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Abstract: The association between manganese (Mn) and metabolic syndrome (MetS) is unclear,
and no prior study has studied this association longitudinally. The aim of this study was to assess
longitudinal associations of Mn exposure with MetS and metabolic outcomes. We used data from
the San Luis Valley Diabetes Study (SLVDS), a prospective cohort from rural Colorado with data
collected from 1984–1998 (n = 1478). Urinary Mn was measured at baseline (range = 0.20–42.5 µg/L).
We assessed the shape of the cross-sectional association between Mn and MetS accounting for effect
modification by other metals at baseline using Bayesian kernel machine regression. We assessed
longitudinal associations between baseline quartiles of Mn and incident MetS using Fine and Gray
competing risks regression models (competing risk = mortality) and between quartiles of Mn and
metabolic outcomes using linear mixed effects models. We did not observe evidence that quartiles of
Mn were associated with incident MetS (p-value for trend = 0.52). Quartiles of Mn were significantly
associated with lower fasting glucose (p-value for trend < 0.01). Lead was found to be a possible
effect modifier of the association between Mn and incident MetS. Mn was associated with lower
fasting glucose in this rural population. Our results support a possible beneficial effect of Mn on
diabetic markers.

Keywords: manganese; metabolic syndrome; rural health; urinary metals; longitudinal; Bayesian
kernel machine regression

1. Introduction

The prevalence of metabolic syndrome (MetS) has been increasing across all sociode-
mographic groups such that by 2015–2016, approximately 35% of adults in the United
States (US) had MetS [1]. MetS represents the co-occurrence of multiple cardiometabolic
risk factors [2], generally including at least some sub-set of the following five: obesity,
low values of high-density lipoproteins (HDL), high triglycerides, hyperglycemia, and
hypertension [2,3]. The presence of MetS is more predictive of cardiovascular disease risk
and diabetes risk than any single one of the five factors alone [3]. MetS is also associated
with other outcomes, such as nonalcoholic fatty liver disease, chronic kidney disease,
neurodegenerative disorders, and some cancers [3,4]. Having a lower level of education,
older age, less physical activity, higher meat intake, and residence in rural regions are each
associated with increased likelihood of MetS [4–6]. Additionally, exposure to some heavy
metals and metalloids (hereafter referred to as metals), such as arsenic, selenium, and zinc,
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has been associated with higher MetS prevalence cross-sectionally, whereas exposure to
other metals (e.g., lead) has been found to be inversely associated with MetS [7,8]. Our
understanding of the relationships between metal exposure and MetS is limited by a dearth
of longitudinal analyses.

Manganese (Mn) is an essential metal found naturally in bedrock and soil. People are
typically exposed to Mn through food, water, and air [9]. Mn naturally exists in most foods,
although certain shellfish, grains, beans, nuts, and tea have higher amounts of Mn [9,10].
Sources of Mn in ambient air include mining, automobile exhaust, and industrial processes
involving Mn-containing products (such as steel production) [9]. Mn in small amounts
is essential for health, but populations that are exposed to high levels of Mn have been
found to be at higher risk of adverse nervous system and respiratory effects [9–11]. The
recommended daily intake of Mn from dietary sources is 2.3 mg per day in male adults and
1.8 mg per day in female adults [12]. Excess levels of Mn in the body may accumulate when
the excretion system is impaired or undeveloped, when the Mn transporter malfunctions, or
if there is excess environmental exposure to Mn (e.g., as may occur for people in occupations
such as mining and steel making) [10,13]. Both low and high levels of Mn may be associated
with increased likelihood of MetS because both Mn deficiency and excess Mn are associated
with increased oxidative stress and mitochondrial dysfunction [13].

All prior epidemiological investigations of which we are aware that considered puta-
tive associations between Mn exposure and MetS used cross-sectional (12 studies [7,14–24])
or case–control designs (3 studies [25–28]). Overall, these studies have not observed sig-
nificant associations between Mn measured in diet [14,20,25], serum [15,22,27], whole
blood [7,16,18,21], plasma [23,24], or urine [16,17,19,26] with MetS. Similarly, a meta-
analysis of many of these studies did not find significant associations when pooling results
by measurement method [28]. However, results have been somewhat inconsistent, espe-
cially with regards to differences by sex [14,16,19,20,22]. For example, one cross-sectional
study among adults in China found that self-reported dietary Mn intake was associated
with an increased likelihood of having MetS in women and a decreased likelihood in
men [20]. This study also observed associations between dietary Mn intake and MetS
components (e.g., low values of HDL cholesterol for both women and men; interactions
by sex for abdominal obesity) [20]. In contrast, bivariate analyses from a Korean cross-
sectional study suggested that women with MetS had lower dietary Mn intake than women
without MetS (though these bivariate associations were not observed among men, and
dietary intake was not associated with MetS among either women or men after adjusting
for covariates) [14]. Additionally, previous studies have been inconsistent with respect
to how they handled potential non-linear relationships between Mn exposure and MetS.
For example, some studies only considered linear or bivariate relationships [19,26], some
considered associations by quantiles of exposure [7,14,15,18,20,23–25,27], and some used
analytic strategies that did not presume a functional form [16,21,22]. Of the studies that
considered the potential for U-shaped associations between Mn and MetS, both provided
evidence for such a non-linear relationship [16,21]. Finally, of the previous 15 studies, only
seven accounted for co-exposure to other metals [7,15–17,20,21,27]. Of these, all adjusted
for other metals in the models [7,15–17,20,21,27], and some employed Bayesian kernel
machine regression to account for effect modification by other metals [16,17]. One study
used principal components analysis to consider patterns of metal exposure and detected a
methylmercury-manganese pattern that was not found to be significantly associated with
MetS [7].

To further our understanding of the relationships between Mn and MetS, our objectives
were to: (1) assess cross-sectional associations between measured Mn and MetS account-
ing for potential non-linear relationships and effect modification by metal co-exposures;
(2) assess longitudinal associations between measured Mn and MetS (as well as MetS
components); and (3) assess whether sex modified the associations between Mn and MetS.
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2. Materials and Methods
2.1. Study Population

The San Luis Valley Diabetes Study (SLVDS) is a prospective cohort study designed
to assess risk factors for type 2 diabetes in a rural population in Colorado. The San Luis
Valley covers approximately six counties in Colorado, including Alamosa and Conejos
counties, and is primarily bi-ethnic [29]. The details of the SLVDS have been described
elsewhere [30,31]. Briefly, participants had to be: (1) 20–74 years of age, (2) current residents
of either Alamosa or Conejos counties, (3) able to complete the interview in either English or
Spanish, and (4) mentally competent. Individuals with diabetes at baseline were recruited
through advertisements and medical records, and individuals without diabetes at baseline
were recruited through a two-stage geographic sampling procedure. This two-stage pro-
cedure first incorporated maps, directories, and other geographic information to sample
about one-fifth of the households in the two counties. Then, individuals were recruited
within age, sex, ethnic, and county strata to reflect the demographic makeup of diabetes
in the study region. Baseline data collection occurred from 1984 to 1988, and follow-up
data collection occurred over the next 10 years. Data concerning demographic, clinical, and
behavioral characteristics as well as diagnoses of cardiometabolic outcomes were collected
at each visit. Data on mortality and vital statistics were collected between visits through
record searches and interviews over the phone [32].

