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Abstract: Aging results in a progressive decline in skeletal muscle mass, strength and function,
a condition known as sarcopenia. This pathological condition is due to multifactorial processes
including physical inactivity, inflammation, oxidative stress, hormonal changes, and nutritional intake.
Physical therapy remains the standard approach to treat sarcopenia, although some interventions
based on dietary supplementation are in clinical development. In this context, thanks to its known
anti-inflammatory and antioxidative properties, there is great interest in using extra virgin olive oil
(EVOO) supplementation to promote muscle mass and health in sarcopenic patients. To date, the
molecular mechanisms responsible for the pathological changes associated with sarcopenia remain
undefined; however, a complete understanding of the signaling pathways that regulate skeletal
muscle protein synthesis and their behavior during sarcopenia appears vital for defining how EVOO
might attenuate muscle wasting during aging. This review highlights the main molecular players that
control skeletal muscle mass, with particular regard to sarcopenia, and discusses, based on the more
recent findings, the potential of EVOO in delaying/preventing loss of muscle mass and function,
with the aim of stimulating further research to assess dietary supplementation with EVOO as an
approach to prevent or delay sarcopenia in aging individuals.

Keywords: olive oil phenols; muscle mass loss; anabolic muscle pathways; sarcopenia; aging

1. Introduction: Skeletal Muscle Biology

Skeletal muscle mass homeostasis can be perturbated by aging, lifestyle-related causes
such as a sedentary condition and reduced exercise or by severe disease. Skeletal mus-
cle is a dynamic tissue with a crucial role in maintaining body metabolism and glucose
homeostasis [1] thanks to its ability to react and rapidly adapt to external or environmental
changes. Human health and survival are strictly dependent on skeletal muscle functional-
ity as its loss increases the risk of falls, impairs mobility, and leads to muscle wasting, a
condition correlated to cardiovascular disease, cancer, diabetes, cachexia, sarcopenia, and
neurodegeneration [1].
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Multiple molecular mechanisms are involved in the regulation of muscle mass and
function. Muscle mass depends on a balance between protein synthesis and degradation [2].
It is well known that muscle hypertrophy occurs following an increase in protein synthesis,
which can be induced by hormonal stimulation or resistance exercise. On the contrary,
muscle atrophy typically results from reduced physical activity, neuronal alteration, or an
increase in proteolysis. As regards proteolysis, two known proteolytic systems participate
in the control of muscle size, the ubiquitin-proteasome system (UPS), which guarantees
protein quality control, and the autophagy-lysosome system, which removes dysfunctional
organelles and unfolded proteins [3].

The complex modulation of skeletal muscle mass is strictly correlated with the anatom-
ical characteristics of this tissue. Skeletal muscle mass is a syncytium with multinucleated
and post-mitotic myofibers [4], which take origin from myoblast fusion to initially form
multinucleated myotubes (Figure 1A). In adult skeletal muscle fibers, myonuclei, which
are located between myofibrils and sarcolemma (Figure 1B, inset B and scheme), are post-
mitotic and cannot divide. Therefore, myoblasts can either fuse with each other, forming
new myofibers, or fuse, donating their nucleus, to an already existing myofiber [5]. My-
ofibers can be divided into fast (oxidative, intermediate metabolic properties) or slow
(glycolytic, fatigue-resistant) fibers and respond specifically to a variety of stimuli, includ-
ing hormonal levels, denervation, corticosteroids, aging, inactivity, and disease, as well as
to metabolic and mechanical demands [6]. Fast fibers are affected by atrophic conditions,
whereas muscle wasting induced by cancer affects slow fibers [7,8].
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Figure 1. Image (A) shows a long and cylindrical adult myotube with several myonuclei located at
the periphery of the fiber. Transverse (B) and longitudinal (inset B) optical sections of mouse muscle
fibers where a satellite cell (black arrow) is located beneath the sarcolemma and basal lamina and a
myonucleus (white arrow) is located at the periphery of the fiber in the space between myofibrils
and sarcolemma. A schematic representation of a muscle fiber and inset photo where glycolytic and
oxidative myofibers can be observed. Bars: 10 µm for A and 25 µm for B.

