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Abstract: Studies have shown that young adults follow less structured eating patterns compared
with older cohorts. This may have implications for dietary assessment methods which rely on
memory and structured meal patterns. Our aim was to describe the intra-individual variation of
eating times in young adults aged 18-30 years. Participants (1 = 41) wore an Autographer camera
that captured first-person perspective images every 30 s for three consecutive days. All images were
timestamped and those showing food consumption were used to extract data such as the timing of
the first and last eating occasions (EOs), number of EOs per day, and length of eating window. Intra-
individual variability was calculated from these data using composite phase deviation (CPD) and
coefficient of variation (CV). The number of individuals with high or very high variability was 28
and 18 for timing of first and last EOs, respectively (CPD > 1.70), and 27 and 17 for number of EOs
and eating window, respectively (CV > 20%). In this sample of young adults, the lack of regularity
in eating patterns should be considered when selecting a dietary assessment method.

Keywords: meal timing; variability; wearable camera; young adults; nutrition; eating occasion; food
consumption; eating window; intra-individual variability

1. Introduction

Previous studies have shown that young adults eat at later times throughout the day,
follow less structured eating patterns, and have a higher variability in energy intake when
compared with older cohorts [1-5]. It is unclear whether this has an impact on dietary
quality and health due to the heterogenous nature of the studies exploring this relation-
ship in terms of methodology used and outcomes investigated as reported in previous
reviews [6-9]. Common outcomes include meal frequency (number of meals per day),
breakfast consumption or lack thereof [3,10-14], late-night eating [14-19], time-restricted
eating such as intermittent fasting [8,20], and meal timing relative to sleep timing [21-23].
In recent years, there has been a greater interest in the intra-individual day-to-day varia-
bility of meal timing and its association with health outcomes [4,21,24-33].

Methods of data collection in meal timing variability studies are usually subjective.
There is a heavy reliance on self-report and human recall such as dietary recalls [4,25,31-
34], questionnaires [24,28,35-38], or user-initiated food image capture [5,21,27,30]. This,
combined with the availability of feedback from these data collection methods, may in-
fluence or interfere with subjects’ food choices and behaviors [5]. Technologies such as
wearable cameras present an opportunity to objectively monitor human food and bever-
age consumption. They can automatically capture time-stamped images of all activities
throughout the day, including eating occasions, without requiring user input and can be
analyzed for daily eating patterns [5,39,40].
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In this study, we examine young adults’ eating patterns via time-stamped food im-
ages obtained from wearable cameras. Specifically, for our first aim, we sought to describe
the intra-individual variation of eating times in young adults using four different metrics
and categorize them as low, moderate, high, or very high variability. Our second aim was
to investigate whether there was an association between the four metrics used to measure
intra-individual variability and specific demographics such as gender, age, body mass in-
dex (BMI), and socioeconomic status (SES), as well as total energy intake across the dura-
tion of data collection.

2. Materials and Methods
2.1. Data Collection

This paper used data from the sub-study (n = 133) [41] of a larger cross-sectional
MYMeals project (n = 1001) [42]. Participants in the sub-study were young adults (18-30
years) who wore an Autographer camera for three consecutive days. The wearable camera
was worn on a lanyard around the neck and automatically captured images from a first-
person perspective every 30 s. Participants were instructed to wear the camera for all wak-
ing hours over the three days while maintaining their usual daily activities. They were
permitted to temporarily halt image capture or remove the camera when privacy was
needed [43,44]. On the same three days, they also recorded food and beverage intake using
a researcher-designed smartphone app named EaT and Track (The University of Sydney,
Sydney, Australia) [45] and completed daily 24-h dietary recall interviews with research
dietitians via the Automated Self-Administered 24-h recall Australia program (Deakin
University, Melbourne, Australia) [46]. Recruitment methods have previously been de-
scribed in the MYMeals study protocol [47]. In brief, participants had to be between the
ages of 18-30 inclusive, consume foods or beverages prepared outside the home at least
once a week, own a smartphone, and read and write English. Participants who were preg-
nant, lactating or had ever had an eating disorder were excluded. Participants completed
a basic demographic questionnaire, providing information such as gender (male, female
or prefer not to say), education status (primary school or less, secondary school, trade
qualification/apprenticeship/diploma or university degree), employment status (full-time
study, full-time work, part-time study/work, not working or studying) and residential
postcode. Residential postcode was used to determine relative socio-economic advantage
and disadvantage ranking within Australia using the Socio-Economic Indexes for Areas
2016 (high; top five deciles or low; bottom five deciles) [48]. Participants” weight (kg) and
height (cm) were self-reported and used to calculate BMI (underweight < 18.5, healthy
weight 18.5-24.9, overweight 25-29.9, obese > 30 kg/m?). Using self-reported weight and
height to calculate BMI has been found to be sufficiently accurate [49]. Deidentified cam-
era images were stored in the university’s research data store and demographic and an-
thropometric information were hosted and stored in the Research Electronic Data Capture
(REDCap) data management system (Vanderbilt University, Nashville, TN, USA) [50].
This sub-study was approved by the Institutional Human Research Ethics Committee
(2016/546) on the 15th of July 2016.