2.2. Urinary Metal Assessment

Urine samples of approximately 120 mL were collected at baseline in trace-free metal
containers and aliquoted in 5 mL tubes. These samples were first stored in a freezer at
−80 ◦C and then transferred to the Colorado State Department of Public Health and Envi-
ronment chemistry laboratory in 2003 where they were stored at −80 ◦C until laboratory
analysis in 2008 and 2015 by the Colorado Department of Public Health and Environment
and the Columbia University Metals Laboratory, respectively. The laboratory methods
at both locations met the standards of the Environmental Protection Agency and Clinical
Laboratory Improvement Amendment. The storage procedure for these samples has been
shown to be reliable, as thawing and refreezing does not compromise the sample [33]. The
sample was thawed and mixed, and a <1 mL aliquot was used for analysis. An inductively
coupled argon plasma instrument with a mass spectrometer was used to detect the metal
concentrations (µg/L) of arsenic (As), barium (Ba), cadmium (Cd), cobalt (Co), chromium
(Cr), cesium (Cs), copper (Cu), Mn, molybdenum (Mo), lead (Pb), selenium (Se), thallium
(Tl), tungsten (W), and zinc (Zn; detection limit of all metals = 1 part in 10) [31,34,35]. Of
the 1478 participants who were eligible for this analysis, 242 (16%) had a Mn concentration
below the level of detection. Concentrations below the level of detection were assigned the
square root of the detection limit divided by two.

2.3. Metabolic Syndrome Definition and Measurement

We used a modified version of the National Cholesterol Education Program/Adult
Treatment Panel (NCEP/ATP) III guidelines adapted to the SLVDS dataset [3]. Partic-
ipants were considered to have MetS if they had three or more of the following out-
comes: (1) waist–hip ratio (waist circumference divided by iliac circumference) >0.90 for
males, waist–hip ratio >0.85 for females, or a body mass index (BMI; measured weight
divided by measured height squared) >30 kg/m2, (2) HDL <40 mg/dL for males or
<50 mg/dL for females, (3) triglycerides ≥150 mg/dL, (4) fasting glucose ≥100 mg/dL
or diabetes (includes people who self-reported being diagnosed with diabetes via an oral
glucose tolerance test or prescribed insulin or oral hyperglycemic medication and later
confirmed through medical records), or (5) measured systolic blood pressure ≥130 mmHg
or diastolic blood pressure ≥85 mmHg or self-reported current use of antihypertensive
medications. All components except those measuring obesity were from the NCEP/ATP III
guidelines. For obesity, we used the World Health Organization 1999 definition since waist–
hip ratio is a stronger predictor of obesity than waist circumference in older study popu-
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lations such as the SLVDS [3,36]. Blood samples were analyzed according to established
protocols: HDL and triglyceride measurements were obtained from the blood collection
using enzymatic methods [32]. Glucose values were obtained from those who fasted at least
eight hours using a glucose tolerance test with the Chemstrip bG (Boehringer-Mannheim
Diagnostics, Indianapolis, IN) and measured using the glucose oxidase method [30,37].
Blood pressure was measured three times, and the average of the second and third was
used as the measurement.

2.4. Covariate Measurement

Covariates were identified using an evidence-based directed acyclic graph and in-
cluded: sex (female/male), age (years; continuous), ethnicity (Hispanic/non-Hispanic),
annual gross household income (<USD 10,000, USD 10,000-24,999, ≥USD 25,000), smoking
status (<100 cigarettes in lifetime (never), ≥100 cigarettes in lifetime and does not currently
smoke (former), ≥100 cigarettes in lifetime and currently smokes (current), caloric intake
(kcal/day), and urinary creatinine (g/L) [38]. Caloric intake (kcal/day) was obtained from
a food frequency questionnaire [39]. Urinary creatinine (g/L) was determined using a
colorimetric assay with the Jaffe reaction [40].

2.5. Statistical Analysis

Of the total of 1823 SLVDS participants, individuals were excluded from our analyses
if they had complications with the urine sample (n = 28), were missing baseline data on Mn
(n = 186), were missing baseline data on covariates (n = 130), or had implausible follow-up
time (n = 1). No participants were missing data on MetS at baseline (defined as missing
three or more component values), and 609 participants who did not have MetS at baseline
had data for at least one follow-up study visit. One additional participant was excluded
from longitudinal analyses for having two study follow-up visits within 30 days of each
other. Thus, the sample size was 1478 participants for the cross-sectional analysis and
608 participants for the longitudinal MetS analysis. For the secondary analyses examining
associations with MetS components, the sample size varied from 1475 to 1477 participants,
depending on missing data for the specific outcome.

We compared baseline covariates among individuals with Mn values above and below
the median using t tests for continuous variables and chi-squared tests for categorical
variables. We examined correlations among metals using Spearman’s rank correlation
coefficients. To evaluate potential non-linear cross-sectional associations with MetS and
effect modification by other metals (i.e., As, Ba, Cd, Co, Cr, Cs, Cu, Mo, Pb, Se, Tl, W, and
Zn) at baseline, we used Bayesian kernel machine regression (BKMR) [41]. Due to the
skewed distribution of the metals, the metal values in the BKMR models were natural
log-transformed. The cross-sectional association between Mn and MetS appeared nonlinear,
so further analyses used quartiles of Mn rather than assessing it as a continuous measure.

We assessed longitudinal associations between quartiles of Mn and MetS using Fine
and Gray competing risks regression (competing event = mortality). We assessed longi-
tudinal associations between quartiles of Mn and individual MetS component outcomes
(i.e., waist–hip ratio, BMI, total HDL, triglycerides, fasting glucose, systolic blood pressure,
and diastolic blood pressure) using linear mixed effects models with a random intercept
for each participant. In all longitudinal analyses, three sets of models were fit: (1) models
adjusted only for urinary creatinine (crude models); (2) models adjusted for baseline values
of all covariates identified a priori (primary models); and (3) sex-stratified models adjusted
for all covariates in the primary models except for sex. Candidate metals that acted as
effect modifiers in the BKMR models were identified using a liberal threshold. For each of
these metals, we tested for effect modification of Mn by adding quartile values of the metal
to the adjusted Fine and Gray models as well as an interaction term between each of the
other metals and quartiles of Mn to see if the sub-distribution hazard ratio differed from
the model without the interaction term (separate models for each potential effect modifier).
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We conducted a sensitivity analysis for the longitudinal models that excluded participants
who had Mn levels that were below the limit of detection.

In all analyses, associations were considered statistically significant if p < 0.05. All
analyses were conducted with R version 4.1.0 (R Core Team, Vienna, Austria). We used
the bkmr (version 0.2.0), cmprsk (version 2.2-11), lme4 (version 1.1-27.1), lmerTest (version
3.1-3), corrplot (version 0.92), and ggplot2 (version 3.3.5) packages in R [41–47].

