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Abstract: Docosahexaenoic acid-containing lysophosphatidylcholine (DHA-LysoPC) is presented as
the main transporter of DHA from blood plasma to the brain. This is related to the major facilitator
superfamily domain-containing protein 2A (Mfsd2a) symporter expression in the blood–brain barrier
that recognizes the various lyso-phospholipids that have choline in their polar head. In order to stabi-
lize the DHA moiety at the sn-2 position of LysoPC, the sn-1 position was esterified by the shortest
acetyl chain, creating the structural phospholipid 1-acetyl,2-docosahexaenoyl-glycerophosphocholine
(AceDoPC). This small structure modification allows the maintaining of the preferential brain up-
take of DHA over non-esterified DHA. Additional properties were found for AceDoPC, such as
antioxidant properties, especially due to the aspirin-like acetyl moiety, as well as the capacity to
generate acetylcholine in response to the phospholipase D cleavage of the polar head. Esterification
of DHA within DHA-LysoPC or AceDoPC could elicit more potent neuroprotective effects against
neurological diseases.

Keywords: docosahexaenoic acid; phospholipids; lysophospholipids; blood-brain-barrier; neuroprotection;
neurological diseases

1. Introduction

Lipids are major constituents of living cells, as they are important structural compo-
nents of cell membranes. Polyunsaturated fatty acids (PUFAs) are long-chain fatty acids
(18 carbons or more) that contain two or more double bonds. Depending on the location of
the last double bond, PUFAs are classified into families such as omega-3 (last double bond
on the third carbon starting from the methyl group) and omega-6 (last double bond on the
sixth carbon from the methyl group). Contrary to fatty acids that can be synthesized in the
human body, some of them cannot be produced de novo and must be incorporated through
diet [1]. The latter are called essential fatty acids, and they include omega-6 family precur-
sor linoleic acid (18:2n-6) and omega-3 family precursor α-linolenic acid (LNA, 18:3n-3). By
a cascade of alternating desaturase and elongase enzymatic reactions, which are common
to both families, longer PUFAs are biosynthesized from their respective precursors [2].
PUFAs are mainly found esterified within glycerophospholipids present in cell membranes
at the sn-1 and sn-2 positions. Glycerophospholipids are grouped by the structure of their
polar head group on the sn-3 position. Their amphiphilic nature (one hydrophilic head
group and two hydrophobic fatty acids) confers fluidity and selective permeability to
the membranes they constitute [3,4]. They are also precursors for signaling metabolites,
including eicosanoids, growth hormones, and regulators, and they participate in important
physiological processes, such as anti-inflammatory or pro-inflammatory responses [5–8].

There is a specific enrichment of essential fatty acids in human tissues, notably in the
retina, brain, and heart. Contrary to arachidonic acid (ArA, 20:4n-6), which is the major
PUFA of human tissues, docosahexaenoic acid (DHA, 22:6n-3) is the most prominent fatty
acid in the brain, where it is considered functionally essential [9,10]. DHA concentration
is especially high in neurons where it facilitates development and synaptic functions [11],
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with a special interest in human brain evolution [12]. A proper balance between omega-6
and omega-3 supplementation during pregnancy and infancy is required for correct neural
development [13–15]. Along with aging, a decrease in long-chain PUFA levels in the brain
has been observed, especially for DHA levels [16–18]. These deficiencies are correlated to
a cognitive decline in normal aging but might be even more detrimental in pathological
aging. In Alzheimer’s disease, decreases in PUFAs, particularly in essential fatty acids such
as DHA, have been observed [19–21]. These results hint at a possible correlation between
neurodegenerative diseases and cerebral DHA deficiency.

DHA has many beneficial properties, especially for cerebral diseases such as Alzheimer’s
disease, that were covered in numerous reviews [22–26]. These include pro-neurogenic, anti-
oxidative, anti-inflammatory, and anti-apoptotic properties. These potent neuroprotective
effects might be partly due to the conversion of DHA into active secondary metabolites
such as protectins, including protectin DX [27], resolvins, and maresins [28]. DHA can
also be transformed into N-Docosahexaenoylethanolamide, an endocannabinoid-like lipid
mediator that has been named synaptamide due to its capacity to induce synaptogenesis,
neurogenesis, and neurite outgrowth [29–31]. Due to its enrichment in double bonds, DHA
can also provide fluidity to cell membranes [3,32,33]. As increasing its accretion into the
brain through esterification into structured phospholipids improves cognitive functions in
healthy brains [34], it might also heighten its neuroprotection against neuronal death.

