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Abstract: Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in premature infants
and a leading cause of death in neonates (1–7% in the US). NEC is caused by opportunistic bacteria,
which cause gut dysbiosis and inflammation and ultimately result in intestinal necrosis. Previous
studies have utilized the rodent and pig models to mimic NEC, whereas the current study uses the
in vivo (Gallus gallus) intra-amniotic administration approach to investigate NEC. On incubation
day 17, broiler chicken (Gallus gallus) viable embryos were injected intra-amniotically with 1 mL
dextran sodium sulfate (DSS) in H2O. Four treatment groups (0.1%, 0.25%, 0.5%, and 0.75% DSS) and
two controls (H2O/non-injected controls) were administered. We observed a significant increase in
intestinal permeability and negative intestinal morphological changes, specifically, decreased villus
surface area and goblet cell diameter in the 0.50% and 0.75% DSS groups. Furthermore, there was a
significant increase in pathogenic bacterial (E. coli spp. and Klebsiella spp.) abundances in the 0.75%
DSS group compared to the control groups, demonstrating cecal microbiota dysbiosis. These results
demonstrate significant physiopathology of NEC and negative bacterial–host interactions within a
premature gastrointestinal system. Our present study demonstrates a novel model of NEC through
intra-amniotic administration to study the effects of NEC on intestinal functionality, morphology,
and gut microbiota in vivo.

Keywords: necrotizing enterocolitis; NEC; dextran sodium sulfate; intraamniotic administration;
Gallus gallus; gut microbiome; dysbiosis; intestinal immaturity

1. Introduction

In premature infants, a leading gastrointestinal disease, necrotizing enterocolitis (NEC),
accounts for approximately 2–13% of preterm and very-low-birth-weight (VLBW, <1500 g)
infants in the United States [1–3]. Variations in incidences are attributed to different risk
factor profiles, such as differing populations, detection rates, and inclusion and exclusion
criteria for the disease [4–7]. Currently, there is no global incidental rate on NEC. Previous
literature suggests that NEC is caused by intra-luminal pathogenic bacteria disrupting
the intestinal villi, which upregulates inflammatory pathways, causing dysbiosis, and
ultimately results in intestinal necrosis [8–10]. NEC is a multifactorial disease wherein
symptoms start slowly, but decompensation occurs quickly, leading to fulminate NEC
with pneumatosis intestinalis and portal gases [11–14]. The bacterial endotoxins released
from opportunistic bacteria bind to Toll-like receptor four within epithelial cells, which
activate pathogen-associated molecular pattern (PAMP) and release a complement and
coagulation cascade effect within the immune system to break down gut mucosa [15–17].
Intestinal barrier disruption leads to bacteria entering intestinal cells and causes possible
ischemia–reperfusion injury to the tissue [18].

NEC was initially investigated and induced in rodent and pig models through hy-
poxic/hypothermic and/or surgical interventions to mimic the multifactorial nature of the
human disease [6,19–21]. In 1974, Barlow et al. demonstrated the first NEC model in rats,
where gut flora and lack of immunoglobulin A (IgA) from breast milk were found to be
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essential factors contributing to NEC-like injury [22]. Currently, model organisms for NEC
include rodents, pigs, and gnotobiotic quail, each with distinct strengths and weaknesses
in modeling NEC [23,24]. Rats modeling NEC have practical benefits such as a low cost
and high resilience to stress compared with mice; however, rats lack biomolecular reagents
such as antibodies, meaning specific genetic techniques cannot be utilized to understand
the mechanisms of pathophysiology, unlike mice [24]. The mouse model has been used
to demonstrate NEC prevention mechanisms but is limited, as reproducible data is not
necessarily obtained [19,25–27]. Another model, pigs, which have a closer resemblance
in size, physiology, and anatomy when compared to a premature infant [28–30], is costly
to maintain, and genetic techniques are limited [20,31–33]. Additionally, piglet models
utilize intestinal injury to induce NEC, affecting the whole GI tract, while human NEC
occurs primarily in the distal small intestine [32]. Lastly, there is the quail model, which is
practical for NEC because of their modest size; rapid, productive maturation; resilience
to research manipulation; transgenic lines; fully sequenced genome; and availability for
molecular manipulation [34–37].

The current study suggests an alternative and novel model for NEC, the chicken
(Gallus gallus). The chicken has been a well-studied model organism since the last cen-
tury due to genetic analysis in developmental biology, virology, oncology, and immunol-
ogy [38]. Chickens has been utilized for several human diseases, including muscular
dystrophy [39–41], bacterial infections [42–45], autoimmunity [46–48], cancer [49–51], the
microbiome [52–57], and micronutrient deficiencies [58–64]. The external embryology of the
chicken has been a leading system investigating vertebrate development using functional
genomics and biochemistry to study diseases similar to NEC. We hypothesize that the intra-
amniotic administration [64–66] of dextran sulfate sodium (DSS, a compound previously
demonstrated to induce NEC) will lead to NEC development, causing clinical symptoms
within the brush border membrane functionality, tissue morphology, and dysbiosis of the
intestinal microbial populations.

