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Abstract: Hyperkalemia is associated with increased risks of mortality and adverse clinical out-
comes. The treatment of hyperkalemia often leads to the discontinuation or restriction of beneficial
but potassium-increasing therapy such as renin-angiotensin-aldosterone inhibitors (RAASi) and
high-potassium diet including fruits and vegetables. To date, limited evidence is available for
personalized risk evaluation in this heterogeneous and multifactorial pathophysiological con-
dition. We developed risk prediction models using extreme gradient boosting (XGB), multiple
logistic regression (LR), and deep neural network. Models were derived from a retrospective
cohort of hyperkalemic patients with either heart failure or chronic kidney disease stage ≥3a
from a Japanese nationwide database (1 April 2008–30 September 2018). Studied outcomes in-
cluded all-cause death, renal replacement therapy introduction (RRT), hospitalization for heart
failure (HHF), and cardiovascular events within three years after hyperkalemic episodes. The
best performing model was further validated using an external cohort. A total of 24,949 adult
hyperkalemic patients were selected for model derivation and internal validation. A total of 1452
deaths (16.6%), 887 RRT (10.1%), 1,345 HHF (15.4%), and 621 cardiovascular events (7.1%) were
observed. XGB outperformed other models. The area under receiver operator characteristic curves
(AUROCs) of XGB vs. LR (95% CIs) for death, RRT, HHF, and cardiovascular events were 0.823
(0.805–0.841) vs. 0.809 (0.791–0.828), 0.957 (0.947–0.967) vs. 0.947 (0.936–0.959), 0.863 (0.846–0.880)
vs. 0.838 (0.820–0.856), and 0.809 (0.784–0.834) vs. 0.798 (0.772–0.823), respectively. In the external
dataset including 86,279 patients, AUROCs (95% CIs) for XGB were: death, 0.747 (0.742–0.753);
RRT, 0.888 (0.882–0.894); HHF, 0.673 (0.666–0.679); and cardiovascular events, 0.585 (0.578–0.591).
Kaplan–Meier curves of the high-risk predicted group showed a statistically significant difference
from that of the low-risk predicted groups for all outcomes (p < 0.005; log-rank test). These findings
suggest possible use of machine learning models for real-world risk assessment as a guide for
observation and/or treatment decision making that may potentially lead to improved outcomes in
hyperkalemic patients while retaining the benefit of life-saving therapies.

Keywords: artificial intelligence; chronic kidney disease; congestive heart failure; hyperkalemia

1. Introduction

Hyperkalemia, characterized by abnormally elevated serum potassium levels, is a
common electrolyte abnormality that is often found in patients with heart failure (HF) and
chronic kidney disease (CKD) [1–6]. The prevalence of hyperkalemia is 2–3% in the general
population, whereas notably higher frequencies of hyperkalemia have been reported in
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patients with diabetes, advanced kidney disease, and those treated with renin-angiotensin-
aldosterone inhibitors (RAASi) [7].

Numerous studies have shown that hyperkalemia is associated with increased risks
of mortality and adverse clinical outcomes, suggesting the possibility that hyperkalemia
can be a marker for the worsening of patients’ general conditions or even the cause of
adverse outcomes in certain conditions [8]. Direct and short-term associations between hy-
perkalemia and mortality risk were reported [9–12]. Moreover, increased risks of long-term
cardiovascular and renal outcomes with a rapid decline of kidney function in hyperkalemic
patients were reported [13–15], While an association between increased risks of adverse
clinical outcomes and hyperkalemia has been well documented, there is limited information
on their causality, partially because hyperkalemia is usually multifactorial in its patho-
genesis and underlying conditions that can exert influences on patients’ prognoses. For
instance, the RAASi treatment discontinuation for reducing the risk of hyperkalemia in HF
patients may increase the risk of adverse clinical outcomes [16,17]. Likewise, intense dietary
restrictions to mitigate potassium intake for hyperkalemia may lead to the reduced intake
of a healthy diet, which in turn may increase the mortality risk of patients with end-stage
kidney disease [18,19]. The heterogeneous nature of hyperkalemia makes it difficult to
simultaneously assess the risk of different types of adverse clinical events, raising the needs
for personalized risk assessment strategies. However, to date, limited evidence is available
for conducting risk evaluations of hyperkalemic patients in real-world settings.

