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Abstract: Background and aims: Dietary diversity change is associated with cognitive function,
however, whether the effect still exists among the oldest-old (80+) is unclear. Our aim was to
examine the effect of dietary diversity changes on cognitive impairment for the oldest-old in a large
prospective cohort. Methods: Within the Chinese Longitudinal Healthy Longevity Study, 6237 adults
older than 80 years were included. The dietary diversity score (DDS) was assessed by a simplified
food frequency questionnaire (FFQ). Cognitive impairment was defined as a Mini-Mental State
Examination (MMSE) score lower than 18 points. Cognitive decline was defined as a reduction of
total MMSE score ≥3 points, and cognitive decline of different subdomains was defined as a reduction
of ≥15% in the corresponding cognitive domain. The multivariate-adjusted Cox proportional hazard
model evaluated the effects of DDS change on cognitive decline. The linear mixed-effect model
was used to test subsequent changes in MMSE over the years. Results: During 32,813 person-years
of follow-up, 1829 participants developed cognitive impairment. Relative to the high–high DDS
change pattern, participants in the low–low and high–low patterns were associated with an increased
risk of cognitive impairment with a hazard ratio (95% confidential interval, CI) of 1.43 (1.25, 1.63)
and 1.44 (1.24, 1.67), and a faster decline in the MMSE score over the follow-up year. Participants
with the low–high pattern had a similar incidence of cognitive impairment with HRs (95% CI) of
1.03 (0.88, 1.20). Compared with the stable DDS status group (−1–1), the risk of cognitive impairment
was higher for those with large declines in DDS (≤−5) and the HR was 1.70 (95% CI: 1.44, 2.01).
Conclusions: Even for people older than 80, dietary diversity change is a simple method to identify
those who had a high risk of cognitive decline. Keeping high dietary diversity is beneficial for
cognitive function and its subdomain even in the final phase of life, especially for females and the
illiterate oldest-old.

Keywords: cognitive decline; the oldest-old; Chinese; dietary diversity changes; human longevity

1. Introduction

Age-related cognitive impairment has become a significant public health challenge.
The rapid population aging is expected to lead to an increase of 75 million old people with
dementia worldwide by 2030 [1]. In China, 16.9% of elderly people aged over 80 years
old suffer from mild cognitive impairment [2]. As no effective pharmacologic therapies
for cognitive function are available yet, identifying potentially modifiable risk factors is
critical in preventing cognitive decline for the elderly. A high diet quality is considered as a
critical protective factor in cognitive function, and the beneficial effect is more pronounced
for people aged 80 years or older [3,4].

Most previous studies have focused on the static diet quality of older people, which
have ignored dynamic changes in the diet quality over time. However, the oldest-old are
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susceptible to dietary diversity change due to loss of appetite, degeneration of the digestive
system, and lower economic status. A long-term cohort of 17,959 older people showed that
only 32.92% of them kept diet diversity at stable status for 2–3 years [5]. Therefore, some
measurement errors could occur if the changing trends in diet quality are not taken into
account. Focusing on the cognitive impairment risk associated with the diet changes, not
just static diet quality is crucial for the oldest-old since their diet usually changes in reality.

Evidence has shown the association between overall diet quality change and cogni-
tive function among younger-old adults based on the Mediterranean diet (Me-DI), the
Dietary Approaches to Stop Hypertension (DASH) diet, and the Mediterranean-DASH
Intervention for Neurodegenerative Delay (MIND) diet. Nevertheless, their results have
been controversial. Some studies have reported that higher adherence to specific dietary
patterns promoted better cognitive function [6,7], whereas other cohorts could not repli-
cate the association [8–10]. Dietary culture, behavior, and age distribution variations can
explain these discrepancies [11]. The Western style dietary patterns (Me-DI, DASH, MIND)
may not be suitable for other regions. Limited studies have applied these specific dietary
patterns among Chinese people [6]. Meanwhile, the small number of the oldest-old and
short follow-up time cannot reflect the long-term effects of diet changes.

The Dietary Diversity Score (DDS) has been well-recognized as an essential tool to assess
diet quality. The DDS is considered as various types of food groups in accordance with the
local dietary guideline [12,13]. Compared with the complicated measurement of other dietary
patterns, the DDS is easier and more straightforward to complete for the oldest-old people
and is applicable to Chinese dietary culture [14–16]. Previous researchers have proven the
beneficial effect of high DDS on cognitive function [16–18]. However, little is known about
whether the association still exists for those in the final phase of life-span. The most related
cohort [19], which explored the relationship between dietary diversity change and cognitive
function, found that keeping higher dietary diversity could reduce the risk of cognitive im-
pairment among participants older than 65 years old. Our aim was to extend the findings
of this cohort [19] in three ways. First, our cohort focused not only on binary outcomes
(e.g., cognitive impairment vs. no cognitive impairment), but on incident cognitive decline,
which can detect subtler changes in cognitive function. Second, we will explore the longitudi-
nal changes of cognitive function in DDS change patterns over long-term follow-up. Third,
we will examine whether the DDS changes had an effect on different cognitive domains of
cognitive function. Furthermore, we focused on the oldest-old (80+) rather than people aged
over 65 years old. Based on the Chinese Longitudinal Healthy Longevity Study (CLHLS), our
study aimed to capture the effects of dynamic features of DDS change patterns on cognitive
function among adults over 80 years old.

2. Materials and Methods
2.1. Data Source

Our study was performed based on the Chinese Longitudinal Healthy Longevity
Study (CLHLS). CLHLS is a longitudinal, national prospective cohort for old adults. It
used a multi-stage stratified random sampling method in 866 different counties and cities
of 23 provinces in China. Moreover, the centenarians from the 801 cities or counties
were selected randomly in the whole country. People of predefined sex and age living
nearby were randomly invited based on the centenarians’ code numbers [20] to match
with the centenarians. The cohort can cover nearly 85% of old Chinese people. Therefore,
CLHLS can be used as representative data of the oldest-old to explore the determinants
of longevity [21,22]. For more details about the data quality of the CLHLS, the readers
are referred to previous studies [20,21]. The oldest-old (over 80 years old) were recruited
in a wave between 1998 and 2000. Moreover, the old adults (over 65 years old) were
enrolled from 2002. New participants were recruited every two to four years. Trained
interviewers conducted a structured questionnaire interview (diet, lifestyle, and medical
history) for each participant in their home. All old adults or their representatives signed



Nutrients 2022, 14, 4530 3 of 17

written consent forms. The Ethics Committee approved the CLHLS of Peking University
(IRB00001052-13074).

