55% of the total HMOs. Lacto-N-tetraose (LNT) is an
example of this class [32,53]. Lacto-N-tetraose (LNT) is an amino tetrasaccharide comprising
β-D-galactose, N-acetyl-b-D-glucosamine, β-D-galactose, and D-glucose residues in a linear
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sequence. Lacto-N-neotetraose (LNnT) is an isomer of LNT, which is formed by the bonding
of terminal β-D-galactose with an N-acetyl-β-D-glucosamine moiety via β (1–4) linkage.
LNnT is the second predominant HMO in human milk [54,55].

Fucosylated HMOs constitute up to 35–50% of the total HMOs. The HMO 2′-Fucosyllactose
(2′-FL) is the richest component in human milk that falls under this category [53,56]. This
trisaccharide (molecular weight: 488.44 Da) consists of L-fucose bound to lactose at the
second or third position.

About 12–14% of the total HMOs are acidic in nature and mostly contain sialic
acid in their structure. Sialylation of oligosaccharides results in the incorporation of
negatively- charged units into neutral HMOs. Examples of acidic HMO are 3′–sialyl lac-
tose (3′-SL) and 6′-sialyl lactose [32,53]. The trisaccharide 3’-sialyllactose is composed of
N-acetylneuraminic acid, β-D-galactose, and D-glucose and is formed by the linking of an
acetyl neuraminyl (NANA) moiety at the third position of the β-D-galactosyl moiety of
the lactose unit. The 6′-sialyllactose (6′-SL) structure is similar to 3′-SL except the bonding
occurs at the sixth position between the NANA entity and the β-D-galactosyl entity of
lactose [57].

The literature suggests different glycan-binding proteins, specifically known as lectins,
as HMO receptors. For example, galectins, siglecs, c- type lectins, and selectins bind to
specific HMO molecules to exert their functions [58,59].

Galectins are small, soluble, beta-galactoside-specific lectins with conserved carbohydrate-
recognition domains (CRDs) that are expressed on intestinal epithelia, immune cells, skeletal
muscle, lymphoid tissues, the heart, kidneys, neurons, dendritic cells, etc. There are three
types of galectins: prototype, chimera, and tandem galectins. In the CRD of prototype
galectin, eight amino acids, namely His44, Arg48, Trp68, Val59, Asn61, Asn46, Glu71, and
Arg73, are responsible for glycan binding. The OH groups at C-4 and C-6 of galactose and
C-3 of N-acetylglucosamine of HMOs form hydrogen bonds with the amino acid residues
of galectin in the CRD region (Figure 4). In tandem galectins, two CRD regions are present
at the N and C terminus, separated by a short proline and glycine-rich peptide linker.
HMOs containing a Galβ1–3GalNAc residue bind to the CRD at the N terminus of tandem
galectins via the OH group. As galectins are involved in converting signals to cells and
regulating cell functions, the binding of HMOs with galectins controls the interactions
between galectins with ligands expressed in other cells. LNnT, LNT, LNFP-II, LNFP-III,
and LNDFH are the common HMOs that bind with galectins 1,2,3,7,8,9 [58–60].
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Figure 4. Galectin–HMO Binding. Human milk oligosaccharides bind to galectin expressed by
intestinal epithelia; zoom-in image of gelectin-HMO binding site shows the detailed molecular
representation of chemical interactions: OH groups of galactose and N-acetylglucosamine in HMOs
form hydrogen bonds with amino acid residues (e.g., His44, Arg48, Trp68, Val59, Asn61, Asn46,
Glu71, and Arg73) in the CRD region of galectin.

Another class of lectins, called siglecs, is reported to bind sialylated HMOs. They
are sialic acid-binding immunoglobulin-like lectins that are expressed on different blood
cells such as NK cells, dendritic cells, neutrophils, macrophages, etc. All siglecs possess
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the V-set immunoglobulin-like domain at the N-terminal that interacts with sialic acid of
glycoproteins, glycolipids, and HMOs, such as 3′SL and 6′SL.

Additionally, fucosylated and sialylated HMOs bind to other lectins such as se-
lectins and C-type lectins. The binding of HMOs with selectins reduces selectin-mediated
leukocyte–endothelial cell and leukocyte–platelet interactions. C-type lectins that are ex-
pressed on dendritic cells and macrophages play a crucial role in antigen presentation and
immune response inhibition. For instance, the interaction of HMOs with C-type lectins, e.g.,
DC-SIGN, inhibits the transfer of HIV-1 to CD4 T cells [31]. HMOs’ interactions with these
receptors thus indicate their role in regulating adaptive and innate immune responses.