Artificial intelligence (AI) in combination with electronic health records has been
thought to have the potential to address risks for pathological conditions with heterogenous
backgrounds by predicting one-dimensional outcomes based on patients’ multifactorial
conditions [20]. In fact, the combination of novel machine learning technology and a
high-dimensional real-world database has been shown to be effective for more accurate
risk predictions of various diseases compared with conventional statistical risk modeling
approaches [20,21]. Thus, it is quite natural to extend the AI approach to personalized risk
prediction of hyperkalemic patients with multifactorial conditions.

This study aimed to develop and validate novel AI risk prediction models for hy-
perkalemic patients with a heterogeneous clinical background using two independent
real-world databases. The new machine learning algorithms can assess the risk of mortality
and cardiovascular and renal outcomes. The combination of machine learning technology
and high-dimensional real-world data has the potential to provide practical predictive
accuracy for the personalized detection of hyperkalemic patients at high risk of adverse
clinical outcomes and may lead to the improvement of prognosis with more timely and
appropriate treatment.

2. Materials and Methods
2.1. Study Design, Patient Selection, and Data Handling

Data used in this study were extracted from the databases provided by Medical
Data Vision Co., Ltd. (MDV; Tokyo, Japan) and Real World Data Co., Ltd. (RWD;
Kyoto, Japan). These databases include extensive data on prescriptions, procedures,
examinations, laboratory data, and hospital diagnoses based on ICD-10 codes from
clinical practice, covering hundreds of medical institutions across most geographic
regions and all age groups in Japan. Detailed explanations of these data sources are
described in the supplementary materials. Models were derived on a retrospective
cohort of patients with hyperkalemia extracted from existing hospital records collected
in MDV from 1 April 2008 to 30 September 2018.

We selected subjects with hyperkalemia from individuals with at least one serum
potassium measurement and aged ≥18 years. Patients with hyperkalemia were defined
as those with at least two episodes of elevated serum potassium levels ≥5.1 mmol/L
within 12 months. Subjects who were already on dialysis prior to their first hyperkalemic
episode, or who had cancer, or who had no history of either HF or CKD stage ≥3a were
excluded to ensure substantial patient background homogeneity. The index date was the
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date of the first hyperkalemic episode, defined as the measurement of serum potassium
level ≥5.1 mmol/L. Patients were followed up until the time of death, exit from the
dataset or the end of study period, whichever came first.

The data handling flow of the internal dataset is depicted in Figure S1. The dataset of
selected patients was divided randomly into two subsets: 80% of patients were included
in the model derivation set and 20% were included in the internal validation set. To
rigorously assess risk factors of patients, subjects whose hospital records were not available
during prior 12 months of the index date were subsequently dropped for model derivation;
however, those subjects were retained in the validation set to evaluate the model among
broad types of hyperkalemic patients. The derivation set was used to derive the models and
cross-validations. For external validation, we selected all patients based on the inclusion
and exclusion criteria from the RWD database during the period of 1 January 2009, to
31 December 2019.

2.2. Risk Factors and Outcomes

We collected information on medications, medical history, and risk factors based on
the information recorded during the 12 months prior to the index date. Risk factors
included prescription of RAASi (including angiotensin-converting enzyme inhibitors,
angiotensin receptor blockers, and mineralocorticoid receptor antagonists (MRAs)) and
other hyperkalemia-inducing drugs, the presence of high-risk conditions (CKD, diabetes
mellitus, HF and hypertension), and other comorbidities. We also collected information
on laboratory values and typical therapies for hyperkalemia. Variables which were used
as predictors for the model are listed in Table S1. Some data were missed particularly
among the laboratory tests (Table S1). The number of missing data can be retrieved by
deducting the observed rate of each variable from the total number of patients (n = 8752) in
the derivation set. The handling of missing values for each machine learning algorithm can
also be found in the method details of the supplementary materials.

The occurrence of clinical outcomes was searched over three years from the first
hyperkalemic episode. The studied outcomes were all-cause death, renal replacement
therapy introduction (RRT) including dialysis or kidney transplantation, hospitalization
for HF (HHF), and cardiovascular events (myocardial infarction, arrhythmia, cardiac arrest,
or stroke). Detailed definitions of these outcomes are listed in Table S2. Furthermore, we
exploratorily tested various other types of clinical outcomes listed in Table S3.

2.3. Machine Learning Algorithms

We adopted three types of machine learning algorithms: multiple logistic regression
(LR) with L1/L2 regularization [22], extreme gradient boosting (XGB) [23], and deep
neural network (NN) [24]. These algorithms were selected based on previous reports
showing successful risk predictions using high-dimensional electronical medical record
data [25,26]. Models were separately built for the binary classification based on the prob-
ability for each clinical outcome; patients were classified as high risk if the probability
of the outcome exceeded the pre-determined cut-off points. Detailed explanations of
algorithms are described in the Supplementary Materials.

