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Abstract: The key factors playing a role in the pathogenesis of metabolic alterations observed in 
many patients with obesity have not been fully characterized. Their identification is crucial, and it 
would represent a fundamental step towards better management of this urgent public health issue. 
This aim could be accomplished by exploiting the potential of machine learning (ML) technology. 
In a single-centre study (n = 2567), we used an ML analysis to cluster patients with metabolically 
healthy (MHO) or metabolically unhealthy (MUO) obesity, based on several clinical and biochemi-
cal variables. The first model provided by ML was able to predict the presence/absence of MHO 
with an accuracy of 66.67% and 72.15%, respectively, and included the following parameters: 
HOMA-IR, upper body fat/lower body fat, glycosylated haemoglobin, red blood cells, age, alanine 
aminotransferase, uric acid, white blood cells, insulin-like growth factor 1 (IGF-1) and gamma-glu-
tamyl transferase. For each of these parameters, ML provided threshold values identifying either MUO 
or MHO. A second model including IGF-1 zSDS, a surrogate marker of IGF-1 normalized by age and sex, 
was even more accurate with a 71.84% and 72.3% precision, respectively. Our results demonstrated high 
IGF-1 levels in MHO patients, thus highlighting a possible role of IGF-1 as a novel metabolic health pa-
rameter to effectively predict the development of MUO using ML technology. 
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1. Introduction 
Artificial intelligence (AI) is becoming increasingly present in the swiftly evolving 

medical field, and it is expected to generate impactful advancements in the management 
of a variety of diseases. The potential medical applications of AI are endless and include 
the possibility of focusing on primary or secondary prevention, personalisation of treat-
ment, evaluation of risk factors and likelihood of developing specific disorders. Machine 
learning (ML) is a form of AI which creates algorithms, learning from and acting on data 
[1]. Unlike traditional analytical approaches, ML can probe information even with only a 
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small amount of prior knowledge and learning from data given as input [2]. The ad-
vantage of ML is the possibility to analyse an increasing amount of qualitative and quan-
titative data in an integrated system [3]. ML has already been successfully exploited to 
design the best model to yield good metabolic control in type 2 diabetes mellitus (T2DM) 
[2] and to predict the risk of obesity in early childhood and young people [4,5]. In certain 
diseases such as obesity, marked by a wide variety of phenotypes and heterogenous man-
ifestations, ML has the potential to optimally characterise individuals, and can provide 
valuable information to design a personalised management plan. With the help of ML 
technology, a recent study has succeeded in subclassifying obese phenotypes into differ-
ent metabolic clusters, reflecting underlying pathophysiology [6]. 

Obesity is defined as an abnormal fat accumulation, with a detrimental effect on 
health that has been historically diagnosed as a body mass index (BMI) equal or greater 
than 30 kg/m2 [7,8]. The current diagnostic criteria, however, have poorly characterized 
the obese population, as they do not take into account body fat distribution, which is 
largely responsible for the cardiometabolic risk associated with obesity. The pattern of fat 
deposition presents with a great interindividual variability and results in different clinical 
presentations. As an example, visceral fat has been associated with a growing burden of 
noncommunicable diseases, such as metabolic syndrome, diabetes and cardiovascular 
disease [9]. The metabolic syndrome refers to the co-occurrence of several known cardio-
vascular risk factors, including altered glucose metabolism, obesity, atherogenic dyslipi-
daemia and hypertension. There has been recent controversy about its definition, alt-
hough the most widely used criteria for the diagnosis are those established by the Na-
tional Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) and the 
International Diabetes Federation (IDF) [9]. Given the frequent association between met-
abolic syndrome and obesity, clinical scientists distinguish a metabolically healthy obesity 
(MHO), characterized by the absence of the parameters defining metabolic syndrome ex-
cept for waist circumference, from a metabolically unhealthy obesity (MUO), character-
ized by a significantly higher risk of complications and mortality [10]. The factors involved 
in the pathogenesis of metabolic impairment in obesity have yet to be fully elucidated. As 
far as cardiovascular risk is concerned, the prognostic significance of obesity phenotypes 
is still under debate; a few studies have characterised their transition trajectories consid-
ering that alterations in the physical activity level and morbidity disabilities may precede 
the onset of metabolic abnormalities [11]. Findings from epidemiological studies have 
shown that the prevalence of MHO ranges from less than 10% to almost 50% in obese indi-
viduals according to different definitions of metabolic health and the population studied [12–
14]. Substantially, poor metabolic health may increase mortality regardless of obesity status 
[15,16]. The characterization of metabolic status would allow to identify obese patients who 
are at higher risk of complications, since moderate weight loss can be sufficient to transition 
from MUO to MHO and might also lower the risk of adverse outcomes. Applying the concept 
of metabolic health in management strategies may allow to easily achieve attainable goals and 
ultimately protect from cardio-metabolic diseases and early death [17]. 