3. Results
3.1. Baseline Characteristics

At baseline, the median (25th, 75th percentiles) Mn value was 0.63 (0.33, 1.13) µg/L.
Mn values ranged from 0.20 to 42.5 µg/L, and the geometric mean (95% confidence interval
(CI)) was 0.67 (0.64, 0.70) µg/L. The medians, 25th, and 75th percentiles for the other metals
are presented in Supplementary Table S1, and the correlations among metals are shown in
Figure 1. Mn was most highly correlated with Cu (ρ = 0.66), Tl (ρ = 0.43), and Se (ρ = 0.41).

Figure 1. Spearman rank correlations among metals included in this analysis (n = 1478). Larger
circles indicate larger magnitude of correlations. Color of circles indicates magnitude and direction
of correlation.

Other baseline characteristics of the study sample are presented in Table 1. Briefly, 51%
of the participants were female, 47% were Hispanic, and the median (25th, 75th percentiles)
age was 55 (45, 64) years old. People with higher Mn at baseline were significantly more
likely to be male (p = 0.04), older (p = 0.01), Hispanic (p = 0.02), have obesity (p = 0.01),
and not have high fasting glucose (p = 0.02). The likelihood of having high Mn at baseline
also differed by smoking status (p < 0.01). Neither total household income nor total caloric
intake was found to differ significantly by Mn status (Table 1). At baseline, 56% of the
sample had MetS, and 88% had obesity, the largest MetS component in this population
(Table 1).
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Table 1. Baseline characteristics a of the sample contrasted by the median Mn value.

All Participants Mn ≤ 0.63 Mn > 0.63 p-Value b

Total 1478 (100.0) 743 (50.0) 735 (50.0) -

Sex

0.04 *Males 723 (48.9) 344 (46.3) 379 (51.6)

Females 755 (51.1) 399 (53.7) 356 (48.4)

Age (years) 55.1 (45.3, 63.6) 54.2 (44.5, 62.5) 56.5 (45.9, 64.1) 0.01 *

Ethnicity

0.02 *Hispanic 696 (47.1) 328 (44.1) 368 (50.1)

Non-Hispanic 782 (52.9) 415 (55.9) 367 (49.9)

Total Household Income

0.84
<USD 10,000 442 (29.9) 217 (29.2) 225 (30.6)

USD 10,000–24,999 541 (36.6) 274 (36.9) 267 (36.3)

≥USD 25,000 495 (33.5) 252 (33.9) 243 (33.1)

Smoking Status

<0.01 *
Never (<100 cigarettes in lifetime) 645 (43.6) 251 (33.8) 394 (53.6)

Current (≥100 cigarettes and currently smokes) 361 (24.4) 216 (29.1) 145 (19.7)

Former (≥100 cigarettes and currently does not smoke) 472 (31.9) 276 (37.1) 196 (26.7)

Caloric intake (kcal/day) 1463 (1114, 1838) 1448 (1108, 1829) 1472 (1130, 1847) 0.76

Metabolic syndrome prevalence c 831 (56.2) 414 (55.7) 417 (56.7) 0.69

Obesity 1307 (88.4) 640 (86.1) 667 (90.7) 0.01 *

Low values of high-density lipoprotein 645 (43.6) 306 (41.2) 339 (46.1) 0.06

High triglycerides 715 (48.4) 359 (48.3) 356 (48.4) 0.96

High fasting glucose 738 (49.9) 393 (52.9) 345 (46.9) 0.02 *

High blood pressure 648 (43.8) 333 (44.8) 315 (42.9) 0.45

* p < 0.05. a Values are median (25th, 75th percentiles) or n (%). b p-values generated from chi-squared (categorical)
and t tests (continuous) comparing baseline covariates by Mn baseline value being at or below the median
(0.63 µg/L) versus above the median. c Metabolic syndrome was defined as having three or more of the following
outcomes: (1) waist–hip ratio (waist circumference divided by iliac circumference) >0.90 for males, waist–hip
ratio >0.85 for females, or a body mass index (BMI; measured weight divided by measured height squared)
>30 kg/m2, (2) high density lipoprotein (HDL) <40 mg/dL for males or <50 mg/dL for females, (3) triglycerides
≥150 mg/dL, (4) fasting glucose ≥100 mg/dL or diabetes (includes people who self-reported being diagnosed
with diabetes via an oral glucose tolerance test or prescribed insulin or oral hyperglycemic medication), or
(5) measured systolic blood pressure ≥130 mmHg or diastolic blood pressure ≥85 mmHg or self-reported current
use of antihypertensive medications.

3.2. Outcome Follow-up

The risk of MetS among the 608 participants who did not have MetS at baseline
was 37% over a mean (standard deviation) of 7 (4) years of follow-up (median number
of study visits = 4; mean time between study visits = 3 years; minimum time between
visits = 37 days; maximum time between visits = 13 years). Among the 608 participants
with follow-up data, 107 died (18%) without developing MetS. Compared to the popu-
lation in the cross-sectional analyses (n = 1478) that included participants with MetS at
baseline, participants in the longitudinal analyses were, on average, younger at baseline
(mean age = 51 vs. 55 years), more likely to be female (58% vs. 51%), and more likely to be
non-Hispanic (61% vs. 53%).

3.3. Cross-sectional Analyses

Accounting for the possibility of non-linear associations, we did not observe strong
evidence that natural log-transformed Mn was cross-sectionally associated with MetS,
although the relationship appeared to be somewhat non-linear (Supplementary Figure S1).
Natural log-transformed values of Ba, Cd, Co, Cs, Mo, Pb, and Zn appeared to be potential
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effect modifiers (Figure 2). The other metals did not appear to be effect modifiers (results
not shown).

Figure 2. Bayesian kernel machine regression model of the cross-sectional associations between
natural log-transformed (ln) metals and metabolic syndrome (MetS). Figure Legend: Metals along the
y axis are categorized into quartiles. Red outlined plots represent interactions between Mn and other
metals. Parallel dose–response lines indicate that interaction is not present. Models were adjusted
for baseline values of sex, age (years), ethnicity (Hispanic, non-Hispanic), annual gross household
income (<USD 10,000, USD 10,000–24,999, ≥USD 25,000), smoking status (<100 cigarettes in lifetime
(never), ≥100 cigarettes in lifetime and does not currently smoke (former), ≥100 cigarettes in lifetime
and currently smokes (current)), caloric intake (kcal/day), and urinary creatinine (g/L). Metabolic
syndrome was defined as having three or more of the following outcomes: (1) waist–hip ratio (waist
circumference divided by iliac circumference) >0.90 for males, waist–hip ratio >0.85 for females, or
a body mass index (measured weight divided by measured height squared) >30 kg/m2, (2) high
density lipoprotein <40 mg/dL for males or <50 mg/dL for females, (3) triglycerides ≥150 mg/dL,
(4) fasting glucose ≥100 mg/dL or diabetes (includes people who self-reported being diagnosed with
diabetes via an oral glucose tolerance test or prescribed insulin or oral hyperglycemic medication),
or (5) measured systolic blood pressure ≥130 mmHg or diastolic blood pressure ≥85 mmHg or
self-reported current use of antihypertensive medications.