Since DHA biosynthesis from the essential n-3 precursor α-linolenic acid is very low
in humans, except during pregnancy [35], the accretion of dietary DHA from blood is quite
crucial. An adequate brain DHA content then depends on both food intake and blood avail-
ability [36]. Since blood DHA is present in different chemical forms, especially esterified
in glycerolipids [37], its transport to the brain through the highly selective blood–brain
barrier is a required step. The involvement of DHA-containing lysophosphatidylcholine
(DHA-LysoPC) as an efficient transporter of DHA to the brain, as well as its metabolism
and potent neuroprotective effects, is discussed in this review. This review also intro-
duces some studies focusing on the effects of DHA-containing phospholipids on models of
neurological diseases.

2. Transport of DHA, Esterified in Phospholipids, to the Brain
2.1. LysoPC as a Preferential Transporter of DHA to the Brain

Early studies have shown that plasma unsaturated LysoPC bound to plasma albumin
could mainly result from liver phospholipase A1 activity [38,39]. It was then hypothesized
that unsaturated fatty acids (UFAs) could be available to the brain from those LysoPC
and non-esterified UFAs, both being bound to plasma albumin [40]. The results clearly
showed that intravenously injected albumin-bound UFAs (18:1n-9, 18:2n-6 and 20:4n-6)
were 10-fold less incorporated into rat brains than UFAs esterified at the sn-2 position of
LysoPC [40]. Interestingly, this preferential uptake from LysoPC was not observed for the
saturated fatty acid 16:0 [40]. DHA, being an abundant and crucial PUFA in the brain, has
been studied in both forms (non-esterified and esterified at the sn-2 position of LysoPC),
and its uptake by the brain was also compared with other organs. The preferential uptake
of DHA esterified in LysoPC was confirmed in the brain (with at least 10-fold ratio) but
not in other organs such as the heart, kidney, and liver, with an even preferential uptake of
non-esterified DHA in the heart and liver [41].

The preferential brain uptake of UFAs esterified in LysoPC was later confirmed and
explained through the expression of the symporter major facilitator superfamily domain-
containing protein 2A (Mfsd2a), almost exclusively expressed on endothelial cells of the
blood–brain barrier [42]. Mfsd2a was further studied for its 3D structure and for its
interactions with choline phospholipids having a long hydrophobic chain (at least 16:0),
including LysoPC, Lyso-Platelet-Activating Factor (LysoPAF), and even PAF, suggesting
that the short acetyl chain in PAF does not alter the transport ability of Mfsd2a [43].

The preferential brain uptake of DHA, and other PUFAs of functional interest such
as ArA, when esterified in LysoPC at the most observed physiologically sn-2 position
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is relevant because of a substantial amount of this lysolipid in plasma. Indeed, similar
amounts of non-esterified ArA and DHA, and that esterified in LysoPC, are associated
with rat plasma albumin [41]. This is also valid for human plasma, with about equal
amounts of ArA-containing LysoPC and DHA-LysoPC associated with high-density and
low-density lipoproteins as well [44]. Though higher brain accretion was observed with
DHA esterified in phosphatidylcholines (PC) and phosphatidylserines (PS) compared to
DHA-containing triacylglycerols [45,46], the highest brain uptake was shown with DHA-
LysoPC [47]. Multiple mechanisms and factors can affect DHA esterification [48], such as
hypercapnia/ischemia [49] and maternal obesity [50]. Currently known mechanisms of
DHA transport through the BBB are represented in Figure 1.
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Figure 1. Docosahexaenoic acid (DHA) transport through the blood–brain barrier (BBB). Currently
known mechanisms of DHA transport are represented in this figure. In blood, albumin can bind
non-esterified DHA (NE-DHA), DHA-containing lysophosphatidylcholine (DHA-LysoPC), and
DHA-containing phosphatidylcholine (DHA-PC). NE-DHA is released from albumin in the vicinity
of endothelial cell membranes and is incorporated into the endothelium by passive diffusion or
transportation through fatty acid transport proteins (FATP). DHA-LysoPC is also released from
albumin and can be actively transported into the endothelium through the symport major facilitator
superfamily domain-containing protein 2A (Mfsd2a). DHA-PC can also be released from albumin
and can generate DHA-LysoP C through the action of an endothelial lipase (EL), as shown by Chen
and Subbaiah [51]. Lipoproteins are other carriers of NE-DHA and DHA-LysoPC. They can release
NE-DHA and DHA-LysoPC through the action of lipoprotein lipases (LPL). Lipoproteins can also
bind to their receptors and go through transcystosis. Inside endothelial cells, lipoproteins can be
hydrolyzed and can release either NE-DHA or DHA-LysoPC. In the endothelium, NE-DHA is bound
to fatty acid binding proteins (FABP) for it to cross the intercellular space to reach brain cells. NE-DHA
can either diffuse passively through the endothelial-brain barrier or be transported through FATP.