We focused on participants above 80 years old from two successive cohorts (20 years:
1998–2018; 18 years: 2000–2018) within the CLHLS. It included participants who were
free of cognitive impairment (MMSE score < 18) at the baseline, and they needed to have
the baseline and first follow-up of the DDS and MMSE scores. People who were younger
than 80 years old were excluded. We included the longest follow-up period of data for the
final analysis when participants were present in two cohorts. Finally, our study included
6237 participants after excluding 4833 duplicated participants (Supplementary Figure S1).

2.2. Measurement of DDS

Participants were required to complete a simplified food frequency questionnaire in
a face-to-face review. The validity and scientificity of the food frequency questionnaire
have been verified in previous literature [23,24], especially for the oldest-old [18]. The
information about nine major food groups (fresh vegetables, food made from beans, fish,
fresh fruit, tea, garlic, meat, eggs, and preserved vegetables) was collected. The trained
interviewer asked: “How often do you have the food group at present?”. The answers
were classified as often (more than five times a week), occasionally (1–4 times a week),
or rarely (less than once a week). Then, we defined the corresponding score as 0 (rarely),
1 (occasionally), and 2 (often). The total DDS score (0 to 18) was the sum score of the
above nine food groups. The score of plant-based DDS (0–12) was the sum score of fresh
vegetables, garlic, food made from beans, preserved vegetables, fresh fruit, and tea. The
animal-based DDS (0–6) was the sum score of eggs, meat, and fish.

2.3. Measurement of DDS Change Patterns

We calculated two types of DDS change patterns within the first follow-up period.
The Food and Agriculture Organization of the United Nations dietary diversity guidelines
recommend that DDS could be classified based on the mean value. The validity and
reproducibility of the DDS change pattern for Chinese old adults have been described in
previous studies [5,19]. Evidence shows that the method of DDS change pattern could
better categorize dietary diversity change, and the “high-high DDS change pattern” had
the lowest mortality risk and cognitive impairment for adults over 60 years old [5,19]. The
first DDS change pattern was operationalized as follows. (1) Categorized baseline DDS
into two groups: the low group (0–9 points) and the high group (10–18 points); classified
the planted-based DDS into two groups: the low (0–6 points) and the high (7–12 points)
group; animal-based DDS were divided into two groups: the low (0–3 points), the high
(4–6 points). (2) Calculated a new variable to represent the changing pattern from the
baseline and created the first follow-up including the high–high, high–low, low–high, and
low–low DDS change patterns.

The second measurement of the DDS change pattern was calculated by the first-2 year
DDS minus the baseline DDS, then classified into five groups based on Cox models with
penalized splines [25,26] including a large decline (DDS change score ≤ −5), moderate
decline (−4 ≤ DDS change score ≤ −2), stable status (−1 ≤ DDS change score ≤ 1),
moderate improvement (2 ≤ DDS change score ≤ 4), and large improvement (DDS change
score ≥ 5).

2.4. Assessment of Cognitive Function

A trained interviewer evaluated cognitive function through the Chinese version of
the MMSE scale, and the score range was 0–30. A higher MMSE score means a better
performance of cognitive function. Several studies have verified the reliability and validity
of the Chinese MMSE for older people [20,27]. According to previous studies, we regarded
the response (unable to answer) of the oldest-old as “wrong” [28]. Since nearly half of
the included oldest-old in the cohort were illiterate, we defined cognitive impairment
as a MMSE score lower than 18 [14,29]. The five subdomains of cognitive function were
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evaluated: orientation, registration, attention and calculation, memory, language and
visuospatial ability (Supplementary Table S1) [30]. We also evaluated the incident cognitive
decline at the exit visit as secondary outcomes: (1) total MMSE score reduced ≥3 points, and
(2) cognitive function score reduced by 15% for subdomains of cognitive function [30,31].

2.5. Covariates

The following baseline variables were adjusted as covariates: sociodemographic con-
founders included age (years), sex, body mass index (BMI, calculated as weight in kilograms
divided by height in meters squared), number of teeth, use of artificial dentures (yes or
no), occupation, marital status, residence type (urban or rural), education level (illiteracy
and literacy), and living pattern (live with a family member or alone/in a nursing home).
Health behavior included regular exercise (yes or no), tobacco smoking (current smoker, for-
mer smoker, never smoking), activities of daily living (ADL), and drinking status (current
drinker, former drinker, never drinking). Self-reported chronic diseases included hearing
disorders, diabetes, hypertension, digestive system diseases, cerebrovascular diseases,
cancer, eye diseases, and respiratory diseases. The ADL measurement tool included six
essential tasks related to independent individual life: eating, toileting, bathing, dressing,
indoor activities, and continence [32]. The score of each item was zero if the participants
could not perform the task independently, and “1” means that they could complete the
task by themselves.

2.6. Statistical Analysis

The characteristics of the included oldest-old with different DDS change patterns were
analyzed. The mean (SD) and number (percentage) were used to present the continuous
variables and categorical variables. The different subgroups of DDS change score were
compared by the independent samples t-test or one-way analysis of variance. A post-hoc
analysis was conducted by the least significance difference (LSD) test.

The Cox proportional hazard models were used to explore the relationship between
two types of DDS change patterns and cognitive impairment. The time when cognitive
impairment first occurred was regarded as the endpoint. The follow-up period was cal-
culated from the baseline to whichever occurred first: the first occurrence of cognitive
impairment, death, loss to follow-up, or the endpoint in the cohort. The percentage of
missing values of covariates was less than 2%, and we performed the multiple imputation
method to rectify missing covariate values [33]. The proportional hazard assumption of
categorized and continuous variables was satisfied by the Kaplan–Meier curves and linear
test regression of scaled Schoenfeld residuals on time functions. Restricted cubic spline
analysis was performed to analyze whether non-linear relationships existed between the
DDS change scores (as a continuous variable) and cognitive impairment [34].