3.4. Longitudinal Analyses

In longitudinal analyses, we did not observe evidence that quartiles of Mn were
associated with incident MetS in the crude model (p-value for trend = 0.41) or the adjusted
model (p-value for trend = 0.52). These associations were not modified by sex (Table 2).
Quartiles of Mn were significantly associated with lower fasting glucose levels comparing



Nutrients 2022, 14, 4271 8 of 14

highest quartile of Mn to lowest (β = −12.6; 95% CI= −20.3, −4.9; p-value for trend < 0.01).
This association was found in males (p-value for trend < 0.01) and females (p-value for
trend = 0.048; Table 3). In crude models but not adjusted models, higher quartiles of Mn
were associated with lower waist–hip ratio overall, with lower triglycerides in males, and
with higher BMI and systolic blood pressure in females (Supplementary Table S2).

Table 2. Sub-distribution hazard ratios and 95% confidence intervals for the longitudinal associations
a between quartiles of manganese and metabolic syndrome (n = 608) b.

Quartile 2
0.33–0.63 µg/L

Quartile 3
0.63–1.13 µg/L

Quartile 4
1.13–42.5 µg/L p-Value for T-rend

Crude model c (n = 608) 1.39 (0.95, 2.02) 1.11 (0.74, 1.67) 1.30 (0.88, 1.92) 0.41

Males (n = 254) 1.45 (0.80, 2.63) 1.00 (0.56, 1.79) 1.21 (0.71, 2.07) 0.76

Females (n = 354) 1.39 (0.85, 2.30) 1.20 (0.69, 2.10) 1.39 (0.80, 2.42) 0.41

Adjusted model d (n = 608) 1.42 (0.97, 2.08) 1.11 (0.74, 1.68) 1.26 (0.84, 1.89) 0.52

Males (n = 254) 1.51 (0.81, 2.81) 0.97 (0.53, 1.80) 1.25 (0.70, 2.21) 0.71

Females (n = 354) 1.40 (0.84, 2.31) 1.20 (0.68, 2.10) 1.38 (0.77, 2.47) 0.43
a Longitudinal analysis assessed using Fine and Gray competing risks regression with the competing event
of mortality. The reference group for manganese is the first quartile (≤0.33 µg/L). b Metabolic syndrome was
defined as having three or more of the following outcomes: (1) waist–hip ratio (waist circumference divided
by iliac circumference) >0.90 for males, waist–hip ratio >0.85 for females, or a body mass index (measured
weight divided by measured height squared) >30 kg/m2, (2) high density lipoprotein <40 mg/dL for males or
<50 mg/dL for females, (3) triglycerides ≥150 mg/dL, (4) fasting glucose ≥100 mg/dL or diabetes (includes
people who self-reported being diagnosed with diabetes via an oral glucose tolerance test or prescribed insulin
or oral hyperglycemic medication), or (5) measured systolic blood pressure ≥130 mmHg or diastolic blood
pressure ≥85 mmHg or self-reported current use of antihypertensive medications. c Adjusted for urinary
creatinine (g/L). d Adjusted for baseline values of sex (except in sex-stratified models), age (years), ethnicity
(Hispanic, non-Hispanic), annual gross household income (<USD 10,000, USD 10,000–24,999, ≥USD 25,000),
smoking status (<100 cigarettes in lifetime (never), ≥100 cigarettes in lifetime and does not currently smoke
(former), ≥100 cigarettes in lifetime and currently smokes (current)), caloric intake (kcal/day), and urinary
creatinine (g/L).

Table 3. Adjusted longitudinal associations a between baseline quartiles of manganese and
metabolic outcomes.

Quartile 2
0.33–0.63 µg/L

Quartile 3
0.63–1.13 µg/L

Quartile 4
1.13–42.5 µg/L p-Value for Trend

Waist–hip ratio; n = 1477 0.000 (−0.006, 0.005) −0.001 (−0.007, 0.004) 0.000 (−0.006, 0.006) 0.96

Males 0.003 (−0.004, 0.01) 0.000 (−0.007, 0.008) 0.000 (−0.007, 0.007) 0.92

Females −0.003 (−0.011, 0.006) −0.002 (−0.011, 0.007) 0.001 (−0.009, 0.011) 0.79

Body mass index (kg/m2); n = 1477 −0.14 (−0.82, 0.54) −0.04 (−0.74, 0.67) 0.17 (−0.55, 0.90) 0.61

Males 0.00 (−0.84, 0.84) −0.60 (−1.44, 0.25) −0.16 (−1.00, 0.68) 0.51

Females −0.10 (−1.13, 0.94) 0.49 (−0.62, 1.60) 0.62 (−0.56, 1.80) 0.21

High-density lipoprotein (mg/dL); n = 1476 −1.01 (−2.74, 0.73) −1.02 (−2.83, 0.78) −0.18 (−2.03, 1.67) 0.87

Males −1.02 (−3.33, 1.29) −0.01 (−2.34, 2.31) −0.14 (−2.45, 2.16) 0.91

Females −1.64 (−4.17, 0.90) −2.00 (−4.71, 0.72) −0.56 (−3.45, 2.33) 0.65

Triglycerides (mg/dL); n = 1477 −12.5 (−29.9, 4.9) −10.1 (−28.1, 7.9) −17.8 (−36.2, 0.7) 0.09

Males −1.3 (−21.8, 19.2) −7.2 (−27.7, 13.4) −13.9 (−34.2, 6.5) 0.16

Females −17.3 (−45.8, 11.2) −13.8 (−44.3, 16.8) −18.6 (−51.1, 14.0) 0.33

Fasting glucose (mg/dL); n = 1475 1.0 (−6.2, 8.2) −9.4 (−16.9, −1.9) −12.6 (−20.3, −4.9) <0.01 *

Males 4.4 (−5.7, 14.6) −14.9 (−25.1, −4.6) −15.3 (−25.5, −5.2) <0.01 *

Females 0.3 (−9.9, 10.4) −4.8 (−15.7, 6.1) −10.9 (−22.5, 0.6) 0.048 *



Nutrients 2022, 14, 4271 9 of 14

Table 3. Cont.