In early studies comparing non-esterified PUFAs and PUFA-containing LysoPCs, the
latter were sn-2-acyl-LysoPCs, to mimic the physiological situations in which LysoPCs are
produced by the cleavage of 1-palmitoyl/stearoyl,2-arachidonoyl/docosahexaenoyl-GPC
by phospholipase A1 or triacylglycerol lipase having a phospholipase A1 activity [38].
However, studies showing the involvement of Mfsd2a in LysoPC uptake did not consider
the position of the acyl, or alkyl in the case of LysoPAF [43]. This suggests that the position
isomers of the acyl moieties might not be crucial for the LysoPC uptake. Indeed, the
incubation of sn-2-acyl-LysoPCs in physiological conditions leads to the migration of acyl
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groups from the sn-2 to the sn-1 position of LysoPCs [44,47]. This does not indicate whether
one specific position isomer is required for its brain uptake, as one isomer may be converted
or retro-converted into the other before being taken up. However, to maintain DHA at the
supposed physiological sn-2 position of LysoPC, it was decided to stabilize it by esterifying
the sn-1 position with the shortest acetyl moiety [52]. The resulting structured phospholipid,
1-acetyl,2-docosahexaenoyl-glycerophosphocholine, was named AceDoPC.

2.2. Stabilized Form of DHA-Containing LysoPC: AceDoPC

When 14C-labeled DHA in AceDoPC or 14C-labeled non-esterified DHA were intra-
venously injected into rats, there was no different 14C-DHA uptake by the heart and liver,
but there was a significantly higher uptake of DHA in the brain from AceDoPC compared
to non-esterified DHA, while both forms equally decreased from plasma [53]. Analysis of
14C-DHA-containing AceDoPC, PC, and phosphatidylethanolamine (PE) within the brain
1, 24, and 48 h after AceDoPC injection showed a progressively decreased AceDoPC level
and increased labeled PC and PE levels [53]. Interestingly, 14C-LysoPC was present in small
similar amounts for the three times considered, suggesting that AceDoPC was de-acetylated
within the brain, and LysoPC was quickly metabolized for DHA redistribution within PC
and PE [53].

An in vitro reconstituted blood–brain barrier (BBB) showed the passage of DHA
esterified in AceDoPC or PC, or non-esterified DHA, across the BBB [54]. DHA crossing
from AceDoPC was significantly higher than from PC, the latter being less efficient than
non-esterified DHA [53]. These results are in agreement with a preferential crossing of
the reconstituted BBB model by DHA-LysoPC compared to non-esterified DHA [55]. The
molecular modeling of AceDoPC and DHA-LysoPC showed a very similar 3D structure [53],
differing only by the acetyl moiety at the sn-1 position, and AceDoPC could be recognized
by Mfsd2a as well, explaining similar preferential BBB crossing.

A recent study in human volunteers who ingested 50 mg of 13C-labeled DHA, esterified
in AceDoPC or a triacylglycerol (TAG), showed that the blood bioavailability of 13C-DHA
was higher from AceDoPC than from TAG [56]. In brief, around twice as much DHA
accumulated in red cells from AceDoPC, and this preference was especially clear in PE after
6 days with a transient accumulation in PC after 3 days, which fits well with a long-term
accumulation in brain PE [57] if extrapolated from red cells, which could be considered as
biomarkers of DHA accumulation in the brain [58].

3. Neuroprotective Properties of DHA-Containing Phospholipids
3.1. DHA-Containing Phospholipid for the Treatment of Alzheimer’s Disease

Amyloid beta (Aβ) induced neurotoxicity can lead to the elevation of oxidative stress
in the brain. In an in vitro model of Aβ1-42 neurotoxicity, primary neurons treated with PC
from eggs showed less neuronal death with a reduced lactate dehydrogenase release [59].
In a rat model injected with Aβ1-40, diets enriched with DHA-containing PC (DHA-PC)
or PS (DHA-PS) could increase the antioxidative enzyme superoxide dismutase (SOD)
level and could reduce lipid peroxidation, inflammatory, and apoptotic levels, alongside
improving spatial learning cognitive functions [60]. An increase of glutathione peroxidase
(GSH-Px) and SOD activities with the improvement of cognitive deficits have also been
shown in Aβ25-35-induced Alzheimer’s disease rat models treated for 30 days with DHA-
PC [61]. In humans, a prospective follow-up study showed that subjects with baseline
plasma DHA-PC levels in the upper quartile had 39% and 47% lower risks of developing
Alzheimer disease and all-cause dementia, respectively, compared with participants with
levels in the lower 3 quartiles [62].