4. Antimicrobial Properties of Human Milk Oligosaccharides (HMOs)

Recent advances in in vitro and in vivo studies have highlighted the diverse antimicro-
bial properties of HMOs. They serve as metabolic substrates for gut microbiota, improve
gut barrier functions, act as decoy receptors in preventing pathogen adhesion on the
mucosal membrane, regulate immune responses, and thereby reduce the rate of infections.

4.1. HMOs Shape Gut Flora and Gut Immune Function

The human gut is a vital organ needed for maintaining all the functions of the human
body. Colonization of the gut by microbes plays a critical role in host metabolism, mostly
established in a child’s life during 2–3 years of age. The human gut also helps in maintaining
the immune, gastrointestinal, and neural systems [61].

In the gut, intestinal epithelial cells absorb acidic HMOs by the nonspecific paracellular
route and neutral HMOs by the receptor-mediated transcellular pathway [37,62]. Studies
have shown that HMOs modulate protein expression of gut epithelial cells. In an in vivo
study, supplementation of sialylated HMOs in rats reduced the expression of genes respon-
sible for the secretion of IL-12, L-8, NF-kB, and TNFα by activating the anti-inflammatory
peptidoglycan recognition protein 3 (PglyRP3) [63,64]. It is also well established that HMOs,
specifically 2′FL, inhibit the secretion of proinflammatory cytokines in HT-29 and Hep-2
cell lines that significantly reduce the invasion of C. jejuni [65].

Furthermore, HMOs strengthen the intestinal barrier by modulating the synthesis
of mucin [66]. It was observed that HMO supplementation restores goblet cells in rats
with necrotizing enterocolitis. Goblet cells synthesize Muc2 and other factors that form the
protective mucous layer over the intestinal epithelial cells [67]. It was also demonstrated
that 2′FL and LNnT induce the expression of claudin-5 and claudin-8 proteins, which are
significant in strengthening the tight junctions and limiting the permeability of molecules
through the intestinal walls [68,69].

HMO molecules enrich the gut microbiome, specifically by promoting the coloniza-
tion by a Bifidobacterium-dominated bacterial community [70]. Among Bifidobacteria, a
distinct class of gene cluster encoding fucosidase and sialidases enzymes and their specific
transporters is required for breaking down the complex HMOs [51].

In Bifidobacteria, HMO molecules are degraded by either intracellular or extracellular
strategies [71]. Intracellular digestion includes the transportation of HMOs inside the cell
via ABC transporters and enzymatic hydrolysis of the HMO molecule into monosaccha-
rides by glycosyl hydrolases [72]. In the extracellular process, the HMOs are degraded into
their monomers outside the cell by cell-surface-associated glycosidases and the monosac-
charides are transported inside the cell. The digested HMOs are then assimilated into the
bacterial central metabolism pathway, which releases short chain fatty acids (SCFA) as
end products [33,73]. SCFA serves as an intermediate molecule in connecting gut flora
with the immune system. They modify gene expression, differentiation, and apoptosis of
epithelial cells; inhibit the function of histone deacetylases; and activate G-protein coupled
receptors (GPCRs). GPCRs, along with other transcriptional factors, modulate the function
and development of leukocytes. All the SCFAs also possess other specific functions. For
instance, acetic acid and butyric acid act as a source of energy for muscle and skeletal
tissue and colonocytes, respectively. Butyric acid also improves the gut epithelial barrier,
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regulates the proliferation and activity of regulatory T cells, and enhances the metabolism
of intestinal epithelial cells [74,75]. The SCFAs are crucial for appetite as they activate free
fatty acid receptors that, in turn, elevate the circulation of intestinal anorectic hormones [76].
Additionally, they exhibit antimicrobial properties against viral, bacterial, and protozoal
infections. The SCFAs, along with sphingomyelin, promote the myelination of the central
nervous system [53]. Moreover, the synthesis of SCFAs reduces the pH of the colon, which
is non-conducive for the survival of pathogenic bacteria [77].