For the DDS change pattern, the adjustment was accomplished by two models:
(1) model 1, which adjusted for age and sex; (2) model 2, which additionally adjusted
for the number of teeth, BMI, occupation, marital status, use of artificial dentures, residence
type, education level, and living pattern. Health behaviors included smoking status, ADL
score, regular exercise, hear disorder, drinking status, diabetes, hypertension, digestive
system diseases, cerebrovascular diseases and cancer, eye diseases, respiratory diseases,
and baseline MMSE. Notably, we added the baseline DDS score as a potential confounder
for analyzing the second DDS change pattern.

The MMSE score was evaluated for participants at the baseline and each follow-up
time. We used the multilevel linear mixed-effects model to test the relationships of the
DDS change patterns (the high–high, the high–low, the low–high, the low–low) with
repeated measurements of the MMSE change score [35]. The associations of animal-based
and plant-based DDS change patterns with cognitive function were also explored in the
subsequent year. The fixed effect contained the DDS change pattern, follow-up time, and
their interaction. The random effect included random intercept and slope for time, age,
sex, number of teeth, BMI, occupation, marital status, artificial dentures, residence type,
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education level, and living pattern. Health behaviors included smoking status, ADL score,
regular exercise, hearing disorder, drinking status, diabetes, hypertension, digestive system
diseases, cerebrovascular diseases and cancer, eye diseases, respiratory diseases, and the
baseline MMSE scores were adjusted in the model.

In addition, subgroup analyses were conducted to explore the relationship between
cognitive impairment and DDS change patterns by different age groups (80–89 or over
90 years), sex, residence (urban or rural), living patterns (living with family or not), smoking
status, drinking status, education level (illiterate or not), regular exercise (yes or no). To
assess the potential effect modifications, we also performed a cross product of subgroup
variables with DDS change patterns in the multi-variable model.

Sensitivity analysis was performed to determine whether the above results were
robust. (1) Participants were excluded who had died or lost contact in the second follow-
up since they might have been more prone to cognitive impairment; (2) we conducted
a sensitivity analysis by using the definition of cognitive impairment (MMSE score less
than 24); (3) participants with chronic diseases (hypertension, diabetes, hearing disorder,
cancer, cerebrovascular diseases) at the baseline were excluded to minimize the potential
reverse causation.; and (4) education was treated as a continuous variable to reduce the
potential effect of education level further. We considered it statistically significant when a
two-tailed p value was less than 0.05. All analyses were conducted by Stata SE 15.0.

3. Result
3.1. Participant Characteristics

Among the 6237 participants, 53.6% were female, 24.0% were married, and the mean
age (standard deviation, SD) was 88.6 (7.0) years old at thee baseline. In terms of the baseline
MMSE score and DDS score, the mean (SD) was 26.32 (3.3) and 9.2 (2.8) points, respectively.
The percentage of high–high, high–low, low–high, and low–low DDS change pattern at the
baseline was 27.5%, 17.4%, 20.2%, and 35.0%, respectively. More details about the basic
characteristics are presented in Table 1. The participants with a low–low pattern were more
likely to be female, illiterate, not in a marriage, live in rural areas, and do less exercise.

Table 1. Characteristics of the 6237 participants at the baseline.

Variables Total DDS Change Patterns from Baseline to First Follow-Up

High–High High–Low Low–High Low–Low DDS Change
Score p-Value

Number of
participants (%) 6237 1700 (27.3) 1092 (17.5) 1255 (20.1) 2190 (35.1) 0.12 ± 3.46

Age in years, mean (SD) 88.55 (6.93) 87.56 (6.59) 88.50 (6.91) 88.32 (6.66) 89.48 (7.22) 0.12 ± 3.46
Age group in years 0.027

80–89 3698 (59.3) 1094 (64.4) 642 (58.8) 756 (60.2) 1206 (55.1) 0.20 ± 3.46
≥90 2539 (40.7) 606 (35.6) 450 (41.2) 499 (39.8) 984 (44.9) 0.07 ± 3.56
Sex 0.499

Female 3344 (53.6) 734 (43.2) 583 (53.4) 689 (54.9) 1338 (61.1) 0.15 ± 3.45
Male 2893 (46.4) 966 (56.8) 509 (46.6) 566 (45.1) 852 (38.9) 0.09 ± 3.46

Type of residence 0.002
Urban 3050 (48.9) 1059 (62.3) 507 (46.4) 627 (50.0) 857 (39.1) 0.26 ± 3.50
Rural 3187 (51.1) 641 (37.7) 585 (53.6) 628 (50.0) 1333 (60.9) −0.02 ± 3.41

Marital status 0.418
In marriage 1495 (24.0) 516 (30.4) 261 (23.9) 286 (22.8) 432 (19.7) 0.18 ± 3.50

Not in marriage 4742 (76.0) 1184 (69.6) 831 (76.1) 969 (77.2) 1758 (80.3) 0.10 ± 3.45
Educational
background 0.939

Illiteracy 3680 (59.0) 780 (45.9) 635 (58.2) 757 (60.3) 1508 (68.9) 0.11 ± 3.45
Literacy 2557 (41.0) 920 (54.1) 457 (41.8) 498 (39.7) 682 (31.1) 0.12 ± 3.46

Living pattern 0.253
With family members 5084 (81.5) 1451 (85.4) 909 (83.2) 1018 (81.1) 1706 (77.9) 0.09 ± 3.46
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Table 1. Cont.

Variables Total DDS Change Patterns from Baseline to First Follow-Up

High–High High–Low Low–High Low–Low DDS Change
Score p-Value

Alone or at nursing home 1153 (18.5) 249 (14.6) 183 (16.8) 237 (18.9) 484 (22.1) 0.22 ± 3.43
Tobacco smoking status 0.045 †

Non-smoker 3933 (63.1) 966 (56.8) 688 (63.0) 799 (63.7) 1480 (67.6) 0.11 ± 3.47
Current smoker 1261 (20.2) 364 (21.4) 242 (22.2) 232 (18.5) 423 (19.3) −0.03 ± 3.42
Former smoker 1043 (16.7) 370 (21.8) 162 (14.8) 224 (17.8) 287 (13.1) 0.33 ± 3.47

Alcohol drinking status 0.001 †

Non-drinker 4005 (64.2) 998 (58.7) 713 (65.3) 817 (65.1) 1477 (67.4) 0.18 ± 3.46
Current drinker 1549 (24.8) 500 (29.4) 273 (25.0) 284 (22.6) 492 (22.5) −0.16 ± 3.42
Former drinker 683 (11.0) 202 (11.9) 106 (9.7) 154 (12.3) 221 (10.1) 0.37 ± 3.48
Regular exercise 0.001