One of the key predictive factors for metabolic disruption in obesity is insulin-like 
growth factor 1 (IGF-1), a mitogenic hormone involved in several processes like growth, 
angiogenesis and differentiation. In individuals with obesity, lower IGF-1 serum levels 
and a blunted response to growth hormone-stimulating dynamic tests are associated with 
greater metabolic impairment [18–25]. However, the usefulness of IGF-1 serum measure-
ment is limited by a poor standardization of its normal values, as they vary significantly 
with gender, age and body fat [26]. In order to overcome this limit, the IGF-1 z standard 
deviation score (IGF-1 zSDS) has been previously adopted as a surrogate marker of IGF-1 
normalized by age, gender and BMI [27]. 

Taking these considerations into account, the aim of the study was to define a model 
predicting the diagnosis of MHO in the cohort of patients that have accessed the High 
Specialization Centre for the Care of Obesity, Sapienza University of Rome, between 2010 
and 2019 through ML technology. 
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In particular, we aimed to: 
(1) Describe the cohort of patients at the time of their first access to our obesity speciali-

sation centre with a rigorous collection of anthropometric, clinical and metabolic 
data. 

(2) Apply AI with a logic ML approach in the obese subgroup of patients to identify new 
parameters possibly involved mechanistically in the pathogenesis of the metabolic 
syndrome (either clinical, biochemical or instrumental), which could help distinguish 
MUO from MHO patients and define the best model capable of predicting the devel-
opment of MUO, with a special focus on IGF-1 zSDS. 

2. Materials and Methods 
2.1. Study Design 

This was an observational retrospective study. Data were derived from a database 
including medical records of all patients attending the High Specialization Centre for the 
Care of Obesity, Sapienza University of Rome, between 2001 and 2019. The study was 
approved by the Medical Ethical Committee of Sapienza University of Rome (ref. CE5475) 
and was conducted in accordance with the Declaration of Helsinki (1964) and subsequent 
amendments. All patients undergoing clinical examination provided written consent 
upon admission to our specialisation centre. Inclusion of patients in the ML analysis was 
regulated by the following criteria: 
− Inclusion criteria: age ≥18 years old and body mass index ≥30 kg/m2. 
− Exclusion criteria: (1) pregnancy or breastfeeding; (2) patients with type 1 diabetes 

mellitus and severe chronic liver or kidney dysfunction; (3) tobacco habit and alcohol 
abuse; (4) current medication with drugs that could lead to weight gain 

2.2. Subjects and Measurements 
All clinical, anthropometric, biochemical and hormonal parameters that are routinely 

part of the diagnostic path that patients undertake when hospitalized in our centre were 
included in the database. All patients had extensive blood tests performed, such as com-
plete blood count and a comprehensive metabolic panel, including but not limited to renal 
and liver function testing, serum electrolytes and additional analyses as needed. 

2.2.1. Anthropometric Measurements 
Anthropometric parameters were obtained between 8 and 10 a.m. in fasting subjects 

wearing light clothing and no shoes. Body weight was obtained with the use of a balance-
beam scale (Seca GmbH & Co., Hamburg, Germany). Height was rounded to the nearest 
0.5 cm. Waist circumference was measured at the level of the iliac crest and hip circum-
ference at the level of the symphysis-greater trochanter to the closest centimetre. Subse-
quently, the following indirect anthropometric indices were derived: body mass index 
(BMI) calculated as weight divided by squared height in metres (kg/m2); waist hip ratio 
(WHR) calculated as waist circumference (cm) divided by hip circumference (cm). Arterial 
blood pressure was measured at the right arm, with the patients in the sitting position 
after five minutes of rest. The average of three different measurements with a mercury 
sphygmomanometer was used for the analysis. 

