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Metabolic syndrome (MS), a cluster of metabolic risk factors, ranging from abdom-
inal obesity, dyslipidaemia, hypertension, type 2 diabetes and non-alcoholic fatty liver
disease [1], is one of the major global health problems due to its growing incidence and
prevalence [2]. Although the topic is the subject of careful research studies, the under-
lying etiology is still not fully understood. Many contributing factors and mechanisms
have been proposed including insulin resistance (IR), adipose tissue dysfunction, chronic
inflammation, oxidative stress, alterations of the gut microbiota and, to a lesser extent,
genetic factors [3–7]. However, environmental and lifestyle factors such as the consumption
of excess calories and a lack of physical activity have been characterized as being major
contributors. Visceral adiposity paves the way for the primary trigger for most of the
pathological features of MS, thus stressing the impact of sedentarism and over nutrition [8].

Therapeutic approaches to MS emphasize lifestyle changes including dietary inter-
ventions associated or not associated with physical activity, especially to reduce body
weight and the associated risk of cardio-metabolic diseases. Notwithstanding the well
documented beneficial effects of caloric restriction regiments in reducing body weight and
improving body composition in both humans and animals [9–12], research attention has
been recently focused on the usage of the “healthy diets” over the simple restriction of
calories. There are numerous examples of such dietetic regimes: the Dietary Approaches to
Stop Hypertension (DASH) diet, low carbohydrate-diet, low fat diets, plant-based diets,
and the classic Mediterranean diet, the latter being beneficial as it is paradoxically classified
as a high-fat diet [13]. This definition, however, is less paradoxical than it may seem when
taking into account that the Mediterranean diet involves the almost exclusive consumption
of extra virgin olive oil as a seasoning fat and is rich in oleic acid and several other minor
components, which, together with a high quantity of polyphenols, exert actual therapeutic
effects. Indeed, several studies have revealed how the Mediterranean diet reduces the risk
of developing MS independent from age, gender, and physical activity in healthy subjects
and in MS subjects as well [14,15].

Together with dietary interventions, exercise therapy helps to both prevent and mit-
igate the impact of MS. Chronic resistance and endurance exercise training, alone or in
combination, reduce body weight, blood pressure, and improve lipid profiles, e.g., raising
high-density lipoproteins (HDL) and lowering triglycerides [16–20]. The most beneficial
effects of exercise training have been reported on IR [20–23]. Specifically, there is evidence
that vigorous exercise not only reduces adipose tissue mass but also induces the brown-
ing of white adipose tissue, enhancing glucose and lipid metabolism, finally resulting in
improved insulin sensitivity [23].

This Special Issue of Nutrients, “Diet, Exercise, and the Metabolic Syndrome: En-
rollment of the Mitochondrial Machinery” aimed to further elucidate the biochemical
and molecular links between metabolic disturbances, mitochondrial structural/functional
changes, and lifestyle interventions which still remain not completely understood and
urgently need further investigation.
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The Special Issue collected three original articles on the topic. These articles allow the
reader to focus on whether and how diet, exercise and bioactive compounds impact whole
body metabolism and the mitochondrial compartment in metabolically relevant tissues.
In particular, the results presented and discussed in the three articles allow the following
questions to be answered:

Can resistance exercise reverse diet-induced obesity-related deleterious metabolic and
inflammatory effects?

What are the molecular and biochemical factors involved in the beneficial effects of
mild endurance exercise in settings of energy restriction?

Can alterations of polyunsaturated fatty acids (PUFA) metabolism impact mitochon-
drial functions?

Pinho and co-workers, with the aim to investigate whether resistance exercise can
reverse whole-body and skeletal muscle obesity-induced deleterious metabolic and inflam-
matory effects, used a new training protocol, consisting of ladder climbing, rarely applied
in rodents, to resemble the typical resistance exercise in humans [24]. This protocol applied
in mice high fat diet- obese, insulin-resistant and with alteration of redox balance in skeletal
muscle, resulted to be effective in reducing adiposity, ameliorating whole body glycemic
control and, at the skeletal muscle level, in reducing the content of inflammatory mediators
[tumor necrosis factor-alpha (TNF-α) and interleukin 1 beta (IL1-β)] while increasing the
phosphorylation of AktSer473 and AMPKThr17 [24]. These results furnish new details on
the molecular players involved in the beneficial effects of resistance exercise and encourage
the elaboration of new exercise approaches to translate into humans as a therapy against
obesity and associated diseases.