The HMOs also promote the growth of other commensal bacteria such as Akkermansia
and Lactobacillus. Akkermansia increases the secretion of mucin which reduces the coloniza-
tion of harmful bacteria [78]. In 2022, an in vivo study by Kathryn and group demonstrated
the protective activity of pooled HMOs against Group B Streptococcus (GBS) colonization in
the vagina without altering the vaginal flora [79].

Finally, the metabolism of HMOs and the end products are selective among different
bacterial strains. It is dependent on the specific gene clusters present in bacteria and
the molecular structure of HMO molecules. For instance, B. breve and B. longum actively
degrade LNT, whereas digestion of fucosylated HMOs is more conducive for B. bifidium
and B. infantis [80,81].

4.2. HMOs Prevent the Growth and Colonization of Pathogenic Bacteria

As discussed above, HMOs serve as a selective substrate and specifically favor the
growth of symbiotic bacteria. As a result, the gut flora outcompetes the pathogenic bacteria
for space and nutrients. Additionally, the end products of HMO metabolism, such as
SCFAs, lower the intestinal pH that stunts the growth and proliferation of harmful bacteria.

Furthermore, HMO molecules act as anti-adhesive molecules and prevent the colo-
nization of pathogenic bacteria.

The first step of bacterial colonization involves the adhesion of bacteria to the host
cell surface, which is mediated by the binding of bacterial surface ligands to the host cell
oligosaccharide receptors. HMOs behave as decoys and bind efficiently to the pathogen
adhesins due to their smaller size [82,83]. Thus, HMOs act as receptor analogs that bind
to pathogens and prevent their colonization, thereby reducing the incidence of infectious
diseases (Figure 5) [25].
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Figure 5. Anti-adhesive mechanism exhibited by HMOs where they behave as soluble decoy re-
ceptors, inhibiting bacterial adhesion to host cell surface receptors. (a) Binding of bacterial protein
adhesins to the host cell surface glycan receptors, aiding successful colonization in the host sys-
tem. (b) Binding of bacterial protein adhesins to HMOs thus inhibiting adhesion to host cells and
successfully preventing the occurrence of infection.
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Another mode of eradicating pathogens adopted by the HMOs is due to their ability
to compete with the pathogens for binding to the cell surface receptors. HMOs pre-
vent pathogens from adhering to the cell surface carbohydrate receptors by behaving as
carbohydrate-binding ligands or soluble ligand analogs which compete with bacterial
adhesins to bind to these receptors and thus competitively inhibit their attachment, further
preventing their colonization (Figure 6) [25].
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Figure 6. Anti-adhesive mechanism exhibited by human milk oligosaccharides where they compete
with bacterial protein adhesins for binding to host cell surface glycan receptors. (a) Binding of
bacterial protein adhesins to the host cell surface glycan receptors aiding successful colonization
in the host system. (b) Binding of HMOs to host cell surface receptors thus inhibiting adhesion of
bacteria to host cells and successfully preventing the occurrence of infection.

The anti-adherence properties of HMOs are reported against Shigella sp., Campylobacter
sp., and various pathotypes of E. coli [84,85]. The HMOs also prevent the attachment of L.
monocytogenes and S. pneumoniae to the host cell surface [53,86]. Several in vivo and in vitro
studies have displayed compromised GBS colonization in the vagina without affecting
the pre-existing vaginal microbiome. This can evolve as a promising preventive therapy
against vaginosis [79]. Studies revealed that the acidic fraction of HMOs effectively alters
the expression of genes responsible for the arrangement of surface receptors, which affects
pathogen binding. This type of interaction was observed in the presence of 3′-SL against
enteropathogenic E. coli [87]. The anti-adhesive properties of HMOs are influenced by the
charge and molecular weight of the oligosaccharide and the targeted pathogen [35].