2.2.2. Routine Laboratory Assessments 
Blood samples were collected between 8 and 9 a.m. by venepuncture from fasting 

patients. Samples were then transferred to the local laboratory and handled according to 
the local standards of practice. 

The following assays were measured: complete blood count (CBC), fasting blood glu-
cose (FBG), insulin, total cholesterol (TC), triglyceride (TG), high-density lipoprotein cho-
lesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), glycosylated haemoglobin 
(HbA1c), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline 
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phosphatase (ALP), gamma-glutamyl transferase (γ GT), serum albumin, serum creati-
nine, direct and indirect serum bilirubin, C-reactive protein (CRP), erythrocyte sedimen-
tation rate (ESR), serum sodium, serum potassium, serum calcium, serum phosphorus 
and 25-hydroxyvitamin D. 

To predict insulin resistance, a homeostatic model assessment of insulin resistance 
(HOMA-IR) was calculated according to the following formula: HOMA-IR = (insulin 
(mU/l) × fasting blood glucose (mmol/l))/22.5. 

2.2.3. Hormonal Assessments 
In accordance with the European Society of Endocrinology Clinical Guideline on the 

Endocrine Work-up in Obesity [28], patients were tested for secondary forms of obesity, 
such as hypothyroidism or hypercortisolism, as appropriate. 

TSH measurements were based on a chemiluminescent immunoassay (CLIA) using 
ADVIA Centaur (Siemens Medical Solutions Diagnostics, Tokyo, Japan), whereas serum 
cortisol was measured by an immunoradiometric assay (Abbott Diagnostics, Chicago, IL, 
USA). 

Moreover, insulin-like growth factor 1 (IGF-1) was measured in all patients present-
ing with signs and symptoms of adult-onset growth hormone deficiency [29]. Specifically, 
IGF-1 was assayed by an immunoradiometric assay, after ethanol extraction (Diagnostic 
System Laboratories Inc., Webster, TX, USA). The normal ranges in <23, 23–30, 30–50, 50–
100-year-old patients were 195–630, 180–420, 100–415, 70–250 mg/l, respectively. Since 
IGF-1 serum levels strictly depend on age and gender, we calculated the SDS of IGF-1 
levels according to age (zSDS) to analyse the relationships between IGF-1 levels and the 
other parameters. In order to obtain a z-score, we calculated the mean and S.D. of IGF-1 
levels in young (<30 years), adults (30–50 years), middle-aged (50–65 years), and elderly 
(>65 years) women and men, as previously described [27]. zSDS is defined by the follow-
ing formula: IGF-1 zSDS = (IGF-1 − mean)/S.D. 

2.2.4. Dual-Energy X-ray Absorptiometry 
Human body composition parameters were measured with dual-energy X-ray ab-

sorptiometry (DXA) (Hologic A Inc., Bedford, MA, USA, QDR 4500W). All scans were 
administered by trained research technicians using standardized procedures recom-
mended by GE-Healthcare. The instrument was calibrated daily. Whole body as well as 
regional body composition were assessed. Delimiters for regional analysis were deter-
mined by standard software (Hologic Inc., Marlborough, MA, USA, S/N 47168 VER. 11.2). 
Regions of the head, trunk, arms and legs were distinguished with the use of specific an-
atomic landmarks. 

Therefore, for each patient, the following parameters were measured: whole-body fat 
mass (FM, kg and %), truncal fat mass (TFM, kg and %), appendicular fat mass (AFM), 
lean mass (kg). Appendicular lean mass (ALM, kg) was determined by summing lean 
mass measurements of the arms and legs. Fat distribution was assessed by upper 
body/lower body fat index, calculated as the ratio between upper body fat (head, arms 
and trunk fat, kg) and lower body fat (leg fat, kg) [30]. 

2.3. Characteristics of the Logic Machine Learning (LML) 
ML is a subdomain of AI that “learns” inherent statistical patterns in data to make 

predictions about unseen data [31]. The power of this technology involves the analysis of 
a plethora of variables, with subsequent identification of models that stratify patients at 
risk, thus guiding the appropriate therapeutic strategy [3]. 