For hyperparameter optimizations of each model, the hyperparameter set that
performed best under n-fold cross-validation (5-fold for LR/XGB and 3-fold for NN)
was selected (Table S4). All procedures for model development were implemented using
Python 3.7.
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2.4. Selection of Clinical Variables

Of 81 clinical variables used in the initial models, we selected 64 common variables
that can predict the risks of pre-defined clinical outcomes while maintaining the model
performance. We took a two-phase approach for the selection. In phase one, we included
all the 81 variables, and evaluated prediction accuracy of the models by area under receiver
operator characteristics curve (AUROC) within the training dataset. In phase two, we
summarized each variable importance by summing the values for all the outcomes and
selected candidate variables for deletion according to the following criteria: (1) the rank
of summed variable importance lower than 20%, (2) variables that were clinically similar
to each other, or (3) variables made of other variables combination. We then evaluated
AUROC for the clinical outcomes using experimentally built models by excluding the
candidate variables one by one. We finally determined to select the 64 variables set since
the prediction accuracy could no longer be maintained when the number of variables was
reduced further than the 64 variables (Table S2).

2.5. Validation

The performance of the optimized model was first tested on the internal validation
set. For each combination of outcomes and machine learning algorithms, AUROC
values, specificity, sensitivity, positive predictive value (PPV), and negative predictive
value (NPV) were calculated with the cut-off points of probability of outcomes, i.e., the
point maximizing the sum of sensitivity + specificity − 1, herein defined as the best cut-
off point. The best cut-off point was set as the cut-off value to the point on the ROC curve
farthest from the diagonal line where AUC = 0.5. That is, (sensitivity + specificity − 1)
was calculated to obtain the cut-off point that is the maximum value thereof. The
point where this (sensitivity + specificity − 1) is the maximum value is defined as the
Youden index that provides efficient tradeoff between sensitivity and specificity. An
AUROC ≥ 0.80 was considered as an indicator of good prediction performance. To
help interpret the instance, Shapley additive explanations (SHAP) values [27] were
calculated for each outcome with variables ranked in the top 20 for importance.

The machine learning model which showed the best performance was subjected to
external validation, where the model was applied to the external dataset extracted from
RWD database. For each outcome, AUROCs, specificity, sensitivity, PPV, and NPV were
calculated. The survival curve analysis was carried out based on the probability of clinical
outcomes as a threshold. As a result, Kaplan–Meier curves layered in subgroups of high-
and low-risk groups were drawn based on the best cut-off points. The survival probabilities
between the two groups were verified by the log rank test. Since we could obtain the
cause of hospitalization from part of patients (98.4%) in the external validation set, the
outcome definitions of HHF and cardiovascular events were modified by counting all
hospitalizations with relevant diagnostic codes used to define HF and cardiovascular
events (Table S2). Given limitations of modified definitions for these outcomes, as a post hoc
analysis, we performed the analysis in a subgroup of patients whose causal information
of hospitalization events were available and applied the original definition used in the
internal dataset. We also performed another condition of external validation analysis, by
restricting the data collection period for input variables within one month after the first
hyperkalemic episode for risk predictions of clinical outcomes that occurred after the data
collection period, to assess the prediction performance for future adverse events based on
the information collected shortly after hyperkalemic episodes. These external validation
analyses were performed at an institution independent from the institution performing the
model development to ensure reliability of results.
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3. Results
3.1. Patient Selection and Characteristics

Out of 1,208,894 adult patients with at least one serum potassium measurement,
we selected 24,949 hyperkalemic patients for model derivation. Among these patients,
4990 patients were held out for the internal validation set; after excluding 11,207 patients
whose hospital records were not available during the 12 months prior to the hyper-
kalemic episode, we selected 8752 patients for the derivation set (Figure 1). For external
validation, we selected 86,279 patients from RWD database based on the inclusion and
exclusion criteria (Figure S2).
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Figure 1. Patient flow diagram for model development.

Table 1 shows the patient characteristics for model derivation, internal validation,
and external validation sets. Patients included in the derivation and internal validation
sets showed similar characteristics with a mean age of 75 years old and 54% males.
The mean serum potassium level was 5.4 mmol/L. Approximately 80% and 50–60% of
patients had CKD and HF, respectively. Patients included in the external validation set
also showed similar age and gender distributions with a mean age of 75 years old and
54% males. The mean serum potassium level was 5.7 mmol/L. 65% and 45% of patients
had CKD and HF, respectively.
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Table 1. Characteristics of patients at the first hyperkalemic episode in the derivation, internal
validation, and external validation sets.