In the neutral HMOs, fucosylated fractions have been reported to exhibit intermediate
levels of adhesion inhibition (up to 50%). Neutral HMOs exhibit antipathogenic function-
alities depending on their molecular weight and pathogenic species. The high molecular
weight fragments (HMWF) are known to inhibit adhesion in E. coli and Vibrio cholerae, and
low molecular weight fragments (LMWF) inhibit the adhesion of E. coli and Salmonella
fyris. However, HMWF failed to inhibit S. fyris and LMWF failed to inhibit V. cholerae,
indicating their pathogen specificity [88]. Pathogen-inhibiting activity also depends upon
the fucosylation patterns. Research demonstrated that 2′-FL has shown inhibitory activity
against several pathogen species. Studies using 2′-FL against C. jejuni have reported the
inhibition of the pathogen to human intestinal epithelial cells [65,89]. In other work, 2′-FL
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has also shown anti-adhesive effects against enteropathogenic E. coli (EPEC) and V. cholerae
to intestinal epithelial cells (Caco-2). Additionally, 2′-FL also retards Pseudomonas spp.
infection [56]. The anti-adhesive activity of 2′-FL was also observed against Neisseria menin-
gitides, whose adhesion to salivary agglutinin was effectively inhibited. Recent studies
involving the use of 2′-FL against S. agalactiae, and its serotypes have shown an adhesion
inhibitory effect [89]. It has been found that 2′-FL competes with pathogens to bind to the
cell surface glycan receptors, which prevents colonization and invasion of the pathogens.
The unbound pathogen is then eliminated without causing any infections [89]. Like 2′-FL,
3-FL also exhibits anti-adhesive effects; 3-FL inhibited the adhesion of E. coli by 30% and
S. fyris by 16%. It also reduced the binding of P. aeruginosa to the human respiratory cell
line A549 by up to 23% [90]. Neutral N-containing HMOs such as LNnT are also efficient
in inhibiting the adhesion of S. pneumoniae [88]. Furthermore, acidic HMOs also contribute
towards the inhibition of pathogen adhesion. One study showed that 3′-SL, in particular,
has inhibited cellular adhesion in E. coli serotype O119, H. pylori, and V. cholerae [88], and
3′-SL is also known to reduce the invasion of uropathogenic E. coli (UPEC) [91]. Similarly,
6′-SL has shown anti-adhesive effects against S. pneumoniae. It also inhibited the adhesion
of Salmonella fyris to buccal epithelial cells [88]. Studies showed that the presence of acidic
HMOs inhibited the expression of several fimbrial types in E. coli. Unlike neutral HMO
fractions, sialylated oligosaccharides have reduced pathogen specificity. This is because
sialylated oligosaccharides, being negatively charged, readily commute with the oppositely
charged segments present on the cell surface [34]. Furthermore, HMOs are reported to avert
necrotizing enterocolitis (NEC). NEC etiology can attribute to the extensive establishment of
bacterial and mucosal neutrophil infiltration. In vivo studies revealed that the introduction
of HMOs resulted in the elevated expression of muc2, resulting in the release of mucin
proteins, which makes enterocytes impermeable to dextran, thereby inhibiting microbial
adhesion, reducing the activation of neutrophils, and thus lowering mucosal neutrophil
activity [76,92]. In addition, HMOs containing galactose and mannose monosaccharide
moieties were observed to prevent adhesion in many bacterial species, which include
C. jejuni, Citrobacter rodentium, Cronobacter sakazakii, EPEC, Enterobacter cloacae, Salmonella
pullorum, and. S. typhimurium, and have shown both anti-adhesive and anti-invasive effects
in the presence of GOS [93–95]. Studies using FOS, which contains fructose monosaccharide
in its structure, against E. coli resulted in the inhibition of adhesion to human intestinal
epithelial cells [96,97].

Apart from the anti-adhesive properties of HMOs, several studies have demonstrated
the antibacterial activities of HMOs against different pathogenic bacteria.