A specific type of ML approach is the “rule generation method”, which constructs 
models that are described by a set of intelligible rules, thus allowing to derive important 
insights about the variables included in the analysis and their relationships with the target 
attribute. In particular, Rulex® (Innovation Lab, Rulex Analytics, Genova, Italy), which 
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was chosen for this analysis, is a logic machine learning (LML) original proprietary “clear 
box-explainable” AI algorithm. This type of algorithm, unlike “black box” AI, does not 
pose the problem of transparency and can be used with the objective of understanding a 
given phenomenon by producing sets of intelligible rules expressed in the form “if prem-
ise…, then consequence…”, where “premise” refers to the combination of conditions (condi-
tional clauses) on the input variables, and “consequence” contains information about the 
target function (yes or no/presence or absence of disease) [2,32]. Therefore, the Rulex® data 
analysis process can be summarized in the following steps: (1) ML technology creates a 
model from known variables and is able to establish a ranking with the most relevant 
variables that explain the starting premise; (2) the model makes it explicit if there are 
threshold values of the most important variables previously identified; (3) the model, if 
used in a prediction, starting from variables of a new patient, makes it explicit why the 
response is yes or no. 

In our study, the premises were the following two: (1) “the patient is metabolically 
healthy” and (2) “the patient is metabolically unhealthy”. Specifically, patients were con-
sidered as metabolically healthy obese if they did not show any of the features of meta-
bolic syndrome described by the ATP III criteria on top of increased waist circumference 
(≥94 cm for men and ≥80 cm for women) [33], whereas they were considered as metaboli-
cally unhealthy when two or more of the features of metabolic syndrome were present. 
Patients taking antidiabetic, antilipidemic and antihypertensive drugs were considered to 
have diabetes, dyslipidaemia and hypertension, respectively. 

Sample size for ML analysis was measured using the Vapnik–Chervonenkis dimen-
sion, according to which at least 500 patients per class were required. 

Rulex® ML selected the most relevant variables to predict the development of MUO, 
starting from all those included in the database (anthropometric data, biochemical and 
hormonal assays, body composition by DXA) apart from blood pressure, lipid profile and 
glycaemic parameters that are included in the definition of metabolic syndrome itself. 
Two different predictive models were created with the highest accuracy, the first includ-
ing IGF-1 among the variables selected and the second with IGF-1 zSDS instead of IGF-1. 
Given the collinearity of these two variables, it was not possible to include them together 
in the same model. 

3. Results 
3.1. Population 

Our centre registered a total of 4541 hospitalizations from 2001 to 2019. Among them, 
3529 patients accessing the centre in this period were diagnosed with obesity. Of these, 
2824 individuals underwent only one hospitalization, while 705 more than one in different 
years. Only 2567 met the inclusion criteria and were included in the ML analysis. Baseline 
characteristics and age distribution of the study population are summarized in Table 1, broken 
down by metabolic status. Specifically, metabolic syndrome, diagnosed according to the 
ATPIII criteria [33], was significantly more prevalent among male subjects compared to their 
female counterparts (Table 1). Patients with MUO had significantly higher blood pressure, 
HOMA-IR, uric acid, TG, total cholesterol, LDL-cholesterol and upper/legs fat ratio. Intri-
guingly, patients with MHO had higher IGF-1 values than their counterparts with MUO (Ta-
ble 1). 

Table 1. Baseline characteristics of study population included in the ML analysis, broken down by 
presence/absence of metabolic impairment. 

 
MHO 

(n = 695) 
MUO 

(n = 1872) 
Overall  

(n = 2567) 
Age (yrs) 45.9 ± 13.5 47.6 ± 13.5 ** 47.1 ± 13.4 

Gender (%F) 82.3% 74.6% * 76.7% 
Obesity duration (yrs) 25.5 ± 15.4 26.4 ± 15.1 26.1 ± 15.2 
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BMI (kg/m2) 38.0 ± 6.1 39.8 ± 6.8 *** 39.3 ± 6.6 
WC (cm) 116.6 ± 15.3 121.9 ± 15.4 ** 120.5 ± 15.4 
HC (cm) 121.5 ± 14.5 122.4 ± 14.9 122.2 ± 14.7 