In a study of senescence-accelerated prone 8 (SAMP8), mice were fed with a high-
fat diet, as a model of Alzheimer’s disease, or with a diet enriched with DHA-PC or
DHA-PS, which both increased the activity of antioxidative enzymes GSH-Px and SOD
while decreasing malondialdehyde, a marker of lipid peroxidation [63]. The mice also
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showed enhanced cognitive performances, improved neuroprotection through decreased
neuroinflammation and apoptosis, and amelioration in Aβ pathology.

The observed improvement of brain health and cognitive functions in the pathology
of Alzheimer’s disease could be due not only to the neuroprotective effects of DHA (anti-
inflammatory, anti-oxidative, and anti-apoptotic) but also to the beneficial transport of
DHA through the BBB, increasing its bioavailability in neural cells. Another working
hypothesis is that DHA can also prevent the accumulation of Aβ peptides [22,64–66] and
the formation of fibrils [67–69], thus decreasing the apoptotic effects of oligomers. DHA
is suggested to act on multiple pleiotropic mechanisms, leading to beneficial effects on
the pathology of Alzheimer’s disease [21,23]. An additional hypothesis is that the choline
moiety in the polar head of PC is crucial for neuroprotection, as Ko M. et al. reported
that PC but not PS was able to protect against Aβ-induced cell toxicity [59]. It may be
speculated that this choline moiety might contribute to acetylcholine production, resulting
from PC hydrolysis by phospholipase D, with the resulting choline being further converted
by endogenous acetyl-CoA.

3.2. Potential Therapy to Other Neurological Diseases

Mice treated with 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) to mimic
oxidative damage induced by the pathology of Parkinson’s disease were fed with DHA-
and eicosapentaenoic acid (EPA)-containing phospholipids, which were extracted from
squid roe and contained mainly DHA-PC, DHA-containing PE (DHA-PE), and DHA-
LysoPC [70]. Compared to the control group (only treated with MPTP), mice fed with
DHA/EPA-PC had increased levels of antioxidative enzymes (GSH-Px and SOD) along
with a reduction of motor impairments and a decrease of pro-apoptotic markers. Further
study on the same model showed that a DHA-PC enriched diet could elevate activities
of glutathione and SOD, alleviate the loss of dopaminergic neurons following MPTP
treatment (notably through the reduction of pro-apoptotic markers), and dampen cognitive
impairments in locomotor activity [71]. Parkinson’s disease is mainly characterized by
the abnormal aggregation of α-synuclein protein forming Lewy bodies, an imbalance in
the levels of reactive oxygen species, and the loss of dopaminergic neurons. Omega-3
fatty acids, and particularly DHA, can interact with α-synuclein to prevent its detrimental
oligomerization [72–74]. Another pathway of action of DHA is the modulation of dopamine-
induced neurodegeneration [75,76] and the enhancement of anti-oxidative pathways [76].

In a model of dementia induced by short-term memory and learning impairment
by treatment with scopolamine, mice fed with squid PC (enriched in DHA) performed
better in a spatial-learning memory test and had increased antioxidative activity and a
lower lipid peroxidation level compared to the control group [77]. Interestingly, elevated
levels of acetylcholinesterase activity induced by scopolamine injection were reduced with
squid PC treatment. In a following study by the same research group, it was shown that a
DHA-deficient diet could lead to further damage due to scopolamine treatment through
oxidative stress, apoptosis, inflammation, and delayed neurodevelopment [78], hinting at
possible preventive therapy through a balanced omega-3 diet.