2. Materials and Methods
2.1. Sample Preparation

Dextran sulfate sodium (>98%) (Catalog #J62101.14, molecular weight 165.19 g/mol,
ThermoFisher, Waltham, MA, USA) was used for the intra-amniotic administration ex-
periment. In addition, 4 kDa fluorescein isothiocyanate-dextran (FITC-Dextran, Catalog
#SIAL-46944-100M, Sigma-Aldrich, St. Louis, MO, USA) was used for the intestinal perme-
ability assay.

2.2. Animals and Study Design

Cornish cross-fertile broiler eggs (n = 59) were purchased from a hatchery (Moyer’s
Chicks, Quakertown, PA, USA). The eggs were incubated under standard conditions at the
Cornell University Animal Science poultry farm. All animal experiments were approved
and performed in compliance with Cornell University IACUC (protocol code: 2020-0077).

Intra-Amniotic Administration

Pure DSS solutions were individually diluted in deionized (DI) water. As previously
described [54,56,61–63,67], intra-amniotic administration was completed on day 17 of
embryonic development with viable embryos (n = 60). Eggs were weighed and divided
into six treatment groups of equal weight distribution (n = 10), using a random sequence
generation [68]. For the intra-amniotic administration, all eggs were disinfected by spraying
70% ethanol. In the H2O control and DSS-treated groups, a 21-gauge needle was inserted
into the amniotic fluid, and 1 mL of sterile solution was injected. The site for intra-amniotic
administration was identified via candling. After the administration, the injection sites
were sprayed with 70% ethanol and sealed with transparent tape. The eggs were distributed
into six groups: (1) no injection, (2) DI H2O, (3) 0.10% DSS, (4) 0.25% DSS, (5) 0.50% DSS,
and (6) 0.75% DSS. The eggs were equally distributed in each incubator to reduce possible
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allocation bias. Upon hatch, on incubation day 21, chicks were euthanized by CO2. The
blood was obtained via cardiac puncture and stored at 4 ◦C, then fractionated and stored at
−20 ◦C. The proventriculus, gizzard, liver, pectoral muscle, duodenum, and cecum were
obtained, flash frozen in liquid nitrogen, and stored at −20 ◦C until analysis.

2.3. Intestinal Permeability Test: Fluorescein Isothiocyanate Dextran (FITC-Dextran) Test

The intestinal permeability of the hatchlings was determined on day of hatch, as
previously described by Barekatain et al., 2019 [69]. Briefly, on the day of hatch, each
bird was orally gavaged with a 0.5 mL aqueous solution containing 1.1 mg of fluorescein
isothiocyanate dextran (FITC-Dextran) before euthanization. A blood sample was taken
from each bird after 4 h via myocardial puncture. Blood samples were fractionated via
centrifugation at 1000× g for 15 min (Allegra X-30R, Beckman Coulter, Brea, CA, USA) and
kept at −20 ◦C until analysis. Plasma samples and standards were analyzed in triplicate for
FITC-Dextran concentration using a Biotek Epoch Microplate Spectrophotometer (Agilent
Technologies, Santa Clara, CA, USA) with excitation and emission wavelengths set at 485
and 530 nm, respectively.

2.4. Glycogen Analysis as a Measurement of Energetic Status

All procedures were conducted as previously described [54,56,70]. A total of 20 mg of
the liver was collected for glycogen analysis. Hepatic glycogen content was determined by
multiplying the weight of the tissue by the amount of glycogen per 1 g of wet tissue.

2.5. Isolation of the Total RNA from the Duodenum Samples

As previously described [54,56,67], a RNeasy Mini Kit (Catalog #74106, Qiagen Inc.,
Valencia, CA, USA) utilized 30 mg of duodenal tissue (n = 5) to extract the total RNA
according to the manufacturer’s protocol. Total RNA was eluted in 50 µL of RNase-free
water. All steps were carried out under RNase-free conditions. RNA was quantified by
absorbance at 260/280 nm, and the integrity of the RNA was verified by 1.5% agarose gel
electrophoresis followed by ethidium bromide staining. RNA was stored at −80 ◦C.

2.6. Real-Time Polymerase Chain Reaction (RT-PCR)

To create the cDNA, a 20 µL reverse transcriptase (RT) reaction was completed in a
BioRad CFX1000 Touch thermocycler (BioRad, Hercules, CA, USA) using the Improm-II Re-
verse Transcriptase Kit (Catalog #A1250; Promega, Madison, WI, USA). The concentration
of the cDNA obtained was determined by measuring the absorbance at 260/280 nm with an
extinction coefficient of 33 (single-stranded DNA) by a NanoDrop 1000 Spectrophotometer
(ThermoFisher Scientific, Waltham, MA USA). A RT-PCR assay assessed genomic DNA
contamination for the genetic samples [67,71].