Tissue regeneration is a fundamental property of skeletal muscle, correlated with the
activation and migration of a population of adult stem cells, called satellite cells, which
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proliferate and differentiate among the muscle fibers. Satellite cells, located between the
basal lamina and sarcolemma (Figure 1, inset B and scheme), have a crucial role in mult-
inucleated myofiber development, growth, and maintenance [9]. These cells, which are
usually quiescent, become activated during myogenesis or during regeneration to repair
damaged muscle [10]. Indeed, skeletal muscle development and regeneration also depends
on satellite cell functionality, which is regulated by several molecular pathways [11] and by
a family of known myogenic transcription factors [12–16]. Thus, a variety of anatomical
components and molecular mechanisms participate to reach and maintain muscle mass
homeostasis, a condition that can be perturbated by environmental stressors, inflammation,
and oxidative stress, contributing to muscle wasting. In fact, muscle mass appears suscep-
tible to inflammatory molecules leading to protein catabolism increase and consequent
malnutrition [17]. Moreover, elevated reactive oxygen species (ROS) production, which
correlates with muscle mitochondria alterations, induces post-translational modifications,
which compromise muscle protein function in aged individuals [18]. Therefore, the iden-
tification of nutritional compounds able to interact with anabolic pathways to improve
myofiber growth and differentiation, satellite cell function and intracellular organelle home-
ostasis represents an interesting issue within the field, with the aim of delaying the loss of
muscle mass and function occurring in atrophic conditions. In this scenario, this review
discusses the latest findings on the role of extra virgin olive oil (EVOO), a crucial component
of the Mediterranean diet [19], in the preservation of muscle mass with particular regard
to sarcopenia, a muscle-wasting disorder characterized by progressive loss of skeletal
muscle mass, quality, and strength; all conditions which are associated with physiological
aging [20].

2. Materials and Methods

This review initially (Sections 3 and 4) describes the main molecular regulators and
pathways involved in the control of protein synthesis and skeletal muscle mass and func-
tion, as well as sarcopenia development, by considering those articles published on the
subject in the last twelve years. Articles considered were indexed in and retrieved from
PubMed and/or Google Scholar using the following key words: skeletal muscle atrophy,
muscle protein synthesis regulators, molecular pathways of muscle atrophy, sarcopenia,
mechanisms of muscle loss and function, muscle loss and aging, mechanism of aging.

Later (Sections 5 and 6), the relevance of EVOO to the nutrition field and its efficacy in
counteracting the sarcopenic phenotype is discussed, considering both in vitro and in vivo
studies carried-out in the last twelve years and retrieved from the same research motors,
using the following key words: olive oil in the diet, beneficial effect of olive oil, olive oil
and sarcopenia, EVOO and sarcopenia, EVOO and muscle loss, olive oil in preventing
muscle mass, olive oil and muscle atrophy, Oleuropein and muscle mass, Hydroxytyrosol
and skeletal muscle, Tyrosol and sarcopenia.

3. Protein Synthesis Regulators

Insulin-like growth factor 1 (IGF-1), a key player in the regulation of glucose/energy
metabolism, protein turnover and skeletal muscle function (Figure 2), is involved in the
control of muscle growth, differentiation, and regeneration [21]. In young subjects, high
circulating IGF-1 levels are positively associated with improved health and muscular en-
durance parameters. In contrast, high circulating levels of IGF-1 have a negative association
with body fat, body mass index, and total serum cholesterol [22]. Low IGF-1 levels lead
to chronic diseases, inflammation, and malnutrition [23]. Since it is the main influencer of
both protein synthesis and degradation pathways in skeletal muscle, IGF-1 signaling is
strictly involved in controlling myofiber size and function.