All images captured by the Autographer camera were coded by an Accredited Prac-
tising Dietitian for the presence or absence of food and beverages and then matched with
their 24-h recall data. This involved matching the time and date stamp of the wearable
camera images with the self-reported times of the 24-h recall and annotating foods and
beverages reported in the 24-h recall as: (i) reported by both methods, (ii) not reported in
the 24-h recall, or (iii) not identified by the wearable camera (i.e., the camera may have
been turned off). For entries labelled as not reported in the 24-h recall or not identified by
the wearable camera, the omitted episode and associated food and beverage items were
tabulated in Microsoft Excel. Two researchers checked all matching of data from the three
sources (v.c. and a.d.) [40].
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2.2. Inclusion Criteria

The 24-h recall was considered the ground truth method and foods that were re-
ported in the 24-h recall but not identified by the camera were labelled as missing. If foods
from an entire meal or snack were missing from the images, the eating occasion (EO), i.e.,
main meal or snack, would be labelled as missing. To ensure the inclusion of only high
quality data, participants with no missing main meals and no more than three missing
snacks over the course of the three days of data collection were included for analysis in
this paper. Data from the EaT app and images of beverages were not used, as it was diffi-
cult to differentiate between nutritive and non-nutritive beverages, e.g., images of opaque
drinking utensils.

2.3. Data Analysis

The times of EOs were collated using the time and date stamps available from the
camera images. An EO was defined as the consumption of any food. In cases where there
was more than one image captured of an EO, the timestamp of only the first image (i.e.,
the one with the earliest time) was used to represent its time of consumption. EO labels
such as main meals or snacks were not used and were only labelled by time of day. Any
EO that was recorded < 15 min of a previous event was combined to form one EO as per
previous studies [4,5]. Each day was defined as the 24-h period from 12:00 am to 11:59 pm
on the same calendar day. No drinking occasions were included.

Eating pattern metrics such as the total number of EOs per day (after combining
events within 15 min of each other), the clock time of the first and last EO of each day, the
daily eating window, and the daily energy intake were extracted for all days. The daily
eating window was defined as the duration between the start time of the first EO to the
start time of the last EO of the same day. These metrics were stratified by weekdays and
weekends and also compared between participants with healthy and overweight/obese
BMIs.

2.3.1. Meal Timing Variability Metrics

Four metrics were applied to assess the stability of meal timing across the three days
of data collection: Composite Phase Deviation of the first EO (CPD First), Composite
Phase Deviation of the last EO (CPD Last), coefficient of variation of the daily number of
EOs (CV No. of EOs), and coefficient of variation of the daily eating window (CV Eating
Window).

The first two metrics both used Composite Phase Deviation (CPD) to assess the day-
to-day stability of meal timing [21] for the first and last EO of each calendar day. CPD
combines two components: (i) regularity, i.e., how different the timing of a particular meal
is from the same meal of the previous day, and (ii) alignment, i.e., how different the timing
of a particular meal is from the average time of that meal over the number of days of data
collection [51]. The greater the CPD score, the greater the deviation in hours from a per-
fectly regular pattern of meal timing, i.e., the same time every day. CPD was originally
developed to assess the stability of sleep timing but has recently been applied to social
and eating events [21,52]. This is the formula for CPD:

ARegularityi(ADDs) = Meal timingi-1 — Meal timing;
AAlignmenti(AAT:) = Average meal timing — Meal timing;
CPDi = V(ADD2 + AAT?)