2.7. Intestinal Primer Design and Real-Time Quantitative PCR Design

The primers used in the RT-qPCR were designed based on ten gene sequences from
the Genbank database, using Real-Time Primer Design Tool software (IDT DNA, Coralvilla,
IA, USA). The sequences and the description of the primers used in this work are found
in Table 1. The Gallus gallus 18s rRNA primer was designed as the reference gene, and
the results obtained from the qPCR system were used to normalize the primers listed in
Table 1. As previously described [62,63,72,73], all real-time quantitative PCR procedures
were conducted with the specific primers listed in Table 1.
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Table 1. Primer sequences used in the study.

Target Gene Forward (5′-3′) Reverse (3′-5′) Amplicon Length
(Base Pairs) NCBI Accession Ref.

Inflammatory Genes

NF-κβ CACAGCTGGAGGGAAGTAAAT TTGAGTAAGGAAGTGAGGTTGAG 100 2130627
TNF-α GACAGCCTATGCCAACAAGTA TTACAGGAAGGGCAACTCATC 109 53854909
IL-1β TCATCCATCCCAAGTTCATTCA GACACACTTCTCTGCCATCTT 105 395872
IL-6 ACCTCATCCTCCGAGACTTTA GCACTGAAACTCCTGGTCTT 105 302315692

Brush Border Membrane (BBM) Functionality Genes

OCLN GTCTGTGGGTTCCTCATCGT GTTCTTCACCCACTCCTCCA 124 396026 [74]
MUC2 CCTGCTGCAAGGAAGTAGAA GGAAGATCAGAGTGGTGCATAG 272 423101

AP CGTCAGCCAGTTTGACTATGTA CTCTCAAAGAAGCTGAGGATGG 138 45382360
SI CCAGCAATGCCAGCATATTG CGGTTTCTCCTTACCACTTCTT 95 2246388

SGLT1 GCATCCTTACTCTGTGGTACTG TATCCGCACATCACACATCC 106 8346783
18S rRNA GCAAGACGAACTAAAGCGAAAG TCGGAACTACGACGGTATCT 100 7262899

NF-κβ, nuclear factor kappa-light-chain-enhancer of activated B cells; TNF-α, tumor necrosis factor-alpha; IL-1β:
interleukin one beta; IL-6: interleukin 6; OCLN: occludin; MUC2, mucin 2; AP: aminopeptidase; SI: sucrose
isomaltase; SGLT1: sodium-glucose transporter 1; 18S rRNA: 18S ribosomal subunit. Target genes were created
from accessions within National Center for Biotechnology Information (NCBI).

2.8. Intestinal Content DNA Isolation, Bacterial Primer Design, and PCR Amplification of
Bacterial 16S rDNA

Frozen cecal contents were placed into a sterile tube containing 9 mL of phosphate-
buffered saline (PBS) (Catalog#75800-998, VWR, Radnor, PA, USA) and homogenized with
silicone bead-beating for 3 min [67,75,76]. All procedures were conducted as previously
described [63,67,72].

As previously described [76–79], primers for Lactobacillus, Bifidobacterium, Clostridium,
Escherichia coli, and Klebsiella were used with a universal primer variable region in bacterial
16S rRNA and were used as an internal standard. The PCR products were loaded on 2%
agarose gel, stained with ethidium bromide, and quantified by Quantity-One 1D analysis
software version 4.6.8 (BioRad, Hercules, CA, USA). The results were given by proportions
of each bacterial group compared to the universal primer, giving relative abundance as
previously conducted and demonstrated, with primers listed in Table 2 [62,63,72,73,80].

Table 2. Microbial primer sequences for bacteria within cecum.

Target Gene Forward (5′-3′) Reverse (3′-5′) Ref.

Lactobacillus spp. CATCCAGTGCAAACCTAAGAG GATCCGCTTGCCTTCGCA [77]
Bifidobacterium spp. GGGTGGTAATGCCGGATG CCACCGTTACACCGGGAA [77]

E. coli spp. GACCTCGGTTTAGTTCACAGA CACACGCTGACGCTGACCA [77]
Clostridium spp. AAAGGAAGATTAATACCGCATAA ATCTTGCGACCGTACTCCCC [77]

Klebsiella spp. CGCGTACTATACGCCATGAACGTA ACCGTTGATCACTTCGGTCAGG [78,79]
16S rRNA CGTGCCAGCCGCGGTAATACG GGGTTGCGCTCGTTGCGGGACTTAACCCAACAT [77]

2.9. Morphological Examination

As previously described [54,65–67,81–85], intestinal samples (duodenum) were col-
lected after the study and fixed in 4% (v/v) buffered formaldehyde. The samples were
fixed further in 4% (v/v) buffered formaldehyde, dehydrated, cleared, and embedded in
paraffin. The duodenum tissue was cut into 5 µm sections and placed on positively charged
slides. Sections were: deparaffinized in xylene, rehydrated in different concentrations
of alcohol, and stained. Periodic acid–Schiff and Alcian blue were used to distinguish
neutral (magenta) and acidic (blue) mucins. Four sections of the duodenum per chick (n = 5
per treatment group) were examined. Villus height, villus width, crypt depth, goblet cell
number, and goblet cell diameter were measured in each segment, using light microscopy
with CellSens Standard version 3.2 (Olympus Corporation, Tokyo, Japan). Villi height was
measured using the lamina propria as the base; villi width, the depth of the crypt, and the
number of goblet cells were counted per side of a cross-sectional view through the villus;
goblet cell size was measured as the diameter of the goblet cells (µm2). Villi surface area
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was calculated from the villus height and width at half height according to Uni et al. [86]
and calculated using the following equation:

Villus sur f ace area = 2 ∏ ×VW
2
×VL (1)

where VW is the average of three measurements of villus width, and VL is the villus
length [87]. For the Alcian Blue and periodic acid–Schiff stain, the segments were counted
for the types of goblet cells in the villi epithelium and goblet cells within the crypts. Goblet
cells were counted in ten randomly selected villi or crypts per intestinal section (four
intestinal sections per subject, 40 villi or crypts counted per subject). Goblet cell type
was identified based on color, as periodic acid–Schiff and Alcian blue stains distinguishes
between neutral (magenta), mixed (purple), and acidic (blue) mucins. Paneth cells were
identified by their triangular shape within 10 randomly selected crypts per intestinal section
and then counted and measured. The means were utilized for statistical analysis.

2.10. Statistical Analysis

Experimental treatments for the in ovo assay were arranged entirely randomly. The
Shapiro–Wilk test was used to assess for normality. Statistical analyses were performed
using one-way Analysis of Variance (ANOVA). Data is presented as means and standard
deviations. Differences were considered significant at p < 0.05 using a post hoc Duncan or
Tukey test was used to compare different NEC severity treatments, as described in figure
or table legends. Statistical analysis was conducted using SPSS version 27.0 software (IBM,
Armonk, NY, USA).

3. Results
3.1. Gross Physical Findings

There was a total hatchability rate of 95%. As shown in Table 3, there was no significant
difference between body weight observed between DSS treatment groups and the controls.
However, the cecum weight in the DSS treatment groups (0.1% and 0.5%) was significantly
higher compared to the no-injection group (p < 0.05, Table 2).

Table 3. The effect of DSS on the body weight, cecum weight, and cecum-to-body-weight ratio.

Group Body Weight (g) Cecum Weight (g) Cecum: Body Weight

No Injection 40.06 ± 4.06 b 0.42 ± 0.06 b 0.015 ± 0.005 a

H2O Injection 47.49 ± 1.21 a 0.47 ± 0.03 a,b 0.010 ± 0.001 a

0.1% DSS 45.81 ± 1.23 a,b 0.62 ± 0.08 a 0.013 ± 0.002 a

0.25% DSS 45.25 ± 1.01 a,b 0.49 ± 0.05 a,b 0.011 ± 0.001 a

0.50% DSS 45.24 ± 1.11 a,b 0.64 ± 0.08 a 0.014 ± 0.002 a

0.75% DSS 45.78 ± 0.86 a,b 0.60 ± 0.06 a,b 0.010 ± 0.000 a

Values are means ± stand error, n = 8–10. a,b within a column, means without a common letter are significantly
different, p < 0.05 (Duncan’s post-hoc test).

Additionally, intra-abdominal abscesses were found within the proventriculus and giz-
zard within only the 0.5% and 0.75% DSS treatments (depicted in Supplementary Figure S1).

3.2. Hb Concentration and Hepatic Glycogen Levels

The Hb value in the 0.75% DSS treatment group was significantly higher than the
water injected, 0.1% DSS, and 0.25% DSS treatment groups (Table 4). Furthermore, there
was a significant (p < 0.05) difference between the 0.75% DSS group and all other hepatic
glycogen treatment groups.
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Table 4. Blood hemoglobin (Hb) concentrations (g/dL) and hepatic glycogen levels (mg/mL).

Group Hb (g/dL) Hepatic Glycogen (mg/mL)

No Injection 10.48 ± 1.31 a 0.002 ± 0.001 b

H2O Injection 9.82 ± 0.77 a 0.003 ± 0.001 b

0.1% DSS 10.70 ± 1.16 a 0.003 ± 0.001 b

0.25% DSS 10.22 ± 1.56 a 0.004 ± 0.001 b

0.50% DSS 10.13 ± 0.77 a 0.004 ± 0.001 b

0.75% DSS 10.94 ± 3.24 a 0.008 ± 0.002 a

Values are means ± standard error, n = 5. a,b within a column, means without a common letter are significantly
different, p < 0.05 (Tukey’s post-hoc test).

3.3. Change of Intestinal Permeability across the Groups

DSS treatments were not significantly different from the non-treated FITC-dextran
birds. However, the 0.75% DSS treatment group was significantly (p < 0.05, Figure 1)
different than the other treatment groups treated with FITC-dextran. Furthermore, no
dose-response occurred from the titration of concentrations between the experimental
groups and controls.
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Figure 1. Comparison of the intra-amniotic administration of DSS to controls on the day of hatch
within the small intestine (duodenum). Values are means ± stand error, n = 3. a,b within a column,
means without a common letter are significantly different, p < 0.05 (Duncan’s post-hoc test).