A large portion of protein in milk that imparts a significant barrier to pathogen
invasion in the gut is N-glycans. The milk oligosaccharides attached to the protein called N-
linked glycans are more active than the free oligosaccharides. Yue et al. (2020) reported the
MIC values for N-linked and free milk oligosaccharides against S. aureus as 256 nmol/mL
and 32,768 nmol/mL, respectively. This implies that N-glycans are more active than free
milk oligosaccharides [98]. The antibacterial activity of N-glycans is comparable with
commercially available antibiotics, such as kanamycin. The growth inhibition of S. aureus
and S. typhimurium by N-glycans exceeded the activity of kanamycin, whereas a moderate
inhibition was observed against E. coli and L. monocytogenes [99]. Another study, however,
showed a notable decline in the growth of E. coli, Peptostreptococcaceae, and C. jejuni in
the presence of LNnT. Interestingly, LNnT also exhibits stronger antibacterial activity
against GBS, S. agalactiae strain GB590, and S. agalactiae strain GB2 [100]. The fucose moiety
of N-glycans is responsible for the antipathogenic effect as defucosylation of N-glycans
resulted in lowered or negligible inhibition for all the pathogens [101]. Furthermore, the
growth inhibitory effect of neutral HMOs is also reported against S. agalactiae (GBS) and
its different serotypes. Growth reduction above ~95% was observed in GBS serotype III,
Ia, and V [91]. One of the studies demonstrated that neutral HMOs from different donors
decreased S. agalactiae GB590 growth by 80% and S. agalactiae GB2 growth by 95%. The same
study also showed a reduction in S. agalactiae strain GB2 viability by 36% [98]. In particular,
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2′-FL reduced the growth of S. agalactiae strain GB590 by 20% within 4 h and 11% after
24 h [89]. In another study, 2′-FL successfully prevented the invasion of Campylobacter jejuni,
E. coli, and Peptostreptococcaceae, thus retarding their growth and colonization [35]. Growth
of Deferribacteres, Anaerotruncus, Parabacteroides, Eubacterium, Mucispirillum, Patescibacteria,
and Alistipes was sharply suppressed in the presence of 2′-FL [57]. Acidic HMOs such
as 6′-SL effectively inhibit P. aeruginosa, a crucial opportunistic pathogen that leads to
detrimental infections, such as infection of human pneumocytes in cystic fibrosis. HMOs
enter the systemic circulation from the gut and then reach the respiratory system where
they modulate the pathogen–host interaction by binding to the pathogen and not to the
respiratory cells [101].

4.3. Antibiofilm Activity of HMOs

Considering the immense benefits of HMOs and their diverse antibacterial properties,
researchers have evaluated the antibiofilm potential of HMO molecules. The presence
of HMOs has shown inhibitory effects against biofilm assembly. Up to 93% biofilm in-
hibition by HMOs was observed against the S. agalactiae strain and up to 60% inhibition
was observed against methicillin-resistant S. aureus (MRSA) [102]. A recent study demon-
strated that GB2 had pronounced vulnerability towards HMOs [103]. The same study also
showed that HMOs decreased biofilm production in S. aureus by 30–60% [104]. An in vitro
study showed that the presence of HMOs caused a significant decline in the formation of
biofilms in multi- and pan-drug-resistant A. baumanii. HMOs mainly act by suppressing
the formation of pellicles (floating biofilms). The same study also revealed that HMOs
potently inhibited biofilm establishment but were not effective in distorting pre-existing
biofilms [105]. The biofilm matrix aids the dilution of antibiotic molecules either by lower-
ing their diffusion into the biofilm or by other machinery. This calls for novel techniques
that disrupt these mechanisms and facilitate the action of antibiotics. HMOs are shown to
potentiate the action of several antibiotics such as clindamycin, erythromycin, gentamicin,
and minocycline against GBS [106]. HMOs with varying monosaccharide constituents have
shown a greater capability in inhibiting biofilm formation. Neutral HMOs, specifically
2’-FL, lack efficient antibiofilm activity. However, the conversion of 2′-FL to an anionic,
amino derivative illustrated significant results [107]. The alteration of 2′-FL by amination
(Kochetkov amination) forming the cationic molecule 1-amino-2′-fucosyllactose showed
biofilm inhibitory activity. The mechanism of biofilm inhibition was not clearly understood
but it was hypothesized that the inhibitory action was due to the interactions between the
cationic fucosyllactose entity with the anionic EPS matrix and the negatively charged DNA
structure, which led to the inclusion of a positive charge in the biofilm structure. The intro-
duction of cationic charges in the biofilm structure thus dismantled the biofilm. Therefore,
the use of 2′-FL derivatives executed biofilm inhibitory activity against S. agalactiae GB2
and GB590 and reduced the biofilm production by 46% in GB2 and 37% in GB590 [108].
The antibacterial and antibiofilm activities of different HMOs are listed in Table 2. In a
recent study by Sylwia Jarzynka et al., the antibiofilm activity of total and fractionated
HMO molecules were evaluated against mature biofilms of different clinically relevant
Gram-negative and Gram-positive bacteria. They observed isolate and strain-specific reduc-
tions in the number of biofilm cells among Gram-positive bacteria, specifically in E. faecalis
and S. aureus. However, HMOs did not show any significant activity against pre-formed
biofilms of Gram-negative bacteria [109].
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Table 2. Antibacterial and antibiofilm activity of major HMO molecules.