Derivation Set
(N = 8752)

Internal Validation Set
(N = 4990)

External Validation Set
(N = 86,279)

Age (years)
mean ± SD 75.7 ± 12.4 74.9 ± 12.8 74.9±13.1

Gender, male, n (%) 4717 (53.9) 2697 (54.1) 46,976 (54.4)
Follow up time (days)

mean ± SD 755.2 ± 641.6 805.3 ± 743.4 664.2 ± 443.3
Serum potassium value (mmol/L)

mean ± SD 5.4 ± 0.4 5.5 ± 0.5 5.7 ± 2.2
Serum potassium value group, n (%)

≥5.1 and <5.5 mmol/L 6326 (72.3) 3347 (67.1) 55,984 (64.9)
≥5.5 and <6.0 mmol/L 1727 (19.7) 1094 (21.9) 18,443 (21.4)
≥6.0 and <6.5 mmol/L 434 (5.0) 328 (6.6) 5656 (6.6)
≥6.5 and <7.0 mmol/L 145 (1.7) 123 (2.5) 2492 (2.9)

≥7.0 mmol/L 120 (1.4) 98 (2.0) 3704 (4.3)
CKD, n (%) 6854 (78.3) 4033 (80.8) 56,224 (65.2)

Stage 1 27 (0.4) 11 (0.3) 654 (1.2)
Stage 2 165 (2.4) 80 (2.0) 3771 (6.7)

Stage 3a 1215 (17.7) 628 (15.6) 8607 (15.3)
Stage 3b 1944 (28.4) 1073 (26.6) 12,863 (22.9)
Stage 4 2212 (32.3) 1215 (30.1) 14,570 (25.9)
Stage 5 1,291 (18.8) 1025 (25.4) 15,759 (28.0)

HF, n (%) 5206 (59.5) 2628 (52.7) 38,955 (45.2)
Diabetes, n (%) 4954 (56.6) 2478 (49.7) 31,073 (36.0)

Hypertension, n (%) 7247 (82.8) 3605 (72.2) 31,956 (37.0)
Dyslipidemia, n (%) 3039 (34.7) 1391 (27.9) 17,194 (19.9)
Comorbidity, n (%)

Myocardial infarction 382 (4.4) 268 (5.4) 5,322 (6.2)
Peripheral vascular disease 1648 (18.8) 798 (16.0) 9,844 (11.4)

Cerebrovascular disease 2,567 (29.3) 1255 (25.2) 13,455 (15.6)
Chronic pulmonary disease 1821 (20.8) 829 (16.6) 8,620 (10.0)
Moderate to severe disease 130 (1.5) 68 (1.4) 868 (1.0)

Atrial flutter or atrial fibrillation 1846 (21.1) 900 (18.0) 9,827 (11.4)
Valvular heart disease 1347 (15.4) 623 (12.5) 8,594 (10.0)
Acute kidney injury 385 (4.4) 309 (6.2) 3,271 (3.8)

Sepsis 1161 (13.3) 537 (10.8) 7,178 (8.3)
Gastrointestinal bleeding 320 (3.7) 178 (3.6) 3,330 (3.9)

Peripheral oedema 343 (3.9) 150 (3.0) 926 (1.1)
eGFR value (mL/min/1.73 m2)

mean ± SD 35.3 ± 22.0 32.9 ± 21.7 37.7 ± 26.6
RAASi treatment, n (%) 5075 (58.0) 2485 (49.8) 30,445 (35.3)

Angiotensin converting enzyme
inhibitors 1,041 (11.9) 555 (11.1) 7,629 (8.8)

Angiotensin receptor blockers 3653 (41.7) 1755 (35.2) 21,475 (24.9)
MRA 1,820 (20.8) 881 (17.7) 9,003 (10.4)

Hyperkalemia treatment, n (%)
Thiazide diuretics 264 (3.0) 122 (2.4) 3,472 (4.0)

Loop diuretics 2186 (25.0) 1251 (25.1) 26,134 (30.3)
Calcium gluconate 181 (2.1) 151 (3.0) 2,587 (3.0)

Sodium bicarbonate 658 (7.5) 402 (8.1) 1,086 (1.3)
Potassium binder (SPS/CPS) 607 (6.9) 404 (8.1) 4,388 (5.1)
Glucose injection and insulin 181 (2.1) 133 (2.7) 972 (1.1)

SD, standard deviation; CKD, chronic kidney disease; HF, heart failure; eGFR, estimated glomerular filtration rate;
RAASi, renin-angiotensin-aldosterone system inhibitor; MRA, mineralcorticoid receptor antagonist; SPS, sodium
polystyrene sulfonate; CPS, calcium polystyrene sulfonate. The unobserved data (missing data) for laboratory
values were imputed in the LR and NN models. The unobserved data for binary variables, such as diagnosis and
prescription, responded to negative (the event did not happen), and were set to 0 in all the models.