CPD = 1/N(2Ni=1 CPD:)

Variables: DD stands for “day-to-day”, AT stands for “average timing”, i is any given
day, and N is the total number of days.

The third and fourth metrics both used coefficient of variation (CV) to evaluate intra-
individual variability. The formula for CV is: (standard deviation/mean) x 100. One
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measured the intra-individual day-to-day variability of the total number of EOs per day
and the other measured the intra-individual day-to-day variability of the daily eating win-
dow.

The cut-offs used to categorize CPD and CV scores as low, moderate, high, and very
high variability were based on hours or number of EOs (Table 1). For example, partici-
pants with low variability in CPD of the first EO varied in meal timing by less than two
hours over the three days of data collection. An example of this is the consumption of the
first meal or snack at 9:00 a.m. on the first day, 10:00 a.m. on the second day, and 10:45
a.m. on the third day. Participants with high variability in CV number of EOs differed by
more than three EOs over the three days.

Table 1. Cut-offs used to categorize meal timing variability metric scores as low, moderate, high,
and very high variability and the equivalent difference in number of hours or eating occasions (EOs)
over three days.

CPD (First and Last EO) CV No. of EOs CV Eating Window
Cut-off Hours Cut-off EOs Cut-off Hours
Variability
Low <1.15 <2h <10% <1 EO <10% <2h
Moderate 1.15-1.70 2-3h 11-20% 12 EOs 11-20% 2-4h
High 1.71-2.40 3-4h 21-30%  2-3 EOs 21-30% 4-5h
Very high >2.40 >4 h >30% >3 EOs >30% >5h

2.3.2. Statistics

Statistical analyses were conducted using SPSS software, v27.0 for Windows (IBM,
Armonk, NY, USA). To test for differences in intra-individual meal timing variability met-
rics between demographic variables and eating pattern metrics between BMI categories
(reduced to two categories—healthy weight versus overweight/obese), the Mann-Whit-
ney U test was used. Spearman rank-order correlation coefficients were used to identify
associations between energy intake and intra-individual variability metrics. A p-value of
<0.05 was considered statistically significant.

3. Results

The MYMeals sub-study recruited 133 participants, of which 41 met the inclusion
criteria for this paper. Participant characteristics including age, BMI, SES, education level,
and employment status can be found in Table 2. A total of 577 EOs across 123 days were
included for analysis. Of the 123 days, 72% (n = 88) were weekdays and 28% (n = 35) were
weekend days.

Table 2. Participant characteristics and differences between male and female participants.

All Participants (n=41)  Female (n =27) Male (n=14)
Age (years)
18-24 25 18 7
25-30 16 9 7
Body Mass Index (BMI, kg/m?)
<18.5 0 0 0
>18.5<25 28 20 8
>25<30 7 3 4
230 6 4 2
Socio-economic status (SES)
Higher 22 13 9
Lower 19 14 5

Highest education attained
Secondary school or less 15 10 5
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Trade or diploma 7 7 0
University degree 19 10 9
Employment/study

Full-time study 28 18 10
Full-time work 5 4 1
Part-time study/work 5 3 2
Not studying or working 3 2 1

The mean and range of eating patterns and intra-individual variability metrics are
shown in Table 3. The average time of first and last EO were 10:18 a.m. and 8:06 p.m.,
respectively. The average number of EOs per day was 4.7, the average length eating win-
dow duration was 9.9 h, and the average daily energy intake was 8478 k]. The intra-indi-
vidual variability of the first EO was greater than the last EO as measured by CPD (2.9
versus 1.8), i.e., the time at which participants consumed their last EO over the three days
was more consistent compared with the first EO.

Table 3. Mean and range of eating pattern and intra-individual variability metrics.