IGF-1 has two different isoforms, IGF-1Ea and IGF-1Eb. The differing roles of these
isoforms remain unclear; however, IGF-1Ea appears to be the main isoform involved in
satellite cell activation and growth, and its expression is tightly correlated with muscle
hypertrophy; thus, it is fundamental for muscle mass maintenance during aging and in ani-
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mals affected by muscular diseases [24–26]. IGF-1 controls protein synthesis by interacting
with its receptor, IGF-1R, a receptor tyrosine kinase, to activate an intracellular signaling
cascade that leads to the phosphorylation and activation of the phosphoinositide 3-kinase
(PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. In this signaling cascade,
AKT can phosphorylate and activate mTOR, thereby promoting protein synthesis [27]. At
the same time, active AKT [28] leads to the inhibition of glycogen synthase kinase 3 (GSK-3),
a metabolic kinase whose aberrant activity has been linked to inflammatory-mediated mus-
cle decay, by phosphorylating GSK-3 on Ser21/Ser9 (-α/-β) [29]. The GSK-3β isoform,
which is more expressed in skeletal muscle than the α-isoform [30], is considered a negative
regulator of protein synthesis, and its ablation seems to favor atrophied skeletal muscle
regeneration [29]. In fact, since active GSK-3β stimulates atrogin-1 and MuRF1 expression,
two enzymes involved in UPS-mediated protein breakdown [31,32], it is not surprising
that the lack or loss of GSK-3β prevents muscle mass and myofibrillar loss during atrophic
conditions. Similar to AKT, other kinases, such as cAMP-dependent protein kinase A
(PKA), protein kinase C-γ (PKCγ), protein kinase D1 (PKD1), protein kinase G (PKG)
or mitogen-activated protein kinase-activated protein (MAPKAP) kinase-1, also mediate
GSK-3β inactivation via Ser9 phosphorylation [33,34]. In addition, IGF-1 regulates protein
synthesis by modulating the levels of myostatin, a member of the transforming growth
factor-β (TGF-β) family that is secreted by skeletal muscle [35]. Elevated expression of
myostatin down-regulates AKT, and this event is correlated with a reduction in myofiber
size during aging as well as pathological conditions, such as cancer and cachexia [26].
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are colored in blue whereas those that inhibit protein synthesis and/or activate protein degradation
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cultured myotubes. Bars: 10 µm.

As previously stated, IGF-1 plays a role in controlling protein breakdown, mediated
by the UPS, via inactivation of GSK-3β. The UPS acts through two main E3 ubiquitin
ligases, Muscle atrophy F-box (MAFbx)/Atrogin-1 and muscle RING finger 1 (MuRF1).
MAFbx/Atrogin-1 and MuRF1 appear upregulated during disuse, denervation, inflam-
mation, aging, glucocorticoid increase, and chronic diseases such as cancer, congestive
heart failure, chronic kidney disease, chronic obstructive pulmonary disease (COPD), and
AIDS [26,36]. In addition to GSK-3β, it is known that the IGF-1/PI3K/AKT pathway modu-
lates both FoxO and NF-κB signaling, which are also known to regulate MAFbx/Atrogin-1
and MuRF1 expression. Therefore, both IGF-1 and AKT activation can inhibit muscle
atrophy induced by inflammatory cytokines by acting on NF-κB expression [26]. Addition-
ally, IGF-1 inhibits autophagic processes by the consequent inhibition of two pathways,
unc51-like kinase-1 (ULK1) and FoxO3, which are involved in the induction of autophagy-
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related genes [37,38]. In contrast, IGF-1 can promote autophagy pathways with the aim of
removing dysfunctional mitochondria that are responsible for excessive increases in ROS
and muscle degeneration occurring during aging [21].

Moreover, IGF-1 is also involved in muscle function preservation through peroxi-
some proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α) activation, an
antioxidant marker that stimulates antioxidant defenses and promotes the maintenance
of neuromuscular junction integrity, which are essential for muscle functionality. IGF-1-
mediated stimulation of PGC1-α expression, also exerts a fundamental role in the control
of mitochondrial dynamics by promoting the fusion and fission of mitochondria and by
regulating their quality and functionality [39]. In this scenario, IGF-1 is supported by
AMPK-dependent signaling, which guarantees the whole-body energy balance through the
control of both glucose and lipid metabolism [40]. This collaboration between IGF-1 and
AMPK pathways assures and improves mitochondrial biogenesis and appears to be strictly
related to PGC1-α [41]. In addition, Sirt-1, a protein target involved in growth regulation,
stress response, endocrine signaling, and extended lifespan appears modulated by IGF-1.
Sirt-1 and AMPK comprise the main regulators of PGC1-α [21,42].