Yes 2370 (38.0) 889 (52.3) 441 (40.4) 423 (33.7) 617 (28.2) −0.07 ± 3.39
No 3867 (62.0) 811 (47.7) 651 (59.6) 832 (66.3) 1573 (71.8) 0.23 ± 3.50

Number of teeth, mean (SD) 7.31 (11.82) 8.75 (13.77) 6.68 (10.39) 7.62 (12.38) 6.32 (10.32) 0.12 ± 3.46
Use of artificial denture 1681 (26.95) 584 (34.35) 301 (27.56) 348 (27.73) 448 (20.46) 0.12 ± 3.46
BMI, mean (SD), Kg/m2 19.38 (5.43) 19.46 (6.15) 19.39 (5.53) 19.44 (5.12) 19.29 (4.94) 0.12 ± 3.46

Hypertension 898 (14.4) 241 (14.2) 153 (14.0) 176 (14.0) 328 (15.0) −0.03 ± 3.46 0.158
Diabetes 62 (1.0) 31 (1.8) 9 (0.8) 12 (1.0) 10 (0.5) 0.76 ± 3.71 0.142

Hear disease 438 (7.0) 139 (8.2) 74 (6.8) 76 (6.1) 149 (6.8) −0.17 ± 3.72 0.069
Cerebrovascular disease 134 (2.1) 37 (2.2) 25 (2.3) 29 (2.3) 43 (2.0) 0.07 ± 3.78 0.888

Digestive disease 217 (3.5) 58 (3.4) 47 (4.3) 34 (2.7) 78 (3.6) −0.14 ± 3.58 0.270
Cancer 20 (0.3) 7 (0.4) 4 (0.4) 1 (0.1) 8 (0.4) −1.10 ± 3.63 0.115

Respiratory
disease 722 (11.6) 216 (12.7) 122 (11.2) 141 (11.2) 243 (11.1) 0.27 ± 3.48 0.195

Eye diseases 894 (14.3) 254 (14.9) 183 (16.8) 142 (11.3) 315 (14.4) −0.25 ± 3.42 0.001
Duration of

follow-up, months 63.13 (38.71) 68.62 (40.33) 60.53 (37.93) 67.05 (39.64) 57.93 (36.43) 0.12 ± 3.46

Data were expressed as counts (percentages), except for the age and duration of follow-up; † Significant difference
between current smoker and former smoker (p = 0.014); significant difference between the two groups (non-drinker,
former drinker) and current drinker, p < 0.01.

The mean follow-up period was 5.26 years, ranging from 1.42 to 20.0 years. As
shown in Table 1, during the 32,813 person-years of follow-up, 1829 participants (29.32%)
developed cognitive impairment. The incidence was 5.57 per 100 person-years (3.65, 6.30,
4.69, and 7.55 per 100 person-years for participants with high–high, high–low, low–high,
and low–low DDS change patterns, respectively).

3.2. Association of DDS Change Patterns with Cognitive Impairment

We found that participants with high–high DDS change patterns suffered the lowest
risk of cognitive impairment. In comparison with the oldest-old in the high–high DDS
change group, there was a similar risk of cognitive impairment in the low–high DDS change
pattern, and those in the high–low and the low–low DDS change pattern that suffered
higher risks of cognitive impairment with the HRs were 1.44 (95% CI: 1.24, 1.67) and
1.43 (95% CI: 1.25, 1.63), respectively. Similar effects existed in the plant-based DDS change
patterns and animal-based DDS change patterns on cognitive function (Table 2). Rela-
tive to the high–high group, the estimates for the high–low and low–low group of the
planted-based DDS were 1.43 (95% CI: 1.23–1.67) and 1.44 (95% CI: 1.26–1.65), respec-
tively. For the animal-based DDS, the estimates of HRs were 1.18 (95% CI: 1.00–1.39) and
1.22 (95% CI: 1.07, 1.40), respectively. More details are present in Table 2.
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Table 2. The association between DDS change patterns and incident cognitive impairment.

Events/Participants Unadjusted Model Model 1 † Model 2 ‡

HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value

DDS change
(continuous) 1829/6237 0.96 (0.95, 0.98) 0.000 0.97 (0.96, 0.98) 0.000 0.96 (0.95, 0.98) 0.000

Plant-based DDS
change (continuous) 1829/6237 0.96 (0.94, 0.98) 0.000 0.96 (0.95, 0.98) 0.000 0.96 (0.94, 0.97) 0.000

Animal-based DDS
change (continuous) 1829/6237 0.95 (0.92, 0.97) 0.000 0.95 (0.93, 0.98) 0.000 0.95 (0.92, 0.98) 0.000

DDS change pattern
Total DDS
High–high 355/1700 Reference Reference Reference
High–low 347/1092 1.71 (1.47, 1.98) 0.000 1.56 (1.35, 1.81) <0.001 1.44 (1.24, 1.67) <0.001
Low–high 329/1255 1.29 (1.11, 1.50) 0.001 1.18 (1.01, 1.38) 0.028 1.03 (0.88, 1.20) 0.722
Low–low 798/2190 2.04 (1.80, 2.31) 0.000 1.70 (1.50, 1.93) <0.001 1.43 (1.25, 1.63) <0.001

Plant-based DDS
High–high 304/1496 Reference Reference Reference
High–low 353/1157 1.664 (1.427, 1.940) 0.000 1.52 (1.30, 1.77) <0.001 1.43 (1.23, 1.67) <0.001
Low–high 325/1217 1.37 (1.17, 1.60) 0.000 1.24 (1.06, 1.46) <0.001 1.11 (0.95, 1.30) 0.201
Low–low 847/2367 2.05 (1.80, 2.34) 0.000 1.66 (1.46, 1.90) <0.001 1.44 (1.26, 1.65) <0.001

Animal-based DDS
High–high 285/1214 Reference Reference Reference
High–low 294/986 0.65 (0.57, 0.74) 0.000 1.30 (1.10, 1.53) <0.001 1.18 (1.00, 1.39) 0.047
Low–high 329/1267 0.88 (0.77, 1.00) 0.048 1.11 (0.95, 1.30) 0.205 0.98 (0.84, 1.16) 0.840
Low–low 921/2770 0.72 (0.64, 0.82) 0.000 1.46 (1.28, 1.67) <0.001 1.22 (1.07, 1.40) 0.004

Model 1 †: Adjusted for age and sex; Model 2 ‡: Adjusted for model 1 plus residence, education background,
occupation, current marital status, living arrangement, tobacco smoking status, drinking status, regular exercise,
number of teeth (continuous), use of artificial dentures, hypertension, diabetes, cerebrovascular diseases, respira-
tory diseases, digestive system diseases, ADL score, cancer, eye diseases, and BMI (continuous), hear disorders.
Other chronic diseases, baseline MMSE.