All Days (n=123)

Mean Min Max
Eating pattern metrics
Time of first EO (hh:mm) 10:18 00:46 19:52
Time of last EO (hh:mm) 20:06 12:43 23:38
No. of EOs per day 4.7 1.0 9.0
Daily eating window (h) 9.8 0.3 222
Daily energy intake (kJ) 8478 760 22,879
Intra-individual variability metrics
CPD First (h) 29 0.3 16.3
CPD Last (h) 1.8 0.2 5.8
CV No. of EOs (%) 28.3 0.0 78.1
CV Eating Window (%) 25.6 1.6 106.0

EO, eating occasion; CPD, Composite Phase Deviation; CV, coefficient of variation. CPD First: CPD
(i.e., average deviation in hours from a perfectly regular pattern of meal timing) of the first EO for
each participant over the three days of data collection. CPD Last: CPD of the last EO for each par-
ticipant over the three days of data collection. CV No. of EOs: CV for the total daily number of EOs
for each participant over the three days of data collection. CV Eating Window: CV for the daily
eating window (the duration of time between the first and last EOs of the same calendar day) for
each participant over the three days of data collection.

Table 4 compares the eating pattern metrics of participants with a healthy versus an
overweight/obese BMI. Although the window of time in which participants consumed
food over the course of the day and the daily energy intake were slightly higher for people
with overweight/obese BMIs, this was not statistically significant. All other eating pattern
metrics also showed no statistically significant differences between BMI groups.
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Table 4. Associations between eating pattern metrics and Body Mass Index (BMI, kg/m?).

Mean = SD p-Value
Body Mass Index (BMI) <25 kg/m? (n = 28) 225 kg/m? (n =13)
Time of first EO (hh:mm) 10.58 £2.114 9.777 +1.021 0.338
Time of last EO (hh:mm) 20.00 +1.428 2041 +1.116 0.589
No. of EOs per day 4.726 +1.247 4.615+0.989 0.709
Daily eating window (h) 9.419 £2.463 10.63 +1.423 0.195
Daily energy intake (kJ) 8169 + 2258 9143 + 2487 0.311

A comparison of the mean and range of eating patterns and intra-individual varia-
bility metrics between weekdays and weekends is shown in Table S1. Whilst the mean
eating window was larger on weekdays than weekends (10.1 h versus 9 h), the mean daily
energy intake was greater on weekends than weekdays (8875 kJ versus 8320 kJ).

Figure 1 is a visual representation of the three eating windows for each participant.
The shortest observed eating window was 15 min, and the longest was 22 h 11 min. Ninety
five percent of participants (n = 39) had at least one day out of the three days with an
eating window of <12 h. Fifty nine percent of participants (n = 24) had an eating window
of <12 h for all three days of data collection.

Difference in Daily Eating Window

Participant (n = 41)

Figure 1. Individual differences in eating window (time from the first eating occasion of the day
until the last eating occasion of the day). Each color represents a separate participant. Each column
represents one day. Solid columns represent weekdays and unfilled columns represent weekend
days.

Table 5 compares the intra-individual variability metrics for each of the demographic
variables studied. There were no significant associations for age, gender, and BMI, but
individuals from a high SES (top five deciles) had a significantly greater variability in the
timing of the first EO compared with individuals from a low SES (bottom five deciles)
(CPD First 3.8 versus 1.9, p = 0.047).
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Table 5. Associations between day-to-day variability and demographic variables.

Mean = SD p-Value
Gender Male (n = 14) Female (n = 27)
CPD First (h) 4.128 +4.661 2.295+1.772 0.176
CPD Last (h) 1.555 + 0.805 2.009 +1.375 0.263
CV No. of EOs (%) 22.96 +9.909 31.00 + 17.538 0.122
CV Eating Window (%) 24.82 +22.59 25.98 +24.43 0.883
Body Mass Index (BMI) <25 kg/m? (n = 28) 225 kg/m? (n =13)
CPD First (h) 2.466 +1.784 3.903 +4.922 0.325
CPD Last (h) 1.843 +1.310 1.879 +1.045 0.932
CV No. of EOs (%) 30.54 +£16.75 23.32+12.36 0.174
CV Eating Window (%) 24.68 + 24.87 27.53 +21.19 0.723
Socioeconomic Status (SES) Top five deciles (n = 22) Bottom five deciles (n = 19)
CPD First (h) 3.786 + 4.012 1.920 +1.091 0.047 *
CPD Last (h) 1.890 + 1.327 1.813+1.115 0.843
CV No. of EOs (%) 27.58 +14.97 29.03 +16.90 0.773
CV Eating Window (%) 28.07 +24.86 22.70 +22.23 0.474