The beneficial effects of physical activity go beyond skeletal muscles and involve sev-
eral adaptations in other organs [25]. In the brain, exercise promotes different physiologic
phenomena, including angiogenesis, neurogenesis, and synaptogenesis [26]. From both
human and animal studies, it has emerged that most of the protective mechanisms of the
brain induced by physical exercise derive by the stimulation and release of the neurotrophic
factors, among which there is brain-derived neurotrophic factor (BDNF) [27–29]. Indeed,
physical exercise was shown to be effective in enhancing circulating levels of BDNF and
improving brain function [27]. Similar effects have been obtained under conditions of
caloric restriction [30,31]. Additionally, the combination of both stimuli also increases
BDNF expression in skeletal muscles with systemic beneficial effects [9].

De Lange and co-workers tested a very mild endurance exercise protocol on rats which
resulted in positively affecting the brain and skeletal muscles under conditions of energy
restriction involving, precisely, BDNF, mammalian target of rapamycin (mTOR) activation
and thyroid hormone (T3) [32]. More specifically, BDNF-CREB-mTOR pathway activation
is associated with the normalization of skeletal muscle and brain cortex intratissutal level
of T3, normally decreased during fasting, and the modulation of peripheral deiodinase
expression. These results highlight important implications on health, with it being univer-
sally known that T3 not only in itself acts as a mimetic of physical exercise, but also elicits a
pleiotropic effect on whole body metabolism and on brain function, likewise for cognition,
memory learning and behavior [33–35]. Nevertheless, physical activity as a treatment for
metabolic disease remains underestimated, whereas pharmacologic treatments or other
interventions which are more economically driven are preferred, especially in the advanced
state of MS-related diseases.

Looking inside the cells, an increasing number of studies indicate that the oxidative
stress condition strongly contributes to trigger the metabolic diseases with the derangement
of the mitochondrial compartment. Mitochondria are the powerhouses of the cell and play
a key role in maintaining homeostasis by finely regulating the balance between energy
storage and energy expenditure. Their principal function is to synthesize ATP via the
oxidative phosphorylation system (OXPHOS) maintained by the oxidation of metabolites
through the Krebs cycle and β-oxidation. Moreover, mitochondria represent the main
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source of cellular ROS. An estimate of about up to 2 percent oxygen consumed can be
deviated to the ROS formation [36].

High energy diets increase the flux of substrates to mitochondria, resulting in over
activation of OXPHOS that can form excessive ROS as by-products. The ROS, in turn, can
directly impair the mitochondrial compartment itself, affecting the cellular redox signalling.
Indeed, ROS have been associated in the first place with oxidative damage on lipids,
DNA, and proteins [36]. Over the time, oxidative damage conditions can lead to chronic
inflammation triggering metabolic disorders [36–38].

The evidence of the involvement of mitochondrial dysfunction and related stress
pathways has opened the way to research for potential therapeutic purposes in metabolic
disorders targeting these organelles [39].

Genetically modified models have been fundamental in understanding the best in-
terventions to improve mitochondrial functionality and health. Studies in both animals
and humans have show the ameliorating effects of antioxidants on mitochondrial function
in the presence or absence of metabolic disorders [40,41]. For example, the commonly
used vitamins and other chemical compounds with antioxidant properties may help to
reduce ROS accumulation in several dysfunctional metabolic contests [42]. Moreover, direct
targeted mitochondrial compounds have been successively used against mitochondrial
damage [36]. Physical exercise training in itself may help to reduce mitochondrial damage,
although it is influenced by the different cellular contests. Indeed, excessive physical
loading may generate detrimental effects by increasing pro-oxidant species. In contrast,
regular habitual physical exercise increases metabolic flexibility, by influencing cell fuel
utilization or directly mitochondrial network. In light of this, exercise training regimens can
be considered as a therapeutic-like intervention targeting mitochondria in several tissues.
In skeletal muscles, exercise can preserve the quality of the mitochondrial network [43].
Both endurance-based and resistance-based exercises promote health benefits by increasing
mitochondrial content and function in skeletal muscle [44].