In the subgroup analyses (Table 3), when participants were stratified by age group, sex,
smoking status, education level, residence type, drinking status, and living pattern, exercise,
the results were similar to our main results. We found that the DDS pattern (high–low, low–
low) had a significantly higher risk of cognitive impairment than the high–high pattern.
The univariate model is shown in Supplementary Table S2. Additionally, the negative
effect of the low–low DDS pattern on cognitive function decreased with increments in age.
Moreover, females were more easily affected by DDS change. The adjusted HR associated
with the DDS change pattern (high–low, low–low) versus the high–high pattern was
1.45 (95% CI: 1.20–1.76), 1.44 (95% CI: 1.22–1.71) for the female, and 1.40 (95% CI: 1.09–1.77),
1.37 (95% CI: 1.10–1.70) for the male.

We found that low–low and high–low DDS change pattern was associated with higher
hazards of cognitive decline including orientation, registration, attention and calculation,
language, and visuospatial abilities (Table 4). Similar relations were also found in partici-
pants with plant low–low DDS change patterns. As for memory, only the high–low total
DDS change pattern was associated with faster cognitive decline (Table 4). Only animal
DDS change patterns (high–low, low–low) were associated with a faster decline in attention
and calculation, language, and visuospatial abilities.

Table 3. The association between the DDS change patterns and risk of cognitive impairment in subgroups.

Subgroups
Events/

Participants

DDS Change Patterns
p for

InteractionDDS Change
Score High–High High–Low Low–High Low–Low

Age (years)
80–89 857/3698 0.96 (0.94, 0.98) ‡ Ref. 1.66 (1.34, 2.06) ‡ 1.01 (0.81, 1.26) 1.48 (1.22, 1.80) ‡ 0.662
≥90 972/2539 0.96 (0.94, 0.98) ‡ Ref. 1.25 (1.02, 1.55) ‡ 1.01 (0.82, 1.25) 1.37 (1.14, 1.63) ‡

Gender 0.854
Male 613/2893 0.97 (0.95, 0.99) ‡ Ref. 1.40 (1.09, 1.77) ‡ 1.02 (0.80, 1.32) 1.37 (1.10, 1.70) ‡
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Table 3. Cont.

Subgroups
Events/

Participants

DDS Change Patterns
p for

InteractionDDS Change
Score High–High High–Low Low–High Low–Low

Female 1216/3344 0.96 (0.95, 0.98) ‡ Ref. 1.45 (1.20, 1.76) ‡ 1.02 (0.84, 1.24) 1.44 (1.22, 1.71) ‡

Education 0.948
Illiterate 1309/3680 0.96 (0.94, 0.99) ‡ Ref. 1.51 (1.25, 1.83) ‡ 1.16 (0.96, 1.41) 1.60 (1.36, 1.88) ‡

Literate 520/2557 0.96 (0.95, 0.98) ‡ Ref. 1.36 (1.05, 1.75) ‡ 0.94 (0.72, 1.23) 1.28 (1.02, 1.62)
Residence 0.016

Urban 738/3050 0.97 (0.95, 0.99) ‡ Ref. 1.30 (1.04, 1.63) ‡ 0.98 (0.79, 1.23) 1.61 (1.33, 1.95) ‡

Rural 1091/3187 0.96 (0.94, 0.98) ‡ Ref. 1.55 (1.26, 1.91) ‡ 1.08 (0.87, 1.33) 1.36 (1.13, 1.64) ‡

Smoking status 0.296
Current or former

smoker 545/2304 0.98 (0.96, 1.00) Ref. 1.29 (0.99, 1.68) ‡ 1.08 (0.82, 1.41) 1.43 (1.13, 1.81) ‡

Non-smoker 1284/3933 0.96 (0.94, 0.97) ‡ Ref. 1.47 (1.22, 1.76) ‡ 0.99 (0.83, 1.20) 1.41 (1.2, 1.66) ‡

Drinking status 0.117
Current or former

drinker 591/2232 0.97 (0.95, 0.99) ‡ Ref. 1.59 (1.22, 2.07) ‡ 1.20 (0.92, 1.56) 1.67 (1.32, 2.12) ‡

Non-drinker 1238/4005 0.96 (0.94, 0.98) ‡ Ref. 1.39 (1.15, 1.65) ‡ 0.95 (0.79, 1.15) 1.33 (1.13, 1.56) ‡

Regular
exercise 0.468

Yes 540/2370 0.96 (0.93, 0.98) ‡ Ref. 1.42 (1.11, 1.82) ‡ 1.03 (0.79, 1.35) 1.50 (1.20, 1.87) ‡

No 1289/3867 0.97 (0.95, 0.98) ‡ Ref. 1.44 (1.19, 1.74) ‡ 1.03 (0.86, 1.25) 1.41 (1.20, 1.67) ‡

Living
pattern 0.671

Living with family 1505/5084 0.96 (0.95, 0.98) ‡ Ref. 1.41 (1.20, 1.66) ‡ 1.0 (0.85, 1.18) 1.43 (1.24, 1.64) ‡

Living alone 324/1153 0.98 (0.95, 1.01) Ref. 1.73 (1.14, 2.61) ‡ 1.31 (0.88, 1.95) 1.58 (1.11, 2.25) ‡

Adjusted for age, sex, residence, education background, occupation, current marital status, living arrangement,
tobacco smoking status, drinking status, regular exercise, number of teeth (continuous), use of artificial dentures,
hypertension, diabetes, cerebrovascular diseases, respiratory diseases, digestive system diseases, ADL score,
cancer, eye diseases, and BMI (continuous), hear disorders. Other chronic diseases, baseline MMSE; ‡ p < 0.05.
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Table 4. HRs (95% CIs) of incident decline in different cognitive domains with the DDS change patterns.