*Significance at p < 0.05

Figure 2 shows the distribution of participants in the low, moderate, high, and very
high variability categories for each meal timing stability metric. For the first EO (CPD
First), 28 out of 41 participants had high to very high variability. This is similar (n = 27) to
the variability for the number of EOs (CV No. of EOs). In contrast, variability was lower
for the last EO (CPD Last) and the daily eating window (CV Eating Window) with high
to very high variability in 18 and 17 participants, respectively. There were no participants
who fell into the low category for all four metrics simultaneously, whereas six participants
had all four metrics in the high or very high variability category.

Total energy intake across three days was not significantly associated with any of the
metrics used to measure day-to-day variability of meal timing (Table 52). The average
daily energy intake (kJ) for participants in the low, moderate, high, and very high varia-
bility categories for each metric is shown in Figure 2.

CPD First 7989 8505
cPD Last S 65 7320
CV No. of EOs 8714 8069
CV Eating Window 7450 8493

0 6 12 18 24 30 36 42
No. of participants (total n = 41)

B Low variability =~ W Moderate variability High variability Very high variability

Figure 2. Stacked bar chart showing the number of participants that fall into the low, moderate,
high, and very high intra-individual variability categories for each metric. Numbers within each
category represent the average daily energy intake (kJ) for participants in that category. CPD First:
Composite Phase Deviation of the first eating occasion for each participant over the three days of
data collection. CPD Last: Composite Phase Deviation of the last eating occasion for each participant
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over the three days of data collection. CV No. of EOs: Coefficient of variation for the total daily
number of eating occasions for each participant over the three days of data collection. CV Eating
Window: Coefficient of variation for the daily eating window for each participant over the three
days of data collection.

4. Discussion

Overall, our results showed that the timing of the first EO and the daily number of
EOs were highly variable from day-to-day. It was common for the timing of the first EO
to vary by more than three hours across days and for the number of EOs per day to vary
by more than two EOs. In contrast, the timing of the last EO and daily eating window
were relatively more stable with more participants in the low to moderate variability
groups. Most of the participants in these groups had less than three hours of variation for
the timing of the last EO and less than four hours of variation for the daily eating window.
These results add to previous studies which have found that young adults tend to eat
more frequently and erratically throughout waking hours [4,5].

4.1. Comparing Our Methods and Results with Previous Studies

Studies that measure the intra-individual variability of eating timing use subjective
methods of data collection and have inconsistent definitions for meal time variability or
regularity. These methods include using metrics such as CPD, CV, SD, and mean meal
shift [21,25,27,30-33], calculating the proportion of daily energy intake per hourly bin
[4,5,26,27,29,30,32,34], using self-reported questionnaires [24,28,36-38], measuring eating
jetlag between weekends and weekdays [28,31], and assessing meal frequency [53-55].
The metrics that we developed for our paper (CPD and CV) were adapted from methods
used by McHill et al. [21] and Popp et al. [30] but adjusted for three days of meal timing
data. Previously, epidemiology papers have established cut-offs for CPD and CV to cate-
gorize scores as low, moderate, or high variability for sleep timing [56-58]. However,
these cut-offs were based on levels of sleep variability that were associated with increased
health risks and were not appropriate for categorizing meal timing variability [58]. It is
important to establish standardized cut-offs for eating patterns to effectively compare re-
sults between dietary studies.