3.2. Model Derivation and Internal Validation

During the study period, 1452 deaths (16.6%), 887 RRT (10.1%), 1345 HHF (15.4%),
and 621 cardiovascular events (7.1%) were observed within three years after hyper-
kalemic episodes in the derivation set. Table 2 presents the prediction performance
of XGB, LR, and NN models on the internal validation set with the best cut-off value.
A higher prediction performance was obtained in predicting the outcomes with XGB
than LR and NN models. The AUROC curves for each model are shown in Figure 2.
With XGB, the AUROCs for all outcomes exceeded the threshold for good prediction
performance (AUROC ≥ 0.80). The AUROCs of XGB vs. LR for death, RRT, HHF, and
cardiovascular events were 0.823 (0.805–0.841) vs. 0.809 (0.791–0.828), 0.957 (0.947–0.967)
vs. 0.947 (0.936–0.959), 0.863 (0.846–0.880) vs. 0.838 (0.820–0.856), and 0.809 (0.784–0.834)
vs. 0.798 (0.772–0.823), respectively. The results of exploratory outcomes including the
prediction performance and AUROC curves are shown in Table S5 and Figure S3.
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Table 2. Prediction performance of the machine learning models on the internal validation set.

Outcome ML
Algorithm AUROC Sensitivity Specificity PPV NPV

Cut-off = 0.5
All-cause death XGB 0.823 0.244 0.966 0.594 0.863

LR 0.809 0.224 0.964 0.556 0.860
NN 0.741 0.285 0.935 0.470 0.866

Introduction
of RRT XGB 0.957 0.903 0.893 0.594 0.981

LR 0.947 0.612 0.967 0.761 0.935
NN 0.923 0.584 0.966 0.750 0.930

Hospitalization
for HF XGB 0.863 0.403 0.967 0.680 0.903

LR 0.838 0.330 0.967 0.632 0.892
NN 0.839 0.438 0.948 0.594 0.907

Cardiovascular
events XGB 0.809 0.107 0.998 0.810 0.920

LR 0.798 0.095 0.996 0.700 0.919
NN 0.783 0.286 0.982 0.603 0.934

Best cut-off
All-cause death XGB 0.823 0.819 0.677 0.339 0.949

LR 0.809 0.802 0.676 0.334 0.944
NN 0.741 0.670 0.690 0.304 0.912

Introduction
of RRT XGB 0.957 0.899 0.903 0.616 0.981

LR 0.947 0.914 0.867 0.544 0.983
NN 0.923 0.866 0.862 0.522 0.974

Hospitalization
for HF XGB 0.863 0.751 0.813 0.411 0.949

LR 0.838 0.743 0.797 0.389 0.947
NN 0.839 0.708 0.830 0.420 0.942

Cardiovascular
events XGB 0.809 0.639 0.869 0.320 0.961

LR 0.798 0.637 0.858 0.302 0.961
NN 0.783 0.746 0.689 0.189 0.965

ML, machine learning; AUROC, area under the receiver operator characteristic curve; PPV, positive predictive
value; NPV, negative predictive value; HF, heart failure; RRT, renal replacement therapy; XGB, extreme gradient
boosting; LR, logistic regression; NN, neural network.

The best cut-off point was set as the cut-off value to the point on the ROC curve that
maximizes the sum of sensitivity + specificity – 1, i.e., the Youden index, that provides
efficient tradeoff between sensitivity and specificity.

Figure 3 shows the SHAP summary plots of the top 20 most important variables
for XGB. For each type of outcomes, different sets of variables were ranked as variables
with high importance. Age, estimated glomerular filtration rate (eGFR), CKD stage,
and history of emergency room visit were commonly observed among variables with
high importance. Likewise, prescriptions of drugs such as heparin, loop diuretics
and sodium bicarbonate, RAASi discontinuation within one year from hyperkalemic
episode, and some types of laboratory data including HbA1c, triglyceride, and brain
natriuretic peptide commonly appeared among the top 20 most important variables
across all outcomes. Compared to LR (Figure 4), XGB considered a broader magnitude
of contributions by each clinical variable for risk predictions.
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Figure 1. This is a figure. Schemes follow the same formatting. If there are multiple panels, they
should be listed as: (a) Description of what is contained in the first panel. (b) Description of what is
contained in the second panel. Figures should be placed in the main text near to the first time they
are cited. A caption on a single line should be centered.