3.4. Duodenal Gene Expression

The gene expression of the inflammatory marker, NF-κβ1, was lower (p < 0.05) in
the 0.50% and 0.75% DSS treatment groups compared to the control groups (no injection
and H2O injection) (Figure 2). However, other concentrations of DSS did not affect the
expression of NF-κβ1 (p < 0.05). The relative expression of TNF-α was significantly (p < 0.05)
decreased in all of the DSS experimental groups (0.1%, 0.25%, 0.5%, and 0.75%) compared
to the controls. Similarly, IL-6 was lowered in all of the DSS-treated groups compared
only to the H2O injection group (Figure 2). However, no significant differences in IL-1β
expression were found between any of the groups.
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Figure 2. Effect of the intra-amniotic administration of DSS on intestinal gene expression on the day
of hatch within the small intestine (duodenum). Values are means ± stand error, n = 5. a,b,c within
a column, means without a common letter are significantly different, p < 0.05 (Duncan’s post-hoc
test). NF-κβ, nuclear factor kappa-light-chain-enhancer of activated B cells; TNF-α, tumor necrosis
factor-alpha; IL-1β: interleukin one beta; IL-6: interleukin 6; OCLN: occludin; MUC2, mucin 2;
AP: aminopeptidase; SI: sucrose isomaltase; SGLT1: sodium-glucose transporter 1; 18s rRNA: 18S
ribosomal subunit.

The gene expression of brush border membrane functionality proteins, sucrose iso-
maltase (SI), and occludin (OCLN) were not significantly different. Despite no significant
difference in OCLN gene expression, there was a trend of decreased gene expression with
increased DSS treatment concentration (Figure 2). There was a significant (p < 0.05) down-
regulation of MUC2 and AP gene expression in the DSS treatment groups compared to
the H2O and no-injection control. There is a significant increase (p < 0.05) in the gene
expression of SGLT1 in the 0.25%, 0.50%, and 0.75% DSS-treatment groups compared to the
H2O-injected group.

3.5. Microbial Dysbiosis

Figure 3 shows cecal bacterial populations. The relative abundance of Bifidobacterium
spp. was significantly decreased in the DSS-treated groups (p < 0.05) relative to the control
groups (non-injected and H2O-injected groups). Bifidobacterium spp. and Lactobacillus
spp. were significantly decreased in the 0.50% and 0.75% DSS groups compared to the
non-injected and H2O-injected groups. The highest relative abundances of Lactobacillus spp.
were in 0.1% and 0.25% DSS following the exposure compared to the controls.
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Figure 3. Effect of the intra-amniotic administration of DSS on cecal bacterial populations (day of
hatch). Values are means ± SEM. Per bacterial category, a–d within a column, treatment groups that
do not share letters are significantly different according to one-way ANOVA with Tukey’s post-hoc
test (p < 0.05).

E. coli and Klebsiella spp., opportunistic and possibly pathogenic bacteria, were sig-
nificantly increased (p < 0.05) in the two highest concentrations of DSS (0.50% and 0.75%)
compared with the non-injected and the H2O-injected groups. However, the relative abun-
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dance of Clostridium spp. was significantly (p < 0.05) lowered in 0.25%, 0.50%, and 0.75%
DSS compared to the control groups (non-injected and H2O-injected groups) and 0.1%
DSS group.

3.6. Intestinal Morphology

The villus surface area and crypt goblet cell diameter were significantly (p < 0.05) low-
ered in the 0.75% DSS group compared to the H2O injection group (Table 5, images withing
Supplemental Figure S2), indicating that DSS negatively impacted intestinal development.
A significant (p < 0.05, Table 5) increase was found in the villi goblet cell diameters, Paneth
cell number, and Paneth cell diameter of 0.1% and 0.75% DSS groups compared to the
non-injected and H2O-injected groups. There was no significant difference in crypt depth
between experimental groups.

Table 5. Effects on intestinal villi and crypts of the duodenum after the intra-amniotic administration
of experimental DSS.

Treatment Villus Surface
Area (µm2)

Crypt Depth
(µm)

Villi Goblet
Diameter (µm)

Crypt Goblet
Diameter (µm) Paneth Cell # Paneth Cell

Diameter (µM)

No Injection 109.99 ± 3.06 d 25.17 ± 0.93 a,b 3.57 ± 0.05 d 2.99 ± 0.05 b 1.09 ± 0.02 c 1.56 ± 0.03 b

H2O Injection 205.15 ± 5.03 a 26.35 ± 0.98 a,b 4.04 ± 0.06 c 3.16 ± 0.04 a 1.03 ± 0.01 c 1.47 ± 0.02 c

0.1% DSS 147.51 ± 3.28 b 27.89 ± 1.08 a 4.55 ± 0.07 a 2.99 ± 0.04 b 1.80 ± 0.05 b 1.69 ± 0.03 a

0.75% DSS 130.35 ± 0.03 c 24.32 ± 0.78 b 4.25 ± 0.05 b 2.73 ± 0.04 c 1.93 ± 0.06 a 1.67 ± 0.03 a

Values are means ± stand error, n = 5. a–d within a column means without a common letter are significantly
different, p < 0.05 (Duncan’s post-hoc test). # Number of cells.