McHill et al. evaluated intra-individual variability of food intake in healthy young
adults across two timescales—a daily timescale (seven days) using CPD and a monthly
timescale (seven days per month for three months) using intra-class correlation. They
found that the CPD score for the last caloric event was the highest (i.e., least consistent
across days) relative to the first caloric event and caloric midpoint. This contrasts with our
results, where we showed that CPD Last was lower than CPD First. While no association
was seen between BMI and meal timing variability in our study, McHill et al. found that
non-lean individuals had a higher stability in meal timing when measured between
months [21]. Popp et al. measured intra-individual variability in a population of adults
who were overweight or obese using CV No. of EOs and the CV of the timing of the first
and last EO over two or more days. Their results indicated that, compared to weekdays,
the timing of the first EO was later but more consistent and that there were fewer EOs and
a shorter eating window on weekends. This is consistent with our results which also saw
a later first EO and shorter eating window on weekends but a similar number of EOs
across weekdays and weekends. Popp et al. also found no significant differences between
genders for all metrics, aligning with our findings [30].

4.2. Implications of Meal Timing Variability on Dietary Quality and Health

Most epidemiological findings appear to suggest that following eating patterns with
a large variability in meal timing has negative implications on dietary quality and/or car-
diometabolic health [27-34,37,38,54]. Data collected in the 1994-2004 National Health and
Nutrition Examination Survey (NHANES) and 2005-2007 German National Nutrition
Survey II (NVS II) showed that a regular meal pattern with greater energy intake earlier
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in the day scores higher on the Healthy Eating Index [29,34]. This provides physiological
benefits such as a reduced prevalence of metabolic syndrome, reduced waist circumfer-
ence, improved HDL cholesterol, and reduced y-glutamyl transferase concentrations in
Swedish men and women aged 60 years or above [37]. A prospective study also showed
an association between irregular eating at 16 years of age and the development of meta-
bolic syndrome at the age of 43 [38], although this was explained by concurrent unhealthy
lifestyles such as smoking, alcohol, and low levels of physical activity.

Makarem et al., Meth et al., and Zhao et al. used SD to measure intra-individual var-
iability in a range of populations including women aged 20-64 years with cardiometabolic
risk factors [31,33], 70-year-old men [25], and adults with overweight or obese BMIs [27].
All three studies found that a high day-to-day variability was associated with adverse
effects on health such as an increased blood pressure, worse glycemic control [31], ele-
vated high-sensitivity C-reactive protein [33], higher fatal cancer risk [25], and increased
adiposity [27,31]. These results are also supported by Fleischer et al. for healthy adults
without obesity [32]. Eating jetlag, defined as weekday-weekend differences in meal tim-
ing, has been measured in two studies [28,31]. Zeron-Rugerio et al. showed that an eating
jetlag of 3.5 h or more was significantly associated with an increased BMI in young adults
aged 18-25 years [28], and this was supported by Makarem et al. who found similar asso-
ciations both cross-sectionally and longitudinally in women with cardiometabolic risk fac-
tors [31].

Given the negative health effects of eating irregularly, three randomized crossover
trials have examined the effects of a consistent versus an inconsistent number of meals
per day on the cardiometabolic health of lean [54,59] and overweight or obese women
[53]. A regular meal pattern where participants were provided six meals a day for 14 days
had a beneficial impact on peak insulin and fasting total and LDL-cholesterol levels when
compared to an irregular meal pattern varying from three to nine meals a day for the same
duration of time [53,54]. Although only one study out of all of the above looked specifi-
cally at meal timing variability in young adults [28] overall, they all show that following
eating patterns with large variability has negative implications with regard to various
health outcomes.

In contrast, McHill et al. found that young adults who are overweight or obese have
a higher stability in meal timing across months [21], which contradicts the findings of
previous studies [28,34]. The authors explained that this may have been due to the lack of
consistency in the definition of meal timing stability [21]. Two large studies found no sta-
tistically significant association between meal time regularity and cardiometabolic out-
comes such as metabolic syndrome [36] and BMI [24]. One of these studies was conducted
in a sample of 5337 Korean men aged 30 years and above [36], whereas the other was
conducted in 1175 healthy UK adults aged 19-64 years [24].