HMOs Pathogens Antibacterial Properties References

2′-Fucosyllactose (2′-FL)

C. jejuni, Enteropathogenic E. coli,
P. aeruginosa, S. enterica serovar fyris,
S. dysenteriae,

Interferes with binding of specific receptors
on epithelial cells and hence prevents
infection development

[90,108,
110,111]

A. baumanii Represses biofilm formation [105]

3-Fucosyllactose (3′-FL)
C. jejuni, E. coli, P. aeruginosa Prevents adhesion of bacteria to receptors [88,90,

108]

Group B Streptococcus 10% decrease in biofilm formation [90]

A. baumanii Represses biofilm formation [105]

3′-sialyllactose (3′-SL)
E. coli, H. pylori, S. fyris, V. cholerae Inhibits bacterial adhesion [87,88,

112]

GBS 10% decrease in biofilm biomass [102]

6′-sialyllactose (6′-SL)
E. coli, S. fyris, V. cholerae Interferes with bacterial adhesion [87]

GBS 9% decrease in biofilm biomass [102]

1-amino-2′-FL
GBS 590 37% decrease in biofilm production

[89]
GBS 2 46% decrease in biofilm production

Lacto-N-neotetraose
(LNnT)

GBS 13% decrease in biofilm biomass [102]

A. baumanii Represses biofilm formation

[103]

Difucosyllactose (DFL) A. baumanii Represses biofilm formation

Lacto-N-fucopentaose I
(LNFP I) A. baumanii Represses biofilm formation

Lacto-N-fucopentaose II
(LNFP II) A. baumanii Represses biofilm formation

Lacto-N-fucopentaose III
(LNFP III) A. baumanii Represses biofilm formation

Lacto-N-triose II (LNT II) A. baumanii Represses biofilm formation

Summarizing all the results, we can conclude that HMO molecules can modulate
the initial stages of biofilm formation and prevent bacterial colonization. However, the
underlying molecular mechanism is not yet well understood. Researchers hypothesize
that the antibiofilm activity of HMOs may be due to their structural resemblance with the
bacterial polysaccharides, that in turn modulate the gene expression profile of bacterial
EPS, needed to maintain a structured biofilm community [104,113,114]. Focused in vivo
studies in this context are, therefore, necessary to prove this hypothesis.

5. Conclusions and Future Directions

Viral infections and chronic biofilm infections present a difficult challenge for human-
ity, calling for a strong need to develop anti-viral [115] and antibiofilm therapies [116].
The unconjugated and structurally complex glycans, HMOs, have emerged as integral
components of the human milk glycome, shaping the immunity and microbial communities
of the infant’s gut. The HMOs confer protection to the infant from microbial diseases by
promoting the growth of commensal bacteria, such as Bifidobacteria, Akkermansia, and Lacto-
bacillus, by directly killing pathogenic bacteria, such as GBS, by conferring anti-adhesive
properties of ‘decoy’ receptors against enteropathogens and by reducing biofilm formation
of bacterial pathogens such as A. baumanii, S. aureus and S. agalactiae. The adhesion of HMOs
on the tissues such as epithelial cells or urinary bladder cells confers protection to the host
lining from pathogens that cause chronic infections, e.g., pooled HMOs have been used
to reduce in vivo vaginal GBS colonization. Antimicrobial therapy is ineffective in treating
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chronic infections because of the rapid horizontal transfer of antimicrobial resistance genes,
antibiotic tolerance, and the presence of the persister phenotype inside the biofilm matrix,
thereby causing a relapse of the infection. In the pipeline of non-antibiotic-based antibiofilm
therapeutics, HMOs have shown significant promise in inhibiting biofilms of clinically
relevant pathogens such as GBS, S. aureus, and S. agalactiae.

The interdisciplinary interactions among clinicians, microbiologists, and chemists can
tap into several unexplored aspects of HMO research, such as the interactions of HMOs with
capsular polysaccharides, effects on cell elongation and division of bacteria, permeability
changes in the bacterial membrane, expression of bacterial adhesins in the presence of
HMOs, interactions of lectin-based adhesins (FimH type 1 pilus lectin) with HMO-glycans,
the ability of HMOs to jam quorum-sensing signaling, restoring the susceptibility of XDR
bacteria to resistant drugs, and developing adjuvant therapies using HMOs to treat biofilms
in chronic infections. HMOs are undigested by host digestive enzymes, stay intact in the
gut for longer durations, and, thus, play a vital role in impacting the gut microflora and
immunity. There is a strong need for more research effort to understand the untapped, broad
application of HMOs to biofilm infections in other tissues of the body other than the vaginal
mucosa and intestines. The anti-adhesive, antibacterial, and antibiofilm characteristics
of HMOs make them excellent biomolecular entities that can be modified using biocidal
moieties to develop antibiofilm agents, with the additional advantage of not adversely
affecting the essential gut microbiome. It is extremely important to leverage the latest
computational technologies and most relevant animal models to accelerate the discovery of
novel and effective antibiofilm agents.