Figure 3. Shapley additive explanations summary plots of the top 20 most important variables for
the extreme gradient boosting model.
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Figure 2. This is a figure. Schemes follow the same formatting. If there are multiple panels, they
should be listed as: (a) Description of what is contained in the first panel. (b) Description of what is
contained in the second panel. Figures should be placed in the main text near to the first time they
are cited. A caption on a single line should be centered.

Table 1. This is a table caption. Tables should be placed in the main text near to the first time they
are cited.

Title 1 Title 2 Title 3

Entry 1 Data Data
Entry 2 Data Data

Figure 4. Shapley additive explanations summary plots of the top 20 most important variables for
the logistic regression model.
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3.3. External Validation

Based on the performance evaluation using the internal validation set, XGB was applied
to the external validation set. The prediction performances are shown in Table 3. The AUROCs
for death, RRT, HHF, and cardiovascular events were 0.747 (0.742–0.753), 0.888 (0.882–0.894),
0.673 (0.666–0.679), and 0.585 (0.578–0.591), respectively (Figure S4). The Kaplan–Meier curves
of high- and low-risk groups based on the best cut-off values showed higher incidence of all
outcomes in the high-risk group (p < 0.005; log-rank test) (Figure 5). When we performed the
analysis in a subgroup of patients (n = 84,904) whose causal information of hospitalization
events were available and applied the original definitions of outcomes used in the derivation
set, the AUROCs for death, RRT, HHF, and cardiovascular events were 0.746 (0.741–0.752),
0.887 (0.881–0.893), 0.784 (0.773–0.796), and 0.636 (0.619–0.652), respectively (Figure S5).

Table 3. Prediction performance of the extreme gradient boosting models on the external validation set.

Outcome AUROC Sensitivity Specificity PPV NPV

All-cause death 0.747 0.757 0.613 0.209 0.949
Introduction of RRT 0.888 0.555 0.916 0.285 0.971

Hospitalization for HF 0.673 0.445 0.767 0.183 0.922
Cardiovascular events 0.585 0.326 0.771 0.141 0.909

ML, machine learning; AUROC, area under the receiver operator characteristic curve; PPV, positive predictive
value; NPV, negative predictive value; HF, heart failure; RRT, renal replacement therapy. Calibration analysis was
made based on the best-cut off values. The best cut-off point was set as the cut-off value to the point on the ROC
curve that maximizes the sum of sensitivity + specificity − 1, i.e., the Youden index that provides efficient tradeoff
between sensitivity and specificity.
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The prediction performances were similar when the data collection period was
restricted within one month after hyperkalemic episodes and were used to predict the
risk of clinical outcomes that occurred after the data collection period. The AUROCs for
death, RRT, HHF, and cardiovascular events were 0.711 (0.704–0.718), 0.867 (0.859–0.874),
0.662 (0.655–0.668), and 0.586 (0.579–0.593), respectively (Figure S6; Table S6).

4. Discussion

We developed and tested the machine learning models for risk predictions of mor-
tality and adverse clinical outcomes over three years after the first hyperkalemic episode.
Risk models were built based on multifaceted information obtained from hyperkalemic
patients. Among the machine learning models tested, XGB provided the best prediction
performance, resulting in AUROCs over 0.8 for all outcomes. The XGB model was further
tested on the external validation set and showed that the prediction performances were
maintained for death and RRT, but decreased for HHF and cardiovascular events. The
high-risk group based on stratification by the machine learning models showed higher
incidences for all outcomes.