The potential use of DHA’s beneficial properties on neuropsychiatric disorders is
also currently under study [79]. Through its potency to reduce anti-inflammation and to
promote neurogenesis, DHA was shown to reduce inflammatory markers in both in vitro
and clinical studies [80]. The authors found correlations between higher levels of anti-
inflammatory markers linked to DHA and lower levels of depressive symptoms. Similarly,
in an in vivo study of forced swimming tests on rats, a decrease of inflammatory cytokines
and an increase in serotonin levels were observed with omega-3 supplementation, sug-
gesting anti-depressant effects of DHA [81]. Interestingly, dietary supplementation of
DHA-containing phospholipids in a mice model of depression rescued depression-like
behavior and inhibited neuroinflammation, suggesting increased effects on depression
through DHA esterification in phospholipids [82].
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3.3. AceDoPC as a Potential Antioxidant and Neurogenesis Inducer

In the case of AceDoPC initially, sn2-DHA-LysoPC was acetylated at the sn-1 posi-
tion to prevent the migration of DHA from the sn-2 position as discussed above [52], but
it appears that such an acetylation also confers some antioxidant activities to AceDoPC
compared to non-esterified DHA. This was observed in an experimental stroke with a
more significant lower size of post-stroke lesions and decreased oxidative stress after
AceDoPC intravenous injection [83]. In an in vitro model of stroke on adult neural stem
cells, strong antioxidant actions of AceDoPC could be seen on prostanoids and lipoxy-
genase product formation, with lipoxygenase products from ArA (leukotriene B4, LTB4,
and 15-Hydroxyeicosatetraenoic acid, 15-HETE) being surprisingly more affected than
prostanoids [84].

The inhibition of prostanoid formation could be explained by the inhibition of cy-
clooxygenases (COX), as shown in using purified COX-1 and COX-2 [85], suggesting
an aspirin-like effect of the acetyl-containing AceDoPC. Beyond these effects on lipid
metabolism, the treatment of AceDoPC by phospholipase D (PLD) leads to acetylcholine
formation, likely by the combination of the acetyl group of the molecule with the released
choline moiety due to PLD cleavage process [85]. AceDoPC also acts as an inhibitor
of lipopolysaccharide-induced neuroinflammation, both in vitro and in vivo, with some
specificities compared to DHA-PC [86].

In adult neural stem cells, nanomolar concentrations of AceDoPC increased neuro-
genesis by 2.5 fold (compared to the control) in the presence of AceDoPC, while 1.5 fold
increase with non-esterified DHA was observed [84]. Enhanced neurogenesis by AceDoPC
was even higher under pathological conditions (under hypoxia/ischemia-like conditions)
while no effect was observed on gliogenesis. Another phospholipid that is structurally
similar to AceDoPC but contains protectin DX, a metabolite of DHA, at the sn-2 position,
was also produced [87]. This phospholipid, labeled AceDxPC, might enhance the beneficial
effects of AceDoPC.

An additional interest of AceDoPC is due to the quick loss of its acetyl moiety [53] then
releasing sn-2-DHA- LysoPC (with DHA at the sn-2 position), which is quickly isomerized
into sn-1-DHA-LysoPC (with DHA at the sn-1 position) [44], a substrate for producing
synaptamide [88].

4. Conclusions

Essential omega-3 fatty acids are major constituents of cell membranes. DHA is espe-
cially prominent in neuronal cells and is necessary for the healthy neurodevelopment and
healthy aging of the human brain. Since DHA shares many common signaling pathways
with omega-6 ArA, the balance between omega-3 and omega-6 species can determine
whether tissues will be inflamed, oxidized, or apoptotic under pathological damage. This
is of particular importance in the case of neurodegenerative diseases, where proper home-
ostasis is required for maintaining neuron survival and cognitive functions.

PUFAs are scarcely synthesized de novo from their precursors and must be largely
incorporated through a balanced diet. Since BBB is a selective barrier of the nutrients
passing from blood to the brain, there is a need for new strategies to efficiently transport
omega-3 PUFAs to neural cells. In summary, this review points out the role of LysoPC as a
preferential transporter of DHA to the brain, particularly by crossing the BBB, likely through
the Mfsd2a symporter. DHA being acylated at the sn-2 position of LysoPC after the cleavage
of DHA-containing PC by triacylglycerol lipase/phospholipase A1, it mainly migrates to
the sn-1 position with time. Preventing such a migration by acetylating the sn-1 position
led to further studies. The resulting 1-acetyl,2-docosahexaenoyl-glycerophosphocholine,
AceDoPC, was then studied as a transporter of DHA to the brain. In addition to its efficiency
for DHA brain uptake, AceDoPC appeared as a potential antioxidant and an acetylcholine
source through its cleavage by phospholipase D.

This review also highlights the potential beneficial effects of DHA being esterified
within structured phospholipids compared to its non-esterified form in the pathology
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of neurodegenerative diseases. Increasing the bioavailability of DHA might enhance its
anti-inflammatory, anti-oxidative, and anti-apoptotic effects, but the conformation of the
DHA-containing phospholipid could also exert supplementary beneficial effects on the
degeneration of neuronal cells.
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