Among healthy nutrients and foods, it is crucial to pay attention to the so defined
“functional foods”, which contain biologically active molecules associated with physio-
logical health benefits for preventing and managing chronic diseases [45]. In recent times,
phenolic compounds have shown the ability to prevent some chronic and degenerative
diseases, likewise cardiovascular diseases, type 2 diabetes, some types of cancers or neu-
rodegenerative disorders. Ginkgo biloba extract (GBE), resveratrol, and phytoestrogens as
well have shown not only some mitochondria-modulating properties but also significant
antioxidant potential in in vitro and in vivo studies [46]. There is strong evidence that the
beneficial effects of resveratrol are carried out through the protection of mitochondrial
function and the activation of biogenesis, directly targeting mitochondria [47]. Fatty acids
contained in the food may have different effects on health according to their saturation
grade bonds [48]. An increasing number of studies have shown that n-3 polyunsaturated
fatty acids (n-3 PUFAs), including eicosapentaenoic acid (EPA, 20:5 n-3) and docosahex-
aenoic acid (DHA, 22:6 n-3) exert beneficial effects on metabolic diseases, likewise IR,
cardiovascular diseases, and inflammation-associated diseases [49]. These beneficial effects
are attributed to the reduction of mitochondrial dysfunction by stimulating β-oxidation and
inhibiting lipogenesis. However, some discrepancies between animal and human studies
preclude any practical application and prompt further studies for the use of n-3 PUFA as
nutritional therapies in the prevention of IR in humans [50]. Another warm and poorly
investigated topic of discussion concerns the different impact on health and mitochondrial
functionality of PUFA taken up from diet versus those produced endogenously.

Elongation of very long chain fatty acids protein 2 (ELOVL2)—ablated mice offered
the possibility to investigate such issues, considering that the ELOV2 gene controls the
endogenous PUFA synthesis. Indeed, Elovl2 KO mice display, in liver and serum, sub-
stantially decreased levels of omega-3 [e.g., docosahexaenoic acid (DHA)] and omega-6
[docosapentaenoic acid (DPAn-6)] [51], which are associated with the remodeling of the
phospholipid composition of the mitochondrial membranes. Nevertheless, DHA is re-
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quired not only for normal brain development in children, but also for brain function in
adults [52].

Shabalina and coworkers collected evidence about the importance of endogenous long-
chain PUFA production for proper mammalian mitochondrial function and metabolism. In
the liver, the absence of the Elovl2 enzyme in the endoplasmic reticulum drastically reduced
the content of mitochondrial DHA (and of other PUFA) and this was in parallel associated
with a decrease in mitochondrial respiration efficiency despite the absence of oxidative
damage and preserved content of proteins of the respiratory chain [53]. Although most
PUFA derive from dietary intake, it is clear that endogenous production is very important
for mitochondrial functionality maintenance.

On the basis of the current literature, it is clear that much research has been carried out
and now more is known about the effects of diet and exercise on human health, however
the pleiotropic effects of lifestyle interventions prompt us to shed further light on a topic of
such sensitive interest for public health. Overall, the original contributions included in this
Special Issue are examples of new studies that are able to increase knowledge in the field
and contribute to the open debate on whether and how healthy diet and exercise are useful
approaches to prevent and/or counteract metabolic diseases, with emphasis on the impacts
of dietary composition, feeding frequency, exercise training, and bioactive compounds on
the mitochondrial compartment. What is expected is that this Special Issue will give new
support to translational interventions in the specific targeting of metabolic diseases in the
broad spectrum of pathological conditions which generate MS.
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