The prediction models for similar types of outcomes were reported in several studies.
A study in patients with HF with preserved ejection fraction showed AUROCs of 0.72 to
predict mortality and 0.76 to predict HHF [28]. Another study in dialysis patients showed
an AUROC of 0.75 to predict one-year mortality [29]. In our study, the results of internal
validation showed prediction performance for death and cardiovascular events were in a
similar range, while the prediction performance for RRT and HHF were numerically higher.
Although the differences between XGB and LR were not substantial, the XGB models
consistently performed better than LR models. Furthermore, the XGB models provided
numerically higher sensitivity (recall) and positive predictive values (precision) compared
to LR models. These differences could be notable when the model is used for screening
patients at high-risk of adverse clinical events. The results of external validation showed
the prediction performance of death and RRT were maintained at high levels with some
decrease in AUROCs of 0.07–0.08. Considering the models were not optimized for the
external dataset, some decreases in prediction performance were within the expected range;
however, the decrease of HHF and cardiovascular events were greater by approximately 0.2
AUROCs. This variation could partially be explained by the modified outcome definitions
of hospitalization events used in the external validation set. The inclusion of hospitalization
events not relevant for HF or cardiovascular events could lead to over estimation of
these outcomes in both the high- and low-risk groups, resulting in decreased prediction
performance. In fact, the prediction performances were increased by 0.05–0.11 when we
applied the original definition of these outcomes to the subset of external validation cohort.
These findings suggest that the further performance decline in HHF and cardiovascular
events was affected by the modification of outcome definitions.

The important variables shown in the SHAP summary plots suggested that contri-
butions of each clinical variable for risk predictions were identical by outcome types. HF
diagnosis, history of emergency visit, high brain natriuretic peptide value, and older age
positively related to the risk of HHF, while low eGFR value, advanced CKD stage, history
of acute kidney injury, and younger age contributed to the risk of RRT. Likewise, history of
cerebrovascular disease, atrial fibrillation or atrial flutter, and myocardial infarction con-
tributed to the risk of cardiovascular events, while older age, history of chronic pulmonary
disease, sepsis, and emergency room visit contributed to the risk of death. Interestingly,
some variables provided interpretations inconsistent with the clinical knowledge. For
instance, our results showed not having RAASi discontinuation after hyperkalemia con-
tributed to the risk of clinical outcomes. Previous studies reported increased risk of adverse
clinical outcomes in patients who discontinued RAASi treatment [16,17]. This discrepancy
may be explained partially by the fact that the patients not on RAASi treatment at first hy-
perkalemic episode were also included in the group of “not having RAASi discontinuation”
after hyperkalemia. In other words, there were two types of patients including patients
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with continued RAASi treatment (n = 2566) or those without RAASi treatment (n = 3677)
in the population of “not having RAASi discontinuation”. Likewise, the prescription of
some medications may not show the risks themselves, but the risk of underlying patho-
physiological conditions indicated for such medications. For instance, the prescription of
MRA, which is commonly prescribed for the treatment of HF, was selected in the important
variables for the risk prediction of HHF. Likewise, treatment by sodium bicarbonate may
indicate that patients had metabolic acidosis and were at risk for end-stage kidney disease.
Therefore, we must be careful with these interpretations as most predictors were taken
from the date of onset of hyperkalemia; and the importance of these variables does not
mean the effect of clinical variables as treatments modify the risk of each outcome. The
model should merely be used to evaluate the risk of adverse clinical outcomes based on the
presented conditions of patients.

Recent studies have shown that hyperkalemic patients are at high risk of long-term
cardiovascular and renal outcomes and rapid kidney function decline [13,14]. On the
other hand, hyperkalemic patients often have recurrent hyperkalemic episodes [12].
Therefore, treatment of hyperkalemia needs to consider both risks of hyperkalemia
and long-term clinical outcomes. However, the treatment for hyperkalemia is complex.
Numerous studies have reported that the discontinuation of RAASi treatment to lower
serum potassium levels is associated with increased risk of adverse clinical outcomes
while reducing the risk of hyperkalemia [16,17]. Likewise, intense dietary restrictions to
mitigate potassium intake for hyperkalemia may lead to the reduced intake of a healthy
diet, which in turn may increase the mortality risk of patients with end-stage kidney
disease [18,19]. In addition, it has been reported that the increased net endogenous acid
production (NEAP) by diet was associated with the progression of the renal function
decline [30,31]. Since NEAP is an index proportional to protein intake/potassium
intake, NEAP can be decreased by high-potassium diet. In fact, several studies reported
that the lower CKD risk associated with the high-potassium diet including fruits and
vegetables and the increased CKD progression risk associated with low-potassium
diets [32,33] or decreased potassium urinary excretion [34,35]. KDOQI clinical practice
guideline for nutrition in CKD 2020 Update recommends that reducing NEAP through
increased dietary intake of fruits and vegetables in order to reduce the rate of decline of
residual kidney function [36]. These data suggest that while potassium restriction can be
beneficial for high-risk hyperkalemia patients, intense potassium restriction for low-risk
hyperkalemia patients may contribute to higher risk of worsening renal function than
risks due to hyperkalemia. Therefore, potassium diet should be carefully guided by
considering the risk–benefit balance and each patient’s condition. Nevertheless, it is also
true that appropriate dietary guidance based on risk assessment is a very challenging
clinical entity because of no indicators, biomarkers, or criteria available for hyperkalemia
prognosis at the moment. The developed models provide information on mortality,
and cardiovascular and renal outcome risks, within three years after hyperkalemic
episodes, which may be used to identify hyperkalemic patients at high risk for adverse
clinical outcomes. Therefore, the risk prediction model can play an important role in
the personalized risk evaluation of hyperkalemic patients, which enables more proper
balancing of the dietary restriction and medical therapy for better clinical outcomes. The
treatment of hyperkalemia often leads to the discontinuation or restriction of beneficial
but potassium-increasing therapy such as RAASi and high-potassium diet including
fruits and vegetables. Based on the personalized risk evaluation of hyperkalemic patients,
the AI model aids the mitigation of the adverse event risks of patients while retaining
the benefit of these life-saving therapies.
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5. Strengths and Limitations