WHR 0.95 ± 0.12 0.99 ± 0.09 1.0 ± 0.1 
SBP (mmHg) 126.4 ± 10.9 131.9 ± 16.3 * 130.4 ± 15.2 
DBP (mmHg) 79.3 ± 10.8 83.1 ± 11.1 ** 82.1 ± 11.0 
IGF-1 (ng/mL) 165.2 ± 77.2 154.4 ± 74.5 * 157.3 ± 76.1 

IGF-1 zSDS −0.96 ± 2.3 −1.1 ± 1.96 −1.1 ± 2.1 
AST (U/L) 19.5 ± 7.5 22.1 ± 12.1 *** 21.4 ± 8.7 
ALT (U/L) 23.7 ± 16.4 30.3 ± 22.1 *** 28.5 ± 21.3 
γ GT (U/L) 23.4 ± 24.4 28.9 ± 16.5 * 27.4 ± 19.4 

Uric acid (mg/dL) 4.9 ± 1.3 5.5 ± 1.5 *** 5.3 ± 1.4 
HOMA-IR 3.5 ± 3.2 5.7 ± 5.4 *** 5.1 ± 4.5 
HbA1c (%) 5.7 ± 1.1 6.2 ± 1.1 6.1 ± 1.1 

Vitamin D (ng/mL) 21.9 ± 10.2 20.5 ± 10.3 ** 20.9 ± 10.3 
Folate (ng/mL) 7.9 ± 23.2 8.8 ± 35.3 8.6 ± 28.4 

TG (mg/dL) 91.6 ± 27.2 150 ± 80.1 *** 134.2 ± 62.7 
TC (mg/dL) 144 ± 33.3 195.1 ± 41 *** 181,3 ± 37.2 

HDLC (mg/dL) 59.6 ± 11.3 45.2 ± 10.6 ** 49.1 ± 10.9 
LDLC (mg/dL) 116.5 ± 30.7 120.1 ± 30.2 ** 119.1 ± 30.5 

Creatinine (mg/dL) 0.7 ± 0.16 0.8 ± 0.23 0.8 ± 0.19 
Ca (mg/dL) 9.32 ± 0.44 9.34 ± 0.44 9.3 ± 0.44 
Ph (mg/dL) 3.5 ± 0.5 3.5 ± 0.6 3.5 ± 0.6 

Na (mmol/L) 141.5 ± 2.6 140.9 ± 2.5 141.1 ± 2.5 
K (mmol/L) 4.2 ± 0.3 4.2 ± 0.4 4.2 ± 0.4 

Albumin (g/dL) 4.3 ± 0.4 4.3 ± 0.4 4.3 ± 0.4 
CRP (µg/L) 0.5 ± 0.5 0.7 ± 0.6 ** 0.6 ± 0.6 
ESR (mm/h) 26.1 ± 16.4 27.9 ± 17.2 * 27.4 ± 16.8 
Body fat (%) 41.6 ± 6.3 40.7 ± 6.7 ** 40.9 ± 6.5 

Lean mass (%) 58.4 ± 6.4 59.3 ± 6.7 ** 59.1 ± 6.6 
Trunk fat (%) 39.1 ± 6.5 39.4 ± 6.5 39.3 ± 6.5 
Upper/legs fat 1.62 ± 0.3 1.97 ± 0.36 *** 1.9 ± 0.32 

Abbreviation: MHO, metabolically healthy obese; MUO, metabolically unhealthy obese; yrs, years; 
BMI, body mass index; WC, waist circumference; HC, hip circumference; WHR, waist to hip ratio; 
SBP, systolic blood pressure; DBP, diastolic blood pressure; IGF-1, insulin-like growth factor 1; IGF-
1 zSDS, insulin-like growth factor z standard deviation score; AST, aspartate aminotransferase; ALT, 
alanine aminotransferase; γ GT, gamma-glutamyl transferase; HOMA-IR, model assessment-esti-
mated insulin resistance; HbA1c, haemoglobin A1C; TG, triglycerides; TC, total cholesterol; HDLC, 
high-density lipoprotein cholesterol; LDLC, low-density lipoprotein cholesterol; Ca, calcium; Ph, 
phosphate; Na, sodium; K, potassium; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate. 
* p < 0.05. ** p < 0.01.*** p < 0.001. 