Cognitive Domain DDS Change Patterns

High–High High–Low Low–High Low–Low

Total DDS HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value

Global Ref. 1.27 (1.15, 1.40) 0.000 0.93 (0.84, 1.03) 0.200 1.12 (1.03, 1.23) 0.008
Orientation Ref. 1.23 (1.10, 1.38) 0.000 1.00 (0.89, 1.11) 0.925 1.24 (1.12, 1.36) 0.000
Registration Ref. 1.19 (1.07, 1.33) 0.001 1.04 (0.94, 1.16) 0.459 1.15 (1.04, 1.26) 0.005
Attention † Ref. 1.29 (1.16, 1.43) 0.000 1.03 (0.93, 1.15) 0.527 1.22 (1.12, 1.34) 0.000

Memory Ref. 1.15 (1.04, 1.27) 0.005 0.96 (0.87, 1.06) 0.379 1.05 (0.96, 1.14) 0.291
Language ‡ Ref. 1.26 (1.13, 1.39) 0.000 1.00 (0.90, 1.11) 0.981 1.17 (1.07, 1.28) 0.001

Plant-based DDS
Global Ref. 1.27 (1.15, 1.40) 0.000 1.06 (0.95, 1.17) 0.294 1.17 (1.07, 1.28) 0.000

Orientation Ref. 1.24 (1.11, 1.39) 0.000 1.02 (0.91, 1.15) 0.715 1.30 (1.18, 1.44) 0.000
Registration Ref. 1.15 (1.03, 1.28) 0.015 1.04 (0.93, 1.17) 0.453 1.16 (1.05, 1.28) 0.003
Attention † Ref. 1.28 (1.15, 1.42) 0.000 1.14 (1.03, 1.27) 0.014 1.25 (1.14, 1.37) 0.000

Memory Ref. 1.08 (0.97, 1.19) 0.157 1.02 (0.92, 1.12) 0.742 1.06 (0.97, 1.16) 0.213
Language ‡ Ref. 1.21 (1.09, 1.34) 0.000 1.03 (0.92, 1.14) 0.633 1.12 (1.02, 1.23) 0.017

Animal-based DDS
Global Ref. 1.21 (1.08, 1.34) 0.001 0.94 (0.85, 1.05) 0.260 1.09 (0.99, 1.19) 0.073

Orientation Ref. 1.05 (0.93, 1.19) 0.444 1.01 (0.89, 1.13) 0.924 1.09 (0.99, 1.21) 0.091
Registration Ref. 1.12 (0.99, 1.26) 0.077 1.05 (0.93, 1.17) 0.459 1.15 (1.04, 1.27) 0.007
Attention † Ref. 1.14 (1.02, 1.28) 0.025 1.11 (1.0, 1.24) 0.054 1.15 (1.05, 1.27) 0.004

Memory Ref. 0.98 (0.87, 1.09) 0.669 1.01 (0.91, 1.12) 0.820 1.02 (0.93, 1.12) 0.614
Language‡ Ref. 1.19 (1.06, 1.33) 0.004 1.08 (0.96, 1.20) 0.191 1.16 (1.06, 1.28) 0.002

† Attention and calculation; ‡ Language and visuospatial abilities. HRs of decline in different cognitive domains
were estimated using Cox proportional hazards models. Adjusting for age, sex, residence, education background,
occupation, current marital status, living arrangement, tobacco smoking status, drinking status, regular exercise,
number of teeth (continuous), use of artificial dentures, hypertension, diabetes, cerebrovascular diseases, respira-
tory diseases, digestive system diseases, ADL score, cancer, eye diseases, and BMI (continuous), hear disorders.
Other chronic diseases, baseline MMSE.

In multi-adjusted linear mixed-effects models, participants with low–low, high–low,
and low–high DDS change patterns experienced a faster decline in annual global cognitive
function than high–high DDS change patterns (Table 5, Figure 1). Moreover, participants
with either plant or animal low-low DDS change patterns had a rapid decline rate in global
cognition than those with the high–high DDS pattern over the follow-up (Supplementary
Table S3, Figure 1).

Table 5. β-Coefficients and 95% CI for the association of the DDS change patterns with MMSE score
changes over follow-up time (n = 6237). Results from the linear mixed-effects models.

DDS Change Patterns MMSE Score-β 95% CI p-Value

Baseline
DDS change categories

High–high Ref.
High–low −0.403 −0.755, −0.051 0.025
Low–high −0.202 −0.134, 0.537 0.239
Low–low −0.286 −0.585, −0.130 0.061

Longitudinal
High–high × time Ref.
High–low × time −0.157 −0.264, −0.050 0.004
Low–high × time −0.111 −0.209, −0.014 0.025
Low–low × time −0.164 −0.252, −0.076 0.000
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Figure 1. Estimated mean score of the mini-mental state examination with 95% CIs at follow-up year
intervals among participants with different DDS change patterns.

3.3. DDS Change Score and Cognitive Impairment

Among the whole cohort, the percentage of large decline, small decline, stable status,
small improvement, and large improvement was 9.4%, 20.5%, 36.4%, 23.8%, and 9.9%,
respectively (Supplementary Table S4). The incidence of cognitive impairment for a large
decline, small decline, stable status, small improvement, and large improvement was 7.51,
6.23, 5.45, 4.8, and 4.98 per 100 person-years, respectively.

When we assessed the DDS change scores (continuous variable) and cognitive function
by restricted-cubic-spline analyses, we identified a reverse-J relationship between the DDS
change score with cognitive impairment (p = 0.028, Figure 2). Relative to participants whose
DDS change remained stable, those with a large and small decline in DDS was associated
with a higher risk of cognitive impairment with the HRs were 1.70 (95% CI: 1.44, 2.01)
and 1.23 (95% CI: 1.08, 1.40) while the oldest-old with large improvement or small im-
provement in DDS had a lower risk with the HRs was 0.83 (95% CI: 0.73, 0.94) and 0.75
(95% CI: 0.63, 0.90) (Table 6).
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Figure 2. Restricted cubic splines for the association of DDS change with cognitive impairment:
the reference point is the median value of DDS change (0), with knots placed at 10th, 50th, and
90th percentiles, after adjusting for age, sex, BMI, the number of teeth, use of artificial dentures,
occupation, marital status, residence type, education level, living pattern; tobacco smoking, alcohol
drinking status, ADL, regular exercise, hear diseases, diabetes, hypertension, digestive system
diseases, cerebrovascular diseases and cancer, eye diseases, respiratory diseases, baseline MMSE.
Hazard ratios were indicated as solid lines and 95% confidence intervals as grey parts.