A closer investigation of goblet cells within crypts and villi was viewed to determine
differences (Table 6). Crypt goblet cell count was significantly increased in the 0.1% and
0.75% DSS groups compared to the non-injected and H2O injection groups. Different goblet
cell types were analyzed in crypts; acidic goblet cells were significantly higher (p < 0.05) in
the 0.1% and 0.75% DSS groups compared to the control groups. There was a significantly (p
< 0.05) higher amount of mixed goblet cells in crypts within the 0.1% DSS group compared
to the control groups. Similarly, the villi goblet cell number and the acidic and mixed
goblet cell number were significantly increased with 0.1% DSS exposure compared with
the controls, as seen in Table 6.

Table 6. Effects on intestinal villi and crypt goblet cells of the duodenum after the intra-amniotic
administration of experimental DSS.

Treatment Crypt Goblet Cell #
Crypt Goblet Cell Type Number

Villi Goblet Cell #
Villi Goblet Cell Type Number

Acidic Neutral Mixed Acidic Neutral Mixed

No Injection 8.57 ± 0.32 c 6.59 ± 0.26 c 0.00 ± 0.0 1.97 ± 0.18 d 15.78 ± 0.45 c 13.7 ± 0.42 c 0.00 ± 0.00 2.08 ± 0.13 c

H2O Injection 7.96 ± 0.24 c 7.42 ± 0.22 b 0.00 ± 0.00 0.49 ± 0.06 c 22.93 ± 0.6 b 18.4 ± 0.53 b 0.00 ± 0.00 4.53 ± 0.23 b

0.1% DSS 14.7 ± 0.41 a 10.23 ± 0.31 a 0.00 ± 0.00 4.47 ± 0.19 a 30.37 ± 0.84 a 23.91 ± 0.68 a 0.00 ± 0.00 6.46 ± 0.36 a

0.75% DSS 13.48 ± 0.04 b 9.76 ± 0.32 a 0.00 ± 0.00 3.74 ± 0.19 b 16.64 ± 0.56 c 14.63 ± 0.49 c 0.00 ± 0.00 2.09 ± 0.14 c

Values are means ± stand error, n = 5. a–d within a column means without a common letter are significantly
different, p < 0.05 (Duncan’s post-hoc test). # Number of cells.

4. Discussion

NEC is an acute inflammatory disease that results in the intestinal necrosis of the
bowels, systemic sepsis, and multiorgan failure from a complex combination of patho-
logical events, including patchy inflammation of the small intestine and intestinal hy-
poxic/reperfusion injuries and bacterial dysbiosis [3,13,16,88]. In our present study, we
investigated the effects of dextran sodium sulfate (DSS) utilizing the Gallus gallus intra-
amniotic administration model to mimic necrotizing enterocolitis (NEC). The present study
indicates that the intra-amniotic administration of DSS at the highest concentration (0.75%)
had similar findings as NEC manifestations in humans, including but not limited to the
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inflammation of the small intestines, intra-abdominal abscesses of the gizzard, increased
hemoglobin levels, increased permeability within the intestines, and the increased presence
of potentially pathogenic bacteria. NEC has previously been induced and investigated in
the rodent and pig models through hypoxic/hypothermic and/or surgical interventions to
simulate the multifactorial nature of NEC in humans [6,19–21].

Current NEC in vivo models, such as rodents, pigs, and quails, have distinct strengths
and weaknesses. Rodents (mice and rats) are induced to have NEC by cesarian section
delivery before term, then gavage fed with the formula [19,89,90]. Mice have antibodies,
and specific genetic techniques can be utilized to understand NEC pathophysiology mech-
anisms, whereas rats lack antibodies but are more resilient to stress [24]. Unfortunately,
studies using the mouse model have shown inconsistent results, wherein data reproducibil-
ity presents potential issues [19,25–27]. While pigs have closer resemblance relative to
rodents in physiology, there are drawbacks in which NEC is induced via intestinal injury
to the whole intestine, and genetic techniques also present limitations. In another model,
gnotobiotic quails, NEC is induced via the oral gavage of bacteria associated with NEC
to affect its small intestine, which has aided in understanding the inducible nitric oxide
synthase (iNOS) pathway before macroscopic lesions [34,35,91]. Quails have been shown to
be an NEC model that balances practicality, resilience, and molecular manipulation [34–37].
Given these aforementioned factors and that the chicken model has been a leading system
investigating vertebrate development using functional genomics and biochemistry to study
diseases similar to NEC [38], we sought to develop another potential model for NEC using
the embryonic stage of the Gallus gallus.