Quartile 2
0.33–0.63 µg/L

Quartile 3
0.63–1.13 µg/L

Quartile 4
1.13–42.5 µg/L p-Value for Trend

Systolic blood pressure (mmHg); n = 1477 −2.1 (−4.4, 0.2) −0.8 (−3.2, 1.6) −2.2 (−4.7, 0.2) 0.17

Males −1.0 (−4.1, 2.2) −3.1 (−6.3, 0.1) −2.7 (−5.8, 0.5) 0.06

Females −3.2 (−6.5, 0.2) 0.8 (−2.7, 4.4) −2.2 (−6.0, 1.6) 0.71

Diastolic blood pressure (mmHg); n = 1477 −1.2 (−2.3, 0.0) −1.3 (−2.5, −0.1) −0.8 (−2.0, 0.4) 0.22

Males −1.0 (−2.7, 0.7) −2.3 (−4.0, −0.6) −1.2 (−2.9, 0.5) 0.11

Females −1.4 (−2.9, 0.2) −0.4 (−2.0, 1.2) −0.4 (−2.2, 1.3) 0.91

* p < 0.05. a Associations assessed using linear mixed effects models with a random intercept for each participant.
The reference group for manganese is the first quartile (≤0.33 µg/L). Models are adjusted for baseline values
of sex (except in sex-stratified models), age (years), ethnicity (Hispanic, non-Hispanic), annual gross household
income (<USD 10,000, USD 10,000–24,999, ≥USD 25,000), smoking status (<100 cigarettes in lifetime (never),
≥100 cigarettes in lifetime and does not currently smoke (former), ≥100 cigarettes in lifetime and currently smokes
(current)), caloric intake (kcal/day), and urinary creatinine (g/L). Values reported are β (95% confidence interval).

In sensitivity analyses excluding participants with Mn levels below the limit of de-
tection (n = 242 removed), results remained similar. Mn was not associated with MetS
longitudinally (adjusted p-value for trend = 0.64 overall, 0.35 for males, and 0.74 for fe-
males). Mn was significantly associated with lower fasting glucose overall and among
males, and with lower triglycerides among males (Supplementary Table S3).

In separate longitudinal models accounting for effect modification by other metals,
associations between quartiles of Mn and MetS remained similar (Table 4). The model
with an interaction term between quartiles of Mn and quartiles of Pb yielded a significant
association between Mn and MetS comparing the highest quartile of Mn to the lowest
(sub-distribution hazard ratio = 3.36; 95% CI = 1.11, 10.17; p-value for trend = 0.01). None of
the interaction terms between Mn and other metals were significant except for interaction
terms between certain quartiles of Pb and Mn.

Table 4. Adjusted longitudinal associations a between quartiles of manganese and metabolic syn-
drome b in models with an interaction term between manganese and quartiles of other metals.

Interacting Metal Model Mn Quartile 2
0.33–0.63 µg/L

Mn Quartile 3
0.63–1.13 µg/L

Mn Quartile 4
1.13–42.5 µg/L p-Value for Mn Trend

Barium 1.44 (0.78, 2.68) 1.25 (0.57, 2.73) 1.00 (0.33, 3.08) 0.71

Cadmium 1.16 (0.64, 2.09) 1.14 (0.48, 2.71) 1.04 (0.39, 2.72) 0.80

Cobalt 1.56 (0.84, 2.90) 1.15 (0.53, 2.52) 1.99 (0.89, 4.45) 0.17

Cesium 1.80 (0.97, 3.35) 1.74 (0.74, 4.07) 1.05 (0.46, 2.41) 0.65

Molybdenum 1.69 (0.90, 3.17) 1.93 (0.89, 4.18) 1.22 (0.52, 2.88) 0.37

Lead 2.45 (1.27, 4.72) 1.97 (0.94, 4.10) 3.36 (1.11, 10.17) 0.01 *

Zinc 1.09 (0.59, 2.01) 1.50 (0.79, 2.83) 1.18 (0.41, 3.42) 0.37

* p < 0.05. a Associations between quartiles of manganese and metabolic syndrome incidence were assessed
using Fine and Gray competing risks regression with the competing event of mortality. The reference group for
manganese is the first quartile (≤0.33 µg/L). Values presented are sub-distribution hazard ratios (95% confidence
interval) for each quartile of Mn. Models are adjusted for baseline values of the metal listed, a multiplicative
interaction between Mn and the metal listed, sex, age (years), ethnicity (Hispanic, non-Hispanic), annual gross
household income (<USD 10,000, USD 10,000–24,999, ≥USD 25,000), smoking status (<100 cigarettes in lifetime
(never), ≥100 cigarettes in lifetime and does not currently smoke (former), ≥100 cigarettes in lifetime and currently
smokes (current)), caloric intake (kcal/day), and urinary creatinine (g/L). b Metabolic syndrome was defined
as having three or more of the following outcomes: (1) waist–hip ratio (waist circumference divided by iliac
circumference) >0.90 for males, waist–hip ratio >0.85 for females, or a body mass index (measured weight divided
by measured height squared) >30 kg/m2, (2) high density lipoprotein <40 mg/dL for males or <50 mg/dL
for females, (3) triglycerides ≥150 mg/dL, (4) fasting glucose ≥100 mg/dL or diabetes (includes people who
self-reported being diagnosed with diabetes via an oral glucose tolerance test or prescribed insulin or oral
hyperglycemic medication), or (5) measured systolic blood pressure ≥130 mmHg or diastolic blood pressure
≥85 mmHg or self-reported current use of antihypertensive medications.
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4. Discussion

In our longitudinal study of adults in rural Colorado, we did not observe signifi-
cant associations between urinary Mn and incident MetS. This finding was consistent
in sex-stratified models, when adjusting for co-exposure to other metals, and when ac-
counting for potential non-linear relationships between Mn and MetS. Our study was
the first longitudinal cohort study that has examined the association between Mn and
incident MetS. Our overall null findings were consistent with previous cross-sectional
and case–control studies [7,14,15,17–19,21–24,26]. Additionally, we observed that Mn was
significantly and inversely associated with fasting glucose, overall and in sex-stratified
models. Our study adds to the growing body of evidence that Mn is not associated with
adverse metabolic outcomes.

This longitudinal study differed methodologically from the three previous cross-
sectional analyses of the associations between Mn and MetS in the US in that we fo-
cused on a rural population that experiences more population-level stress and health bur-
den [7,16,21,48]. For example, the Mn concentrations were somewhat higher in our study
sample than in the general US population during the same time period (SLVDS geometric
mean (95% CI) = 0.67 (0.64, 0.70) µg/L; US National Health and Nutrition Examination
Survey III (1988–1994) geometric mean (95% CI) Mn level = 0.53 (0.46, 0.61) µg/L) [49]. The
difference in Mn exposure likely was not due to air exposure in occupational settings, such
as factories that use metals [9]. Instead, the differences in Mn exposure were likely due to
Mn in the diet, soil, and water. To determine the extent to which participants were being
exposed through food, we would need other measures that estimate intake of individual
food items high in manganese rather than total calories per day. While dietary Mn intake
was not calculated in the SLVDS, we encourage others with access to dietary Mn data and a
biomarker for Mn (e.g., urine, blood) to investigate the extent to which the two correlate.
Additionally, although Mn supplementation is not common because it is found in many
foods, some individuals who have low dietary intake opt to take Mn supplements and
it may, therefore, be helpful to include information on Mn supplementation dosage and
duration to more accurately capture total Mn exposure [9].