Table 6. The association between DDS change and the incidence of cognitive impairment.

Event Participants
Model 1 † Model 2 ‡

HR (95% CI) p-Value HR (95% CI) p-Value

DDS change
(categorical) 1829 6237

Large decline 216 589 1.39 (1.20, 1.63) 0.000 1.70 (1.44, 2.01) 0.000
Small decline 402 1280 1.11 (0.98, 1.26) 0.100 1.23 (1.08, 1.40) 0.002
Stable status 651 2268 Ref. Ref. Ref. Ref.

Small improvement 397 1483 0.91 (0.80, 1.03) 0.125 0.83 (0.73, 0.94) 0.003
Large improvement 163 617 0.97 (0.82, 1.15) 0.721 0.75 (0.63, 0.90) 0.002

Model 1 †: Adjusted for age, sex; Model 2 ‡: Adjusted for model 1 plus residence, education background, occupa-
tion, current marital status, living arrangement, tobacco smoking status, drinking status, regular exercise, number
of teeth (continuous), use of artificial dentures, hypertension, diabetes, cerebrovascular diseases, respiratory
diseases, digestive system diseases, ADL score, cancer, eye diseases, and BMI (continuous), hear disorders. Other
chronic diseases, baseline MMSE, baseline DDS.

Similar findings across age, gender, and education level were found for DDS change
in the stratified analysis (Supplementary Table S5). Compared with stable status, large
declines in DDS resulted in a significantly higher risk of cognitive impairment in all
subgroups. Additionally, a small decline in DDS led to a significantly increased risk of
cognitive impairment in the participants aged 80–89 years old, the illiterate group, and the
female group. Nevertheless, it was not shown in the participants over 90 years old, and
this result might be explained by the survival bias.
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3.4. Sensitivity Analyses

Sensitivity analyses showed a similar result. We excluded participants who had died
or lost contact in the second follow-up, and using the definition of cognitive impairment
(MMSE score less than 24); the participants with chronic diseases at the baseline were also
excluded. We considered education as a continuous variable and excluded self-reported
cerebrovascular diseases (Supplementary Table S6). Furthermore, both small and large
improvements in the DDS scores had a protective effect in the 90+-year-old and female
subgroup. Sensitivity analyses were performed, and there were no material changes in the
results (Supplementary Table S6).

4. Discussion

In this community-based prospective cohort study, we found that compared with
those participants maintaining high DDS, those with low–low DDS change patterns had an
increased risk of cognitive impairment and were associated with steeper global cognition
decline during 20 years of follow-up. In addition, compared with those in stable DDS
status, the oldest-old who had large declines in DDS score within two years was associated
with a significantly increased risk of cognitive impairment.

Diet diversity was related to lower cognitive decline among the oldest-old, as proven
in previous studies. Many studies have explored the Western dietary pattern, which is
not applicable to old Chinese people [11,36,37]. To date, only one long-term study has
comprehensively highlighted the effect of dietary diversity on cognitive function for the
Chinese oldest-old. In their study, Zheng et al. [18] demonstrated that participants with
higher baseline DDS scores had a lower risk of cognitive impairment than those with lower
DDS. They also found that a higher DDS score could attenuate the rate of cognitive decline
during long-term follow-up. However, their study focused on static dietary diversity
status; the dynamic features of DDS that reflect the change of nutrient adequacy were
ignored. Notably, accumulating evidence proved that DDS change was associated with
mortalities among the oldest-old [5,38,39], but the relationship between DDS change and
cognitive function was unclear. The current study aimed to explore the relationship between
the DDS change patterns and cognitive function among the oldest-old over long-time
follow-up. Our finding expands the results of Zheng et al. [18] by demonstrating that
maintaining high DDS or improving DDS could lower the risk of cognitive impairment
regardless of baseline DDS.

In accordance with previous studies, we evaluated the effect of adherence to healthy
dietary patterns on cognitive function. Uniquely, this research focused on the oldest-
old ignored in previous studies and assessed the DDS change trends that have not been
previously explored. Our results were consistent with some longitudinal cohorts where
the high-adherence diet patterns had better cognitive function for older people. A 7-year
cohort of Greek elderly participants aged 65 years or older suggested that those keeping
the Me-DI diet had less cognitive function decline [40]. However, other cohorts found
that the association did not exist in Australians aged 60–64 years (n = 1528) [9] and the
French aged over 65 years old (n = 1410) within 2.2–12 years of follow-up [41]. Notably,
the positive effect was replicated among participants near the Mediterranean basin [42],
but limited or null associations existed for people living in non-Mediterranean regions [43].
Furthermore, the variation in different dietary cultures undermines its generalizability, as
some Western style diets (the dietary products, soft drinks) are not consumed among the
Chinese oldest-old. The researchers also verified that the protective effects of diet diversity
were geographically generalizable and age-specific [11]. Since there is no standardized
measurement for diet diversity, the optimal measurement of diet diversity is critical to
assess its effect on cognitive function. Our findings confirm that it is scientific to choose
these nine common food groups.

Our results showed that participants with high–high DDS patterns showed the mini-
mum downtrend in MMSE scores, followed by the low–high DDS change pattern. Partici-
pants with high–low DDS change patterns had accelerated declines in cognitive function
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over the follow-up. The result is consistent with the previous study; compared to partici-
pants with high–high DDS patterns, those with low–medium still had a higher cognitive
impairment risk (HR 2.30, 95% CI 1.90–2.78) for adults over 60 years old [19]. It should
be noted that improving the DDS score from a low score to a high score still had a higher
risk of cognitive function decline than keeping a high DDS score. Thus, it is beneficial
to keep a high and stable DDS score; it is important to promote diet diversity from early
old age to prevent cognitive decline. We also found that compared with the low–low
DDS pattern, participants with low–high was associated with a lower decline in cognitive
function. Meanwhile, our results demonstrated that there was no significant difference in
incident cognitive impairment between low–high DDS change pattern with a high–high
DDS change pattern (Table 2), and compared with the stable status of low DDS, even a
small improvement in DDS could reduce the risk of cognitive impairment (HR = 0.83, 95%
CI: 0.73,0.94). Therefore, our findings suggest that improving DDS is helpful to reduce the
incidence of cognitive impairment for those with a low DDS score.