One important strength is that the model was tested on an external dataset including
more than ten times the number of patients than the derivation set. The prediction perfor-
mance for the all-cause death, and higher incidence of all clinical outcomes in the high-risk
group suggested that the model would work on datasets collected under different settings.
However, the prediction performance for HHF and cardiovascular events was decreased,
suggesting the need for further attempts to improve the prediction performances. The
modifications of outcome definition due to the lack of causal information for hospitalization
events could lead to lower prediction performance; therefore, further studies are warranted
using clinical outcomes with high specificity applicable across different datasets. Several
other approaches may also be considered such as increasing sizes and variety of the training
dataset. Advanced technologies such as transfer learning have proven successful to main-
tain good prediction performance of prediction models across different datasets [37,38]. In
this study, we selected the sophisticated machine learning algorithms that have proven
effective in previous reports. However, available machine learning algorithms, particularly
simpler algorithms, were not comprehensively studied.

The external validation was performed at an independent institution from the insti-
tution that performed the model derivation to ensure the reliability of the results. Due to
limitations in exchanging the detailed learning conditions, we did not optimize the model
in the external dataset; and we did not compare the different machine learning models in
the external dataset since the comparison of unoptimized models might not be an ideal
condition. However, further studies are needed to externally validate the models in a
distinct population or database. Building predictive models using real-world databases
had the advantage of large sample sizes representing various clinical settings. However,
available information was limited to structured data. Furthermore, MDV collects only
deaths that occurred in hospital; therefore, we could not retrieve information on deaths
that occurred outside of hospitals. There are some redundancies among the predictor
variables used in the final model. For instance, both eGFR value and CKD stage were
used as predictor variables. Although we made effort to reduce such redundancies in the
variable selection process, they could not be fully removed for maintaining the satisfactory
prediction performance of the model. The machine learning modeling algorithm such
as the XGB modeling is effective when there are several types of relationships between
explanatory variables and objective variables dependent on other variables. Therefore, the
application of the machine learning algorithm can aid in the risk prediction based on the
numerous types of clinical variables.

Finally, it is important to note that the risk models did not explicitly nor implicitly
provide information on the treatment effects of any therapeutic interventions. The treatment
of high-risk patients would thoroughly be dependent on existing therapeutic guidelines
and assessments by treating physicians based on their clinical knowledge.

6. Conclusions

We report the development and validation of risk prediction models using novel
machine learning technologies to detect hyperkalemic patients at high risk of mortality, and
cardiovascular and renal outcomes, over three years after their first hyperkalemic episode.
Although further studies are warranted to improve model applicability in different settings,
these findings suggested a possible use of machine learning models for real-world risk
assessment as a guide for observation and/or treatment decision making with the potential
to lead to the improvement of long-term cardiovascular and renal outcomes, and mortality
in patients with hyperkalemia, while retaining the benefit of life-saving therapies.
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of exploratory clinical outcomes; Table S4: Tuning hyperparameters for each modeling algorithm;
Table S5: Prediction performance of the machine learning models for exploratory outcomes on
the internal validation set. Table S6: Prediction performance of the extreme gradient boosting
models on the external validation set based on the restricted condition; Table S7: TRIPOD checklist;
Figure S1: Data handling of the internal dataset; Figure S2: Patient flow diagram for external
validation; Figure S3: Receiver operator characteristics curves of the machine learning model in the
external validation set applying the same outcome definition used in the derivation set; Figure S6:
Kaplan-Meier plots of high- and low-risk groups based on risk predictions in the external validation
set based on the restricted condition.
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