The calculated IGF-1 SDS was −0.86 ± 1.98 in our population, and its distribution in 
the overall study population, as well as in the metabolically healthy and unhealthy obese 
subgroups, is summarized in Figure 1A,B, respectively. It is noteworthy that it was signif-
icantly lower in the group of patients with MUO compared to the metabolically healthy 
counterparts (−0.6 ± 0.8 vs. −0.2 ±0.6, p < 0.0001, Table 1). 
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(A) 

 
(B) 

Figure 1. (A) Distribution of IGF-1 zSDS in the overall study population. (B). Distribution of IGF-1 
zSDS in the MUO and MHO subgroups. Abbreviations: IGF-1 zSDS, insulin-like growth factor 1 z 
standard deviation score; MUO, metabolically unhealthy obese group; MHO, metabolically healthy 
obese group. Variables are expressed as percentile of total population. 

3.2. Logic Machine Learning 
We considered in the ML analysis all variables in the database, except for those in-

cluded in the definition of metabolic syndrome itself, in order to identify the best model for 
predicting the presence/absence of MHO. The machine learning system considered all the var-
iables in the database together and not one after the other. Six modelling cycles were per-
formed (learning set = 70% and test set = 30%) to analyse the various facets of this phenome-
non. 

In the model including IGF-1, the most important variables defining the outcome, 
starting from the most influencing to the least, were: HOMA-IR, upper/legs fat, HbA1c, 
RBC, age, ALT, uric acid, WBC, IGF-1, γGT. The model was predictive of the presence/ab-
sence of metabolically healthy obesity with a precision of 66.67% and 72.15%, respectively 
(Figure 2A). In a second model we included IGF-1 zSDS as variable in place of IGF-1. In 
this model, the variables defining the outcome were: HOMA-IR, HbA1c, age, upper/legs 
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fat, RBC, ALT, WBC, γGT, uric acid, neutrophils, AST, IGF-1 zSDS. In particular, in this 
model IGF-1 zSDS values >0.03 and <0.52 predicted the presence/absence of MHO, respec-
tively. Overall, the model increased its precision, reaching the value of 71.84% for the 
presence of MHO and 72.3% for its absence (Figure 2B). 

 
(A) 

(B) 

Figure 2. (A) Model no. 1 with the most relevant variables and threshold values that predict the 
development of MUO. (B) Model no. 2 with the most relevant variables and threshold values that 
predict the development of MUO. Abbreviations: yrs, years; HOMA-IR, model assessment of insu-
lin resistance; HbA1c, haemoglobin A1C; RBC, red blood cell; ALT, alanine aminotransferase; WBC, 
white blood cell; γGT, gamma-glutamyl transferase; AST, aspartate aminotransferase, IGF-1 zSDS, 
insulin-like growth factor 1 z standard deviation score; MUO, metabolically unhealthy obese group; 
MHO, metabolically healthy obese group. IGF-1, insulin-like growth factor 1. 

4. Discussion 
In the current study (1) we described the characteristics of a relatively large popula-

tion of patients with obesity admitted to an Italian third tier obesity centre; (2) we adopted 
an ML approach to identify the variables involved in the characterization of MHO in the 
study population. 

Notably, we found that more women than men were hospitalized for obesity in the 
study period. Moreover, male subjects were significantly more likely to be diagnosed with 
MS, hypertension, dyslipidaemia and diabetes mellitus compared to the female 
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counterpart. This is in accordance with previous studies showing that women seek for 
medical attention earlier than their male counterparts and that MS prevalence is higher 
among men compared to women [34,35]. 

Moreover, we identified two models predicting the presence of MHO in our study 
population through the use of an ML approach, including all the anthropometric, general 
and biochemical data collected during hospitalisation. In both models, HOMA-IR proved 
to be a robust tool for the characterisation of metabolic phenotype among patients with 
obesity, as values >3.48 and <2.48 (in model 1) or >2.47 and <2.10 (in model 2) identified 
MUO and MHO patients, respectively. These results are close enough to the optimal cut-
offs identified by Gayoso-Diz and colleagues, who found that HOMA-IR levels signifi-
cantly increased with rising number of MS components from 1.7 (without MS compo-
nents) to 5.3 (with five components) [36]. ML confirmed that insulin resistance appears to 
be one of the main players in the pathophysiology of metabolic derangement in obese 
patients, an aspect that was already emphasised in the original, but now outdated, WHO 
definition of MS in 1998 [37], although it is no longer a requirement to make a diagnosis. 