In our experimental trials, the intra-amniotic administration of DSS was utilized to
induce intestinal inflammation to cause NEC physiopathology [92–94]. DSS is a sulfated
polysaccharide with various molecular weights (5–1400 kDa), commonly used to induce
enteric colitis in rodents by penetrating the intestinal mucosal membrane [19,93–96]. DSS-
induced colitis is a widely used model because it is rapid, simple, reproducible, and
controllable. Recent studies have shown that DSS added to DI H2O induces clinical, gross,
and histological factors associated with enteritis in broiler chickens, such as decreased body
weight, bloody diarrhea, intestinal lesions, shortened villi height, and increased goblet cell
density [92,94,97,98]. Furthermore, Zou et al. (2018) demonstrated that DSS exposure to
broiler chickens increases gut leakiness and induces pro- and anti-inflammatory cytokine
response elements in a dose-dependent manner [92]. Nevertheless, there is limited research
characterizing DSS-induced NEC in Gallus gallus, and this study demonstrates the first-ever
intra-amniotic administration of DSS to induce NEC.

During the initial necropsies, there was little to no inflammation within the internal
organs of the chicks on the day of hatch in the 0.1, 0.25, and 0.5% DSS exposed groups.
However, the 0.75% DSS treatment group had a few slightly patchy inflammation sites
in the small intestines and showed intra-abdominal abscesses within the proventriculus
and gizzard (Supplemental Figure S1); these observations are in agreement with previous
studies that demonstrated the initial hypoxic and reperfusion injuries (typical in NEC cases
from rodents and clinical models) and an increase in innate immune responses (cytokines
and white bloods cells). [11,20,24,92,99]. The intra-abdominal abscesses and patchy in-
flammation in the distal digestive organs resulting from the treatment with the highest
DSS concentration (0.75%) can be associated with hypoxic reperfusion injuries, which
have previously been demonstrated with DSS exposure [92,94,95]. To further illustrate
the effectiveness of DSS penetrating through the mucosal layers of the small intestine, a
FITC-dextran assay was performed (Figure 1). Compared to all other groupings, there was
a significant (p < 0.05) increase in the intestinal mucosal layer penetration in the 0.75% DSS
treatment group. The increased intestinal permeability suggests that the DSS successfully
breaks down the mucosal layer, potentially allowing pathogenic bacteria to invade the
host’s villi, as previously described [9,25,69,100,101]. However, occludin (OCLN) gene
expression, a tight junction protein between the intestinal enterocytes, does not significantly
differ between the groups (Figure 2). The lack of significance of the gene expression of the
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tight junctions on the basolateral surface could be the short duration of a DSS exposure
time to allow for occludin degradation. Though no significant alterations in OCLN gene
expression were found, our results supporting increased intestinal permeability with DSS
exposure were further supported by our hemoglobin and hepatic glycogen results. The
hemoglobin concentration was raised within the DSS groups compared to the non-injected
group (Table 4). As intestinal irritability and instability increase, hemoglobin values were
found to increase in clinical patients with inflammatory bowel disease [102]. Hepatic glyco-
gen levels were increased only within the 0.75% DSS group compared to others (Table 4).
However, Sodhi et al. (2009) demonstrated that enterocyte proliferation is inhibited in rat
intestinal cell lines (IEC-6 cells enterocytes) and TLR4-/- mice and that glycogen synthase
kinase decreases when under NEC conditions with lipopolysaccharides [103]. This ob-
served difference could be due to the treatment to induce the condition and the difference
between the models utilized.

Brush border membrane (BBM) functionality was investigated by measuring the
gene expression of the functional proteins viewing the digestive capabilities, as seen in
Figure 2. There was no significant difference between the treatment groups in sucrose
isomaltase or sodium–glucose transporter 1. However, there was a substantial lowering of
mucin 2 (MUC2) and aminopeptidase (AP) gene expression in the DSS treatment groups
(0.25%, 0.50%, and 0.75%) compared to the no-injection and H2O-injection groups. As
previously mentioned, DSS is a sulfated polysaccharide that disrupts the luminal mucus
layer, allowing mucosal thinning and opportunistic bacteria to penetrate the BBM, causing
intestinal trauma [104,105]. This reasoning on MUC2 supports the findings on the lowering
of aminopeptidase expression, as AP is primarily located near the apical side of the lumen
in the intestinal epithelial cells [106]. Aminopeptidases are enzymes that catalyze the amino
terminus of a protein within subcellular organelles, cytosol, and membrane components.
Thus, it can be suggested that, if the BBM membrane is injured, the AP capacity would be
significantly reduced, increasing the possibility of immune responses (pro-inflammation
and apoptosis) [107].

Inflammation resulting from NEC is a primary identifier of injury from hypoxia/reperfusion
conditions and an indicative marker for the disease [15,32,108,109]. Inflammation biomarkers,
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κβ), tumor necrosis factor-
alpha (TNF-α), interleukin one beta (IL-1β), and interleukin 6 (IL-6) were all analyzed via
RT-qPCR (Figure 2) due to the use of these biomarkers in other NEC models and clinical tri-
als [108–112]. NF-κβ and TNF-α were significantly (p > 0.05) lower in the 0.50% and 0.75% DSS
groups compared to the control groups (non-injected and H2O-injected). The downregulation of
NF-κβ gene expression originates from the upstream signaling of TNF-α being downregulated
since these proteins operate in tandem with pro-inflammation pathways triggered by microbial
products (i.e., endotoxins, metabolites, amino acids, etc.) and signal transductions mechanisms
in the innate immune system [113–117]. The downregulation of TNF-α is potentially derived
from the upregulation of microbial byproducts within the duodenum in the DSS treatments.
Krishnaveni and Jayachandran (2009) found that ethyl acetate extracts from two different marine
bacteria caused the downregulation of TNF-α [118]. Similarly, Lou et al. (2018) found that
Brucella caused the same downregulation of TNF-α within porcine and murine models [119].