The finding that Mn was inversely associated with fasting glucose is consistent with
some, but not all, of the previous studies [14,16,24,50]. Even in studies where inverse
associations were observed, there has been evidence for non-linear relationships (e.g., in
one cross-sectional study, Mn was inversely associated with fasting glucose among men
comparing only the second and third quartiles of Mn exposure, but not the fourth quartile,
to the first quartile) [16]. In our study, it is possible that the observed inverse association
with fasting glucose was attributable to healthier dietary patterns among people with
higher Mn concentrations. Healthy plant-based foods such as whole grains, nuts, and
beans are sources of Mn [51], and these foods along with a healthy plant-based diet have
been associated with improved markers of diabetes [52–55]. However, because Mn is also
present in a number of unhealthy foods [51], and Mn was not significantly associated
with total caloric intake in baseline bivariate analyses, it is likely that higher consumption
of Mn-rich foods rather than an overall healthy diet drove the association between Mn
and fasting glucose. Shellfish, while a major source of dietary Mn in general [9,51], is not
a common dietary source for this rural cohort. Future studies could further investigate
associations with Mn-rich foods and potential confounding by overall diet, particularly
among populations that consume more shellfish than did participants in the SLVDS.

Although we did not observe an association between Mn and incident MetS, even
accounting for a potential non-linear relationship, there are several mechanisms through
which both inadequate and excess Mn could theoretically increase risk of MetS and
metabolic outcomes. For example, Mn metalloenzymes, such as Mn superoxide dismutase
(MnSOD), help to reduce mitochondrial oxidative distress [13]. However, excess Mn intake
can lead to overproduction of reactive oxygen species (ROS), contributing to MetS devel-
opment through insulin resistance and increased blood pressure [13,56]. Pb, like Mn, also
produces ROS and can lead to oxidative damage when consumed in toxic amounts [57],
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which could explain why Pb modified the association between Mn and MetS. Further-
more, Mn is required for biological processes including carbohydrate and lipid metabolism,
and these can contribute to dysregulated MetS components when impaired [13,58,59].
Specifically, Mn deficiency can impair glucose transport, which could explain the inverse
association we observed with fasting glucose [60]. Sex differences in the unadjusted associ-
ations between Mn and metabolic outcomes could be attributable to differences in hormone
levels, as sex hormones contribute to diabetes and MetS differentially in females and
males [61]. Given the integral role of glucose homeostasis in several potential mechanisms
and the significant inverse findings with fasting glucose we observed, previous significant
associations observed between Mn and MetS in a minority of previously published studies
may have been primarily driven through this pathway [16,20,25,27].

Despite the general agreement of our results with previous studies that assessed
associations between Mn and MetS using a variety of Mn assessment methods, our choice
of biological exposure matrix (urine) may have complicated the interpretation of the results.
Little Mn is excreted in the urine (7 nmol per g of creatinine for healthy, non-smoking males
and 9 nmol per day for healthy, non-smoking females), and the excretion amount may
not be substantially affected by increased Mn intake [9,62]. Mn measurements in urine
tend to more accurately predict Mn deficiency than excess intake [12]. That said, we had
sufficient exposure contrast with urinary Mn measurement concentrations from below 1 to
42.5 µg/L. However, another potential limitation of urinary Mn is the exposure window to
which it likely corresponds. Whereas Mn measured in blood may indicate body burden,
urinary Mn may be a better indicator of recent exposure and thus may not be as useful as a
biological matrix for longitudinal studies [9]. Nevertheless, in one cross-sectional study
that separately analyzed urinary Mn-MetS and blood Mn-MetS associations, the blood
Mn-MetS results were somewhat more consistent with our generally null findings than
were the urinary Mn-MetS results [16]. Similarly, and analogously to our longitudinal
assessment of sex-specific urinary Mn-fasting glucose associations, another cross-sectional
study found that both blood and urinary Mn had sex-specific associations with diabetes
markers (e.g., fasting glucose) [50]. Furthermore, urinary Mn has an important advantage
over Mn assessed through the use of dietary intake data (as has been done in multiple
studies) [14,20,25], since it can integrate across different external sources of exposure
and can limit differential exposure misclassification. While limited compared to dietary
assessment, there is still some potential for differential exposure misclassification with
urinary Mn measures, especially if the large percentage of the sample with Mn values
below the limit of detection (16% of measurements were below this threshold) were low
due to factors related to incident MetS. Thus, given the relative strengths and weaknesses
of the different exposure methods, we suggest that future longitudinal studies consider the
use of blood Mn.

Additionally, our study had several limitations. Our results may not generalize
to populations with different exposure distributions of Mn. This could be relevant, for
example, if regulations are passed to limit Mn exposure in certain settings. Relatedly,
since we used data from a bi-ethnic rural cohort, we do not know if our results would be
generalizable to other settings (such as urban locations) or in populations that are more
diverse. We were also unable to assess associations due to specific routes of exposure (or
sources of exposure) to Mn in this study population. Finally, we may have observed some
significant associations just due to chance given the large number of comparisons.

Our study also has several strengths. First, we were able to conduct the first known lon-
gitudinal assessment of the association between Mn and MetS. Additionally, we accounted
for mortality as a competing risk—which may have been particularly relevant as 18% of
the sample included in the longitudinal analysis died without having developed MetS over
an average of seven years. Finally, we were able to adjust for covariates selected based on
an evidenced-based process, [38] account for the possibility of non-linear relationships, and
consider the potential role of co-exposure to other metals in a longitudinal setting.
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5. Conclusions

Urinary Mn was not associated with incident MetS in this rural Colorado cohort;
however, Mn was inversely associated with fasting glucose in the longitudinal analysis,
indicating that Mn consumption could help reduce risk of diabetes. Future studies should
consider alternative methods of exposure assessment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14204271/s1, Table S1: Distributions of metals (µg/L) at
baseline among participants included in the analysis (n = 1,478), contrasted by the median Mn value,
Figure S1: Exposure-response functions of natural log-transformed urinary metal concentrations and
odds estimates of metabolic syndrome (MetS) (n = 1,478), Table S2: Crude longitudinal associations
between baseline quartiles of manganese and metabolic outcomes, Table S3: Adjusted longitudinal
associations between baseline quartiles of manganese and metabolic outcomes among participants
with Mn levels above the limit of detection.
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trations of Heavy Metals and Bioelements in Aging Men with Metabolic Syndrome. Int. J. Environ. Res. Public Health 2015, 12,
3944–3961. [CrossRef]

23. Huang, S.; Zhong, D.; Lv, Z.; Cheng, J.; Zou, X.; Wang, T.; Wen, Y.; Wang, C.; Yu, S.; Huang, H.; et al. Associations of multiple
plasma metals with the risk of metabolic syndrome: A cross-sectional study in the mid-aged and older population of China.
Ecotoxicol. Environ. Saf. 2022, 231, 113183. [CrossRef]

24. Ngu, Y.J.; Skalny, A.V.; Tinkov, A.A.; Tsai, C.-S.; Chang, C.-C.; Chuang, Y.-K.; Nikolenko, V.N.; Zotkin, D.A.; Chiu, C.-F.; Chang, J.-S.
Association Between Essential and Non-essential Metals, Body Composition, and Metabolic Syndrome in Adults. Biol. Trace Elem.
Res. 2022, 1–13. [CrossRef]

25. Li, Y.; Guo, H.; Wu, M.; Liu, M. Serum and dietary antioxidant status is associated with lower prevalence of the metabolic
syndrome in a study in Shanghai, China. Asia Pac. J. Clin. Nutr. 2013, 22, 60–68. [CrossRef]