Furthermore, a previous study showed that there are age and gender-specific differ-
ences in HOMA-IR levels, with increased levels in women older than fifty [38]. Interest-
ingly, 50 years of age is the same threshold value identified by Rulex® to discriminate 
between MHO and MUO. This result provides evidence that there are age differences in 
the way metabolic health is expressed and that, as already proved [39], the prevalence of 
MS and consequently of MUO has a steep increase with age. In this regard, recent strands 
of research suggest that the prevalence of MUO increases with menopause and may par-
tially explain the apparent acceleration in cardiovascular diseases after menopause 
[40,41], although menopause may be considered a predictor of MS independent of 
women’s age [42]. 

Although there is no doubt that insulin resistance is the major aetiological factor in 
the development of MS, Osei and colleagues have recently investigated the significance 
of HbA1c as a surrogate marker for MS, showing that in subjects with increased HbA1c, 
some, albeit not all, of the components of MS could be defined by HbA1c [43]. In this 
regard, as suggested by the Rulex® model, a glycosylated haemoglobin above 5.25%, alt-
hough not diagnostic for diabetes or prediabetes, contributes to the identification of met-
abolic impaired patients. Our finding confirms that HbA1c may be a valid predictor of 
MUO status [44] and the threshold value we found reflects what is currently reported in 
the literature according to which a HbA1c of 5.45% can predict the presence of MS [45]. 
Moreover, elevated levels of serum uric acid (SUA) have been suggested to associate with 
cardiovascular disease, obesity and MS [46]. In this regard, the ML analysis confirmed 
that patients with normal levels of SUA, and specifically below 6.25 mg/dl, are more likely 
to have MHO. 

Another interesting parameter that was identified by ML in predicting MUO is the 
value of liver enzymes. Specifically, ALT levels above 29.35 U/L (first model) or 28.9 U/L 
(second model) describe the cohort of patients with MUO. A slight increase in liver indi-
ces, especially AST, can be considered as a red flag for the development of nonalcoholic 
liver disease (NAFLD), commonly recognized as the hepatic manifestation of the MS, as 
reflected by the presence of ALT, AST and BMI in the surrogate marker of NAFLD hepatic 
steatosis index (HSI) [47,48]. ML confirmed that in subjects with obesity or MS, screening 
for NAFLD by liver enzymes and/or ultrasound should be part of routine workup, as rec-
ommended in the clinical practice guidelines for the management of NAFLD provided by 
the European Association for the Study of Obesity [49]. ML also proved that ALT values 
in the normal range may play a role in the identification of MHO patients, but failed to 
define a specific threshold value for ALT in predicting MUO. Regarding γGT, which was 
also included in the models, serum levels higher than 17.45 U/L (first model) or 11.1 U/L 
(second model) identify the group of patients with MUO. Of interest, both AST and γGT 
are already included in validated, noninvasive tools for the assessment of liver fibrosis 
such as Fibrosis-4 (FIB-4), NFS (NAFLD Fibrosis Score) and fatty liver index (FLI) [50]. In 
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light of this, as recently suggested by Godoy-Matos et al., the proper understanding of 
NAFLD spectrum—as a continuum from obesity to MS and diabetes—may contribute to 
the early detection and to the establishment of a targeted treatment [47,51]. 

Among all the variables of fat distribution evaluated with DXA, the upper/leg fat 
index was identified by ML as the best predictor of MUO. An elevated ratio (>2.01), as 
reported in our analysis, indicates upper body fat accumulation and central obesity, which 
both lead to metabolic complications; contrarily to lower body fat, which confers reduced 
risk [52]. Additionally, as we have already described, prominent upper body fat deposi-
tion is likely to predispose individuals to apnoea. Indeed, fat accumulation in strategic 
locations, such as the head and upper airway, predisposes to pharyngeal narrowing and 
upper airways collapsibility resulting in obstructive sleep apnoea syndrome (OSAS) [30]. 
In turn, OSAS is a risk factor for insulin resistance and diabetes and is often found in the 
setting of MS. Occasionally, in a subset of patients with OSAS, secondary polycythaemia 
will develop [53]. 