There were significant changes within the bacterial profiles in the DSS treatment
groups (Figure 3). Bacterial profiles of the 0.75% DSS group were significantly (p < 0.05)
lower abundance of Bifidobacterium, Lactobacillus, and Clostridium spp. In contrast, the
DSS-treatment groups demonstrated significantly higher abundance levels of E. coli and
Klebsiella spp. (p < 0.05). The lower abundance of beneficial bacteria (Bifidobacterium and
Lactobacillus) suggests an opportunity for dysbiosis via the proliferation of opportunistic
bacteria such as E. coli and Klebsiella. Our results are similar to other NEC models that
utilized different treatments to induce NEC [6,9,17,20,24,26,34,91,120]. One of the first NEC
models used Klebsiella to create an NEC model (mice) because the genus produces hydrogen-
sulfide-rich gas pockets of pneumatosis in vivo [22,121]. Similarly, it is theorized that gas
produced by E. coli can invade the same intraluminal cavities as Klebsiella, which leads



Nutrients 2022, 14, 4795 11 of 17

to pneumatosis intestinalis, which is a radiographic sign of NEC [122–125]. Additionally,
Tarracchini et al. (2021) found that E. coli and other opportunistic bacteria are found within
the next-generation sequencing of NEC clinical patients, suggesting that the bacterial
abundance of E. coli could induce NEC pathology [126]. These invasive bacterial changes
the grouping/profile of the gut and influences the intestinal BBM morphology [126–132].

Within this study, the duodenum was sectioned to investigate DSS’s effect on its
intestinal morphology (Supplemental Figure S2). Previous studies have shown that NEC
results in various levels of intestinal degradation due to microbial dysbiosis effects on the
brush border membrane morphology (i.e., the villi surface area, goblet cell number, type,
size, Paneth cell production) [133–135]. The 0.75% DSS treatment group had significantly
lower villus surface area, crypt goblet cell diameter, and villi goblet cell number and type.
In parallel, there was a significant increase in the Paneth cell number and size (Table 5) and
crypt goblet cell number and types (Table 6) populations. Since goblet cells produce mucin,
which lubricates the passage of food through the intestines and protects the intestine
from the potential damage from digestive enzymes, the DSS treatments at the highest
concentration would be associated with damage at the apical side of the enterocyte while
lowering the villus surface area, which aligns with previous DSS studies and is in agreement
with the present study [136–138]. Additionally, on the enterocyte’s basolateral side, the
crypts’ goblet cells would anticipate the loss of mucin and increase its mucin production
to overcome the loss [139,140]. This anticipation can be further supported by the increase
in Paneth cell findings within the crypts of the intestinal epithelial cells (p < 0.05, Table 5).
Paneth cells within the small intestine synthesize and secrete antimicrobial enzymes as
a part of the innate immune system [100,141,142]. The antimicrobial peptide secretion
by Paneth cells is recognized by MyD88-dependent Toll-like receptor (TLR) activations,
triggering the expression of multiple peptides and proteins [19,25]. The Paneth cells migrate
towards the base of the villi after differentiation within the crypts to protect commensal
bacteria from the opportunistic bacteria within the gut, which supports the findings of
bacterial dysbiosis mentioned earlier in Figure 3.

5. Conclusions

This study is the first to demonstrate NEC symptoms via the intra-amniotic admin-
istration of DSS in vivo (Gallus gallus). The 0.75% DSS treatment group decreased BBM
functionality and demonstrated microbiota dysbiosis within a premature gut, mimick-
ing other models of NEC. Although we did not observe significant severe pathologies
(gas-filled lesions or necrotic plaques in histological sectioning), there was a clear trend of
opportunistic bacterial populations proliferation and overtaking the distal gastrointestinal
tract. This transformation of untreated and DSS-treated individuals’ microbial profiles
can potentially affect several bacterial metabolic pathways related to bacterial, cellular,
and metabolic processes. The results of this study are promising evidence to investigate
increased concentrations of DSS to cause more severe NEC symptoms and identify po-
tential novel biomarkers for less severe NEC cases. Furthermore, the suggested in vivo
novel model and innovative approach will support the assessment of various potential
interventions to ameliorate the pathophysiology of NEC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu14224795/s1, Figure S1: Representative images of gross anatomical photos of dissections
and proventriculus/gizzards of birds on the day of hatch; Figure S2. Representative histology (Alcian
Blue and Pacific Acid Schiff staining) images of the duodenum of birds on the day of hatch.
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