Recent advancements in glycan-focused machine learning have led to the development
of unique tools used to study HMO-mediated host–microbe interactions. Glycobiology
modifications in HMOs that can result in lowered immunogenicity to the host can be
predicted in further research by using a deep-learning-based, SweetTalk, glycans language
model. Computational biologists have struggled to incorporate diverse carbohydrate
structures in their workflows, which can now be easily done using Glycowork (a python
package for glycan data science and machine learning); therefore, they can now study
in silico interactions of modified HMOs with the host tissues and the pathogens. ML
approaches such as logistic regression, random forest, support vector machines (SVMs),
and neural networks are increasingly being used to discover new antibiofilm agents. It
employs a training set that consists of small molecules or peptides with information about
their experimentally known biofilm inhibiting/killing activity and their chemical proper-
ties (generated using the QSAR chemoinformatics approach) to train an algorithm. The
algorithm is trained in such a way that it creates a mathematical relationship between the
antibiofilm activity of the molecule and the features of each molecule. This trained model is
used to check the antibiofilm properties of known antibiofilm agents and also of unknown
antibiofilm agents, which is validated later using in vitro studies. Unlike antibiofilm glycans
or HMOs, antimicrobial peptides with antibiofilm properties have been predicted through
numerous ML approaches. A database of antibiofilm HMOs as a result of coordinated in
silico studies using advanced approaches can definitely provide interesting in vitro and
in vivo antibiofilm leads. Although in vitro tools enable high-throughput screening under
controlled conditions, they give a limited understanding of the impact of host proteins,
immune responses, stress factors, and the complex chemical and physical environment that
microbes adapt to. It is also essential to validate the promising in vitro antibiofilm strategies
in vivo for benchside-to-bedside translation using appropriate animal models representing
the appropriate host milieu conditions.

A major challenge in HMO studies is the inadequate availability of HMO molecules.
The synthesized HMOs are expensive and only represent a negligible proportion of the
whole human milk glycome. More than 200 unique branched structured HMO molecules
are found in human milk, of which synthetic HMOs are restricted to only structurally
small and simple HMOs such as trisaccharide and tetrasaccharides. Pooled milk from
donors is another option available for studying HMO molecules. The main limitation of
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pooled milk is the variation in HMO composition and difference in activity in the absence
of the maternal phenotype. The HMOs composition in milk changes regularly, perhaps to
boost immunity. However, the isolation of the exhausted HMO molecule responsible for
biological activity is difficult in a pooled sample. Hence, innovative solutions are required
to identify the HMO molecules with antimicrobial activity that would further assist in
the chemoenzymatic synthesis of HMO molecules. Such initiatives will certainly boost
multidisciplinary research on the human glycome and assist in the development of novel
therapeutic or prophylactic HMO cocktails against infections.
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FOS: Fructo-oligosaccharides, GOS: galacto-oligosaccharides, AOS: alginate oligosac-
charides, COS: chitosan oligosaccharides, POS: pectic oligosaccharides, GAS: group A
Streptococcus, GBS: group B Streptococcus, LNnT: lacto-N-neotetraose, LNT: lacto-N-tetraose,
DFL: difucosyllactose, LNFP: lacto-N-fucopentaose, FUT: fucosyltranferase, MSCRAMMs:
microbial surface components recognizing adhesive matrix molecules, PNAG: poly-N-
acetylglucosamine, PSMs: phenol-soluble modulins, QS: quorum sensing, AIP: autoin-
ducing peptides, PIA: polysaccharide intercellular adhesin, SCFA: short chain fatty acids,
EPEC: enteropathogenic E. coli, UPEC: uropathogenic E. coli, MRSA: methicillin-resistant
S. aureus, and NEC: necrotizing enterocolitis.
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