The mechanisms behind the impact of meal timing variability on cardiometabolic
health are yet to be fully understood due to the limited number of observational and in-
tervention studies in humans [60]. However, it has been hypothesized that the timing and
regularity of meals play an important role in entraining circadian rhythms [31]. Although
the master clock in the brain is regulated by exposure to light, meal timing is a strong cue
for peripheral clocks [61,62], which are present in nearly all organ systems [63,64]. These
systems are involved in nutritionally-related metabolic processes such as glycolysis and
gluconeogenesis, cholesterol and lipid metabolism, oxidative phosphorylation and detox-
ification [64,65]. Studies have shown that an irregular eating pattern, defined as an incon-
sistent number of EOs from day to day [59] or a change in the time of meal consumption
[66], could lead to circadian misalignment [66], and has been linked with lower energy
expenditure, greater hunger ratings, and lower fullness rating, resulting in a positive en-
ergy balance which potentially increases the risk of developing obesity and cardiometa-
bolic diseases [59]. Animal studies have exposed genes that link circadian rhythms with
metabolic regulation such as the circadian locomotor output cycles kaput gene in mutant
mice. Mice lacking this gene were hyperphagic, obese, and rapidly developed metabolic
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syndrome [67]. The relationship between food intake and circadian rhythms is recipro-
cal —circadian rhythms drive changes in metabolic pathways and changes in metabolic
pathways alter molecular components of circadian rhythms [68,69].

Having a high variability in eating patterns also has implications for dietary assess-
ment. Traditional dietary assessment methods that rely on human memory to initiate the
recording of food intake or recall foods consumed such as food diaries and 24-h recalls
are high burden and subject to memory bias [70,71]. Important information such as foods
consumed at breakfast may be omitted as its timing may vary considerably from day-to-
day. Increasing the frequency of data collection throughout the day such as progressive
24-h recalls [72] or collecting dietary information near real-time may be warranted for this
cohort. This can be achieved with the use of time-triggered ecological momentary assess-
ment (EMA) to capture food intake and contextual data at pre-determined times person-
alized to subjects’ usual pattern of food intake [73,74]. Although not yet commercially
available nor feasible for use in practice settings [75], wearable sensors may also be useful
for capturing real-time eating behavior [76]. Sensors embedded in smartwatches can be
used to detect eating-related behaviors such as hand-to-mouth movements to deliver
timely prompts via a connected device such as a smartphone to remind users to record
their dietary intake, minimizing inaccurate dietary recalls because of memory decay
[77,78].

4.3. Strengths and Limitations

A key strength of our study is the use of wearable cameras. To the best of our
knowledge, our paper is the first to use automated wearable cameras to objectively meas-
ure the intra-individual variability of meal timing in young adults. Previous studies have
either used methods of data collection that are subjective [4,24,28,31,34,35,55] and require
user-initiation [21,30] or examined meal timing in terms of when meals and snacks are
consumed rather than its consistency or variability across days [79].

Our study had several limitations, the most notable being the small sample size. Our
results are likely not generalizable to the larger population, and one example of this is the
disparity between the proportion of our sample who had overweight and obese BMIs and
the young adult Australian population (32% versus 46%) [80]. Another limitation is the
exclusion of beverages from our analysis despite beverages contributing up to one quarter
of total daily energy intake [81,82]. Including nutritive beverages may change the intra-
individual variability of consumption timing. The data that we collected may not be rep-
resentative of participants’ usual intake, as they only wore the camera for three days, may
have altered their eating behavior on the days the camera was worn, or chosen to wear
the camera on days that were more convenient such as at home or away from social set-
tings. Week-long cross-sectional studies are likely needed to capture habitual eating be-
haviors [21].

5. Conclusions

Our results contribute to the literature on the timing of eating patterns in young
adults and highlight the urgent need to develop more objective methods of dietary assess-
ment that rely less on human recall. Methods that are based on data capture around the
traditional structure of meal times are not appropriate for this cohort. However, to date,
some of our innovations in the use of technology via apps and websites for dietary data
collection have still maintained this structure. While wearable cameras such as those used
in this paper are an objective means of recording the holistic food and beverage consump-
tion process, their widescale use in the general population is not feasible. Signal-contin-
gent EMA delivered on a personalized schedule to capture near real-time dietary and con-
textual data or event-contingent EMA triggered by the detection of eating-related behav-
iors via wearable sensors are some methods that may be appropriate for capturing dietary
data with high variability.
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