Additionally, the protective effects for cognitive function were observed for adherence
to the high animal-based DDS and plant-based DDS change pattern. One possible mecha-
nism might be that the brain of the oldest-old is more likely to show oxidative damage [44].
Some diet components and the synergistic effects of different food groups might have an
anti-inflammatory and antioxidant effect on the brain [45,46], affecting neuronal pathways
and physiological mediators [47,48]. This means that maintaining low dietary diversity
causes severe oxidative damage [49].

The beneficial effect of improving dietary diversity on cognitive function has been
confirmed even in the final phase of life. In the current study, compared with participants
with a “low–low” DDS change pattern, the incidence of cognitive impairment of “low–high”
decreased by 28 per 1000 person-years for people over 80 years old. An interesting finding
was that the “low–high” had a significant rapid cognitive decline (p < 0.05) relative to the
“high–high” DDS change pattern, but the incidence of cognitive impairment was similar to
that of the “high–high” DDS change pattern.

In terms of the DDS change trend, our findings suggested that large declines in the
DDS change scores resulted in a higher risk of cognitive impairment among the oldest-old.
Evidence shows that an extreme decline in DDS exerts a severe effect on cardiovascular
diseases, cancer, and overall mortality [50,51]. A longitudinal cohort of 12,974 older people
found that relative to those with stable DDS status, others with large declines in DDS faced
a higher mortality risk (HR: 1.15, 95% CI: 1.09–1.22) [5]. One possible mechanism may be
that dietary diversity decline was related to microbiome stability [52]. A significant change
in DDS may alter microbiome composition and then impact the cognitive performance of
the brain–gut–microbiome axis [53,54]. In addition, the relationship between DDS change
and cognitive impairment showed a reverse J-shape in this study. Therefore, it is critical
to treat the history of large declines in DDS change as a potential risk factor to predict
cognitive impairment for the oldest-old.

Another interesting finding was that female and illiterate participants were more
easily affected by DDS change. A large or small decline could increase the risk of cognitive
impairment, but a small or large improvement could attenuate the risk. The association was
not found in other subgroups. In line with our research, a cross-sectional study proved that
higher DDS was associated with reduced risks of cognitive impairment in older Chinese
women [55]. Similarly, another study found that mild cognitive impairment was inversely
related to the dietary pattern scores [56], especially for women. Moreover, the CLHLS
showed that malnutrition contributed to a worse cognitive function, especially for the
oldest illiterate females. The dietary intake’s bio-physiological sensitivity may account
for the gender difference [57,58]. Participants with high educational levels have higher
cognitive reserves (CR), which was considered as a compensation mechanism for the same
brain damage on cognitive function [59]. Our results emphasize that the oldest-old with
illiterate or females need to be paid more attention to in clinical practice.
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The major strength of this study is the national population-based representative cohort
for the oldest-old in China [22]. The long-term and repeated follow-up, well-designed
cohort allowed us to explore the long-term relation of DDS dynamic change with cognitive
function. To our knowledge, the current study is the first to investigate the association
between DDS change and cognitive impairment for the oldest-old in China. The average
age of the included participants was 88.6 years old. These populations more easily suffer
from dementia, and our study may offer some evidence for its prevention. In the oldest-old,
the effect of DDS might be overestimated for many reasons. Participants with high–high
DDS change patterns might have a better cognitive function at baseline, and some chronic
disease deterioration might result in a large decline in DDS. In this study, we adjusted these
confounders including the baseline MMSE, some chronic diseases, ADL score, and BMI.
We also conducted sensitivity analyses to confirm the robustness of our results.

Our study still has several limitations: first, the detailed dietary intake was not
quantitative because the current cohort design was a preliminary study, so we were unable
to adjust for energy intake in the analyses. Since energy intake largely depends on the
oldest-old, some important variables such as age, sex, BMI, comorbidities, economic
status, exercise and lifestyle were adjusted in our analyses. Although many studies have
demonstrated that this DDS change pattern is associated with health outcomes among
older people [5,19], the current method to evaluate DDS change without quantitative
data is not a gold standard, which limits its generalizability to other populations. Future
studies need to further confirm the validity of the DDS change pattern. Second, although
we chose the optimal food groups, nuts and milk were not included because most of
the participants could not afford them; third, the confounding factors were based on
self-reported data, which may cause recall bias. Furthermore, most of the participants
(81.5%) lived with family members, and the DDS change risk of those who lived alone
or lived in nursing homes might have been underestimated. Fourth, half of the oldest-
old only received less than one year of education, which may limit its application to
other older people with high education levels. Therefore, caution should be taken when
explaining the cause–effect relationship between DDS change and cognitive function due
to the observational nature of the current study. However, considering that worse cognitive
function might influence the diet diversity, the exclusion of patients with poor cognitive
function (MMSE < 18) might minimize the bias. Notably, the different cognitive domains in
the current study were calculated based on the MMSE items. The method has been used in
previous studies [30], and the MMSE domain-specific cognitive impairment aligns with the
performance in detailed neuropsychological tests, which might be useful to guide further
neuropsychological tests [60,61]. It can be considered as a proxy since the assessments
of domain-specific cognitive function in our study were unavailable. However, it might
still be poorly informative. Future studies should examine the association between DDS
change and specific cognitive function through comprehensive and detailed tests. Finally,
the present study only included people with normal cognitive performance at baseline.
Therefore, further studies are needed to validate the generalizability of participants with
cognitive impairment.

5. Conclusions

In the large national, representative longitudinal cohort, the oldest-old, keeping low–
low and significant declines in total DDS and plant-based change patterns had a higher
risk of cognitive impairment and cognitive decline in total cognitive function and its
subdomain except for the memory domain. The animal-based DDS change was associated
with cognitive subdomains such as attention and calculation, language, and visuospatial.
The low–low total DDS change pattern had the highest subsequent cognitive decline over
long-term follow-up. Our results support that dynamic DDS change scores might be a
potential marker of cognitive impairment in the final life span phase, especially for females
and illiterate people. Therefore, researchers should focus on improving the DDS in clinical
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practice to protect cognitive function at a younger age and maintain high–high DDS change
patterns for the oldest-old.
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