Even though a true polycythaemia is not generally found, according to our analysis 
an RBC count >4.45 (1012/L) is a predisposing factor for MUO. When exclusively consider-
ing the female population, the calculated cutoff was higher (>4.74 1012/L). These results 
are along the line of already published data reporting that subjects affected by MS exhibit 
a higher count of RBCs compared to metabolically healthy subjects. It has been reported 
that, despite the presence of chronic inflammation which has suppressive erythropoietic 
effects, erythropoiesis correlates with central obesity and insulin resistance [54] and that 
RBC count is, even though still within normal range, significantly higher in the presence 
of MS for each sex [55]. 

Innumerable etiopathogenetic mechanisms responsible for the onset of MS among 
patients with obesity have been identified, but chronic, low-grade and systemic inflam-
mation has been acknowledged as the common denominator [56]. The WBC count is an 
objective marker of acute infection, tissue damage and inflammation [57]. A few studies 
have already confirmed that the WBC count is correlated with the increase of certain var-
iables of MS [58]. In this regard, our analysis found that a neutrophilic leucocytosis is often 
common in MUO, suggesting an altered immune response and increased susceptibility to 
bacterial and viral infections, as known from the recent COVID-19 pandemic [59–62] and 
previous cross-sectional studies [63]. 

A further key predictive factor in the development of MS is IGF-1, a polypeptide hor-
mone structurally similar to insulin, which promotes tissue growth and maturation 
through upregulation of anabolic processes. Adult-onset growth hormone deficiency 
(GHD) is relatively common in patients with obesity, being associated with a worse met-
abolic profile [64,65]. Epidemiological studies have suggested that IGF-1 levels in the up-
per normal range are associated with increased insulin sensitivity, better liver status and 
reduced blood pressure [66–69]. 

Noteworthy, the first model provided by Rulex® including IGF-1, was predictive of 
the presence/absence of metabolically healthy obesity with a precision of 66.67% and 
72.15%, respectively. However, the usefulness of IGF-1 serum measurement is limited by 
a poor standardization of its normal values, as both age and gender can significantly affect 
serum IGF-1 concentrations. By the age of 65 years old, daily spontaneous GH secretion 
is reduced by up to 50–70%, and consequently IGF-1 levels decline progressively as they 
vary significantly with gender, age and body fat, similar to what happens with bone min-
eral density (BMD). This leads to the need of a score keeping these factors into considera-
tion, such as the T- and Z-score developed to better evaluate BMD. In this regard, when 
added IGF-1 zSDS as a variable, our second model increased its precision, reaching the 
value of 71.84% for the presence of metabolically healthy obesity and 72.3% for its absence. 

Our study suggests that ML may have a broad application in the risk stratification of 
people suffering from obesity and supports its potential role in the health care system to 
identify those at higher risk, among the wide population of subjects with obesity, and to 
identify the parameters characterising the state of MHO, a phenotype that could represent 
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the first goal to be achieved in the management of chronic obesity in order to reduce the risk 
of death. Moreover, we found that the surrogate marker IGF-1 zSDS, more than IGF-1 alone, 
can increase the precision of the model in the prediction of the presence/absence of MHO, 
suggesting its potential application in clinical practice as a marker of metabolic impairment. 

The strengths and limitations of this study warrant mention. Firstly, this study was 
conducted in a large cohort that was nationally representative of the Italian obese popu-
lation. However, our patient cohort is not gender balanced. The main limitation of the study 
is that Rulex®, like many other ML algorithms, needs a large amount of data to yield relevant 
results. Further prospective studies, with a larger number of patients, and comparison studies 
with other supervised machine learning models, such as support vector machine, naïve Bayes 
algorithm and random forest algorithm, are needed to confirm our results. 

5. Conclusions 
Integration of ML technology in medicine may help scientists understand in a deeper 

way the pathogenesis of complex diseases, such as the metabolic ones. One possible ap-
plication of this ML analysis is the development of an algorithm, which, in a similar way 
to the fracture risk assessment tool (FRAX) for osteoporosis [70], can accurately predict 
the risk of developing MUO at 5 or 10 years in the population of patients with obesity, 
thus identifying the clinical phenotype with the highest risk and encouraging more and 
more precise and targeted therapeutic approaches. 
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