26. Ghaedrahmat, Z.; Cheraghian, B.; Jaafarzadeh, N.; Takdastan, A.; Shahbazian, H.B.; Ahmadi, M. Relationship between urinary
heavy metals with metabolic syndrome and its components in population from Hoveyzeh cohort study: A case-control study in
Iran. J. Trace Elem. Med. Biol. 2021, 66, 126757. [CrossRef]

27. Zhang, W.; Du, J.; Li, H.; Yang, Y.; Cai, C.; Gao, Q.; Xing, Y.; Shao, B.; Li, G. Multiple-element exposure and metabolic syndrome in
Chinese adults: A case-control study based on the Beijing population health cohort. Environ. Int. 2020, 143, 105959. [CrossRef]

28. Wong, M.M.H.; Chan, K.Y.; Lo, K. Manganese Exposure and Metabolic Syndrome: A Systematic Review and Meta-Analysis.
Nutrients 2022, 14, 825. [CrossRef]

29. San Luis Valley Statistical Profile. San Luis Valley Council of Governments. 2015. Available online: https://www.fs.usda.gov/
nfs/11558/www/nepa/103623_FSPLT3_4298484.pdf (accessed on 1 January 2021).

30. Hamman, R.F.; Marshall, J.A.; Baxter, J.; Kahn, L.B.; Mayer, E.J.; Orleans, M.; Murphy, J.R.; Lezott, D.C. Methods and Prevalence
of Non-Insulin-Dependent Diabetes Mellitus in a Biethnic Colorado Population. Am. J. Epidemiol. 1989, 129, 295–311. [CrossRef]

31. Riseberg, E.; James, K.A.; Woodin, M.; Melamed, R.; Alderete, T.; Corlin, L. Multipollutant, longitudinal analysis of the association
between urinary tungsten and incident diabetes in a rural population. Environ. Epidemiol. 2021, 5, e173. [CrossRef]

32. Hokanson, J.E.; Kamboh, M.I.; Scarboro, S.; Eckel, R.H.; Hamman, R.F. Effects of the Hepatic Lipase Gene and Physical Activity
on Coronary Heart Disease Risk. Am. J. Epidemiol. 2003, 158, 836–843. [CrossRef]

33. Caldwell, K. Laboratory Procedure Manual. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes_11_12/uhm_g_
met_heavy_metals.pdf (accessed on 11 September 2022).

http://doi.org/10.1186/s40360-016-0099-0
http://doi.org/10.1016/j.molmed.2022.04.011
http://doi.org/10.1155/2018/7580707
http://doi.org/10.1007/s12011-013-9852-z
http://doi.org/10.1007/s12011-020-02371-w
http://doi.org/10.1016/j.scitotenv.2021.146527
http://doi.org/10.1016/j.envint.2020.105802
http://doi.org/10.1186/1475-2840-12-9
http://doi.org/10.3390/nu12092666
http://doi.org/10.1017/S0007114516002580
http://doi.org/10.1016/j.chemosphere.2021.132953
http://doi.org/10.3390/ijerph120403944
http://doi.org/10.1016/j.ecoenv.2022.113183
http://doi.org/10.1007/s12011-021-03077-3
http://doi.org/10.6133/apjcn.2013.22.1.06
http://doi.org/10.1016/j.jtemb.2021.126757
http://doi.org/10.1016/j.envint.2020.105959
http://doi.org/10.3390/nu14040825
https://www.fs.usda.gov/nfs/11558/www/nepa/103623_FSPLT3_4298484.pdf
https://www.fs.usda.gov/nfs/11558/www/nepa/103623_FSPLT3_4298484.pdf
http://doi.org/10.1093/oxfordjournals.aje.a115134
http://doi.org/10.1097/EE9.0000000000000173
http://doi.org/10.1093/aje/kwg230
https://www.cdc.gov/nchs/data/nhanes/nhanes_11_12/uhm_g_met_heavy_metals.pdf
https://www.cdc.gov/nchs/data/nhanes/nhanes_11_12/uhm_g_met_heavy_metals.pdf


Nutrients 2022, 14, 4271 14 of 14

34. Nunez, Z.R.; Meliker, J.R.; Meeker, J.D.; Slotnick, M.J.; Nriagu, J.O.; Rivera, N.Z. Urinary arsenic species, toenail arsenic, and
arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water. J. Expo. Sci. Environ. Epidemiol.
2012, 22, 182–190. [CrossRef]

35. James, K.A.; Meliker, J.R.; Marshall, J.A.; Hokanson, J.E.; Zerbe, G.O.; Byers, T.E. Validation of estimates of past exposure to
arsenic in drinking water using historical urinary arsenic concentrations. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 450–454.
[CrossRef] [PubMed]

36. Srikanthan, P.; Seeman, T.E.; Karlamangla, A.S. Waist-Hip-Ratio as a Predictor of All-Cause Mortality in High-Functioning Older
Adults. Ann. Epidemiol. 2009, 19, 724–731. [CrossRef] [PubMed]

37. Beckman Instruments. Glucose Analyzer 2 Operating Manual. 1988. Available online: https://scholar.google.com/scholar_
lookup?title=Glucose+Analyzer+2+Operating+Manual&publication_year=1988& (accessed on 4 May 2021).

38. Riseberg, E.; Melamed, R.D.; James, K.A.; Alderete, T.L.; Corlin, L. Development and application of an evidence-based directed
acyclic graph to evaluate the associations between metal mixtures and cardiometabolic outcomes. medRxiv 2022. [CrossRef]

39. Marshall, J.A.; Weiss, N.S.; Hamman, R.F. The role of dietary fiber in the etiology of non-insulin-dependent diabetes mellitus: The
San Luis Valley Diabetes Study. Ann. Epidemiol. 1993, 3, 18–26. [CrossRef]

40. Delanghe, J.R.; Speeckaert, M.M. Creatinine determination according to Jaffe—What does it stand for? NDT Plus 2011, 4, 83–86.
[CrossRef] [PubMed]

41. Bobb, J.F.; Valeri, L.; Henn, B.C.; Christiani, D.C.; Wright, R.; Mazumdar, M.; Godleski, J.J.; Coull, B.A. Bayesian kernel machine
regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 2015, 16, 493–508. [CrossRef]

42. Bobb, J.F.; Henn, B.C.; Valeri, L.; Coull, B.A. Statistical software for analyzing the health effects of multiple concurrent exposures
via Bayesian kernel machine regression. Environ. Health 2018, 17, 67. [CrossRef]

43. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: Berlin/Heidelberg, Germany, 2009.
44. Gray, B. Cmprsk: Subdistribution Analysis of Competing Risks. Available online: https://CRAN.R-project.org/package=cmprsk

(accessed on 25 October 2021).
45. Bates, D.; Maechler, M.; Bolker, B.; Walker, S. lme4: Linear Mixed-Effects Models using “Eigen” and S4. Available online:

https://CRAN.R-project.org/package=lme4 (accessed on 25 October 2021).
46. Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J.; Freidank, M.; Cai, J.; Protivinsky, T. corrplot: Visualization of a Correlation

Matrix. Available online: https://CRAN.R-project.org/package=corrplot (accessed on 25 October 2021).
47. Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B.; Jensen, S.P. lmerTest: Tests in Linear Mixed Effects Models. Available online:

https://CRAN.R-project.org/package=lmerTest (accessed on 8 June 2022).
48. Wild, L.E.; Walters, M.; Powell, A.; James, K.A.; Corlin, L.; Alderete, T.L. County-Level Social Vulnerability Is Positively Associated

with Cardiometabolic Disease in Colorado. Int. J. Environ. Res. Public Health 2022, 19, 2202. [CrossRef]
49. Paschal, D.C.; Ting, B.G.; Morrow, J.C.; Pirkle, J.L.; Jackson, R.J.; Sampson, E.J.; Miller, D.T.; Caldwell, K.L. Trace Metals in Urine

of United States Residents: Reference Range Concentrations. Environ. Res. 1998, 76, 53–59. [CrossRef]
50. Yang, J.; Yang, A.; Cheng, N.; Huang, W.; Huang, P.; Liu, N.; Bai, Y. Sex-specific associations of blood and urinary manganese

levels with glucose levels, insulin resistance and kidney function in US adults: National health and nutrition examination survey
2011–2016. Chemosphere 2020, 258, 126940. [CrossRef]

51. US Department of Agriculture. Agricultural Research Service Food Data Central. Available online: https://fdc.nal.usda.gov/
(accessed on 17 November 2021).

52. Satija, A.; Bhupathiraju, S.N.; Rimm, E.B.; Spiegelman, D.; Chiuve, S.; Borgi, L.; Willett, W.C.; Manson, J.E.; Sun, Q.; Hu, F.B.
Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort
Studies. PLoS Med. 2016, 13, e1002039. [CrossRef]

53. Winham, D.M.; Hutchins, A.M.; Thompson, S.V. Glycemic Response to Black Beans and Chickpeas as Part of a Rice Meal: A
Randomized Cross-Over Trial. Nutrients 2017, 9, 1095. [CrossRef] [PubMed]

54. Marventano, S.; Vetrani, C.; Vitale, M.; Godos, J.; Riccardi, G.; Grosso, G. Whole Grain Intake and Glycaemic Control in Healthy
Subjects: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2017, 9, 769. [CrossRef] [PubMed]

55. Mazidi, M.; Vatanparast, H.; Katsiki, N.; Banach, M. The impact of nuts consumption on glucose/insulin homeostasis and
inflammation markers mediated by adiposity factors among American adults. Oncotarget 2018, 9, 31173–31186. [CrossRef]

56. Ando, K.; Fujita, T. Metabolic syndrome and oxidative stress. Free. Radic. Biol. Med. 2009, 47, 213–218. [CrossRef] [PubMed]
57. Andrade, V.M.; Mateus, M.L.; Batoreu, M.C.; Aschner, M.; Dos Santos, A.P.M. Lead, arsenic and manganese metal mixture

exposures: Focus on biomarkers of effect. Biol. Trace Elem. Res. 2015, 166, 13–23. [CrossRef] [PubMed]
58. Aschner, J.L.; Aschner, M. Nutritional aspects of manganese homeostasis. Mol. Asp. Med. 2005, 26, 353–362. [CrossRef] [PubMed]
59. Parhofer, K.G. The Treatment of Disorders of Lipid Metabolism. Dtsch. Arztebl. Int. 2016, 113, 261–268. [CrossRef] [PubMed]
60. Baly, D.L.; Curry, D.L.; Keen, C.L.; Hurley, L.S. Effect of manganese deficiency on insulin secretion and carbohydrate homeostasis

in rats. J. Nutr. 1984, 114, 1438–1446. [CrossRef]
61. Kim, C.; Halter, J.B. Endogenous Sex Hormones, Metabolic Syndrome, and Diabetes in Men and Women. Curr. Cardiol. Rep. 2014,

16, 467. [CrossRef]
62. Greger, J.L.; Davis, C.D.; Suttie, J.W.; Lyle, B.J. Intake, serum concentrations, and urinary excretion of manganese by adult males.

Am. J. Clin. Nutr. 1990, 51, 457–461. [CrossRef] [PubMed]

http://doi.org/10.1038/jes.2011.27
http://doi.org/10.1038/jes.2013.8
http://www.ncbi.nlm.nih.gov/pubmed/23443236
http://doi.org/10.1016/j.annepidem.2009.05.003
http://www.ncbi.nlm.nih.gov/pubmed/19596204
https://scholar.google.com/scholar_lookup?title=Glucose+Analyzer+2+Operating+Manual&publication_year=1988&
https://scholar.google.com/scholar_lookup?title=Glucose+Analyzer+2+Operating+Manual&publication_year=1988&
http://doi.org/10.1101/2021.03.05.21252993
http://doi.org/10.1016/1047-2797(93)90005-O
http://doi.org/10.1093/ndtplus/sfq211
http://www.ncbi.nlm.nih.gov/pubmed/25984118
http://doi.org/10.1093/biostatistics/kxu058
http://doi.org/10.1186/s12940-018-0413-y
https://CRAN.R-project.org/package=cmprsk
https://CRAN.R-project.org/package=lme4
https://CRAN.R-project.org/package=corrplot
https://CRAN.R-project.org/package=lmerTest
http://doi.org/10.3390/ijerph19042202
http://doi.org/10.1006/enrs.1997.3793
http://doi.org/10.1016/j.chemosphere.2020.126940
https://fdc.nal.usda.gov/
http://doi.org/10.1371/journal.pmed.1002039
http://doi.org/10.3390/nu9101095
http://www.ncbi.nlm.nih.gov/pubmed/28976933
http://doi.org/10.3390/nu9070769
http://www.ncbi.nlm.nih.gov/pubmed/28753929
http://doi.org/10.18632/oncotarget.25168
http://doi.org/10.1016/j.freeradbiomed.2009.04.030
http://www.ncbi.nlm.nih.gov/pubmed/19409982
http://doi.org/10.1007/s12011-015-0267-x
http://www.ncbi.nlm.nih.gov/pubmed/25693681
http://doi.org/10.1016/j.mam.2005.07.003
http://www.ncbi.nlm.nih.gov/pubmed/16099026
http://doi.org/10.3238/arztebl.2016.0261
http://www.ncbi.nlm.nih.gov/pubmed/27151464
http://doi.org/10.1093/jn/114.8.1438
http://doi.org/10.1007/s11886-014-0467-6
http://doi.org/10.1093/ajcn/51.3.457
http://www.ncbi.nlm.nih.gov/pubmed/2309652

	Introduction 
	Materials and Methods 
	Study Population 
	Urinary Metal Assessment 
	Metabolic Syndrome Definition and Measurement 
	Covariate Measurement 
	Statistical Analysis 

	Results 
	Baseline Characteristics 
	Outcome Follow-up 
	Cross-sectional Analyses 
	Longitudinal Analyses 

	Discussion 
	Conclusions 
	References