Satellite cell functionality is tightly controlled by intrinsic signaling pathways and
extrinsic signals from the stem cell niche and also by circulating factors such as growth
factors and hormones, including IGF-1 [43]. In fact, a lack of IGF-1-mediated pathway acti-
vation results in reduced expression of myogenic regulatory factors such as MyoD, Myf-5,
and myogenin, with a consequent satellite cell function reduction [44–46]. Therefore, IGF-1
plays an important role in muscle homeostasis and preservation, leading to a reduction
in muscle degeneration and inflammation while promoting the proliferation capacity of
muscle satellite cells [47,48].

Another widely recognized regulator controlling muscle mass is mTOR, a serine/
threonine kinase activated by various environmental and intracellular changes correlated
with growth, including nutrient availability, hormonal stimulation, and energy status
(Figure 2). mTOR functions as two distinct complexes [49]:

- mTORC1 (Raptor-containing complex) controls protein synthesis and organelle bio-
genesis by activating S6 kinase 1 (S6K1) and leading to the subsequent phosphorylation
and sequestration of 4E-binding protein 1 (4EBP1), an inhibitor of the eukaryotic translation
initiation factor 4E (eIF4E) [50]. Raptor deficiency leads to reduced post-natal growth, pro-
gressive dystrophy, impaired oxidative capacity, and increased glycogen stores. Moreover,
mTORC1 inhibition blocks muscle hypertrophy in post-natal development and muscle
regeneration [51]. For instance, in Pompe disease (a severe muscle wasting condition char-
acterized by excessive accumulation of lysosomal glycogen the downregulation of mTOR)
leads to a rapid progressive and lethal myopathy caused by a growth impairment [52].
It has also been demonstrated that the direct activation of mTORC1 stimulates protein
synthesis and delays skeletal muscle atrophy induced by immobilization [53,54]. Addition-
ally, activation of the PI3K/AKT axis by IGF-1 is sufficient to activate mTORC1 signaling,
thereby inducing skeletal muscle hypertrophy [55]. Acute reactivation of AKT–mTORC1
also appears sufficient to counteract cancer-related muscle wasting, as demonstrated by
Geremia and co-workers in a mouse model in which AKT could be selectively activated
specifically in skeletal muscle [56]. In vitro studies on muscle cells showed that protein
intake, as well as natural compounds (i.e., Tangshenoside I, Maslinic acid, Leucine) with
antioxidant and anti-inflammatory properties, rescued muscle mass loss, induced by at-
rophic drugs, through the activation of PI3K/AKT/mTORC1 pathway and the suppression
of catabolic signaling pathways [57–59]. In addition, Raptor loss, following AKT activation,
was reported to reduce muscle hypertrophy and force, as well as mitochondrial protein con-
tent [60]. However, long-term continuous activation of mTORC1 appeared deleterious for
skeletal muscle homeostasis, leading to dysfunctional autophagy and UPS activation [61].

- mTORC2 (Rictor-containing complex) is involved in AKT-dependent glucose and
lipid homeostasis. The mTORC2 complex phosphorylates glucocorticoid-regulated kinase 1
(SGK1) to regulate ion transport and cell survival, protein kinase C (PKC) to modulate actin
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cytoskeleton organization, and finally AKT [62]. Activation of mTORC2 promotes embry-
onic myogenesis during development and the maintenance of muscle fiber homeostasis in
adults. Its regulation appears crucial to satellite cell functionality [62,63].

Taken together, data collected on mTOR demonstrated its relevance in muscle growth,
development, and survival. In this context, it is necessary to stress the point that several key
cellular molecules act by reducing mTOR expression. For instance, AMPK activation can
down-regulate the mTOR pathway. More specifically, under energy deficient conditions
(AMP > ATP), AMPK phosphorylates mTOR, reducing mTOR signaling and, consequently,
protein synthesis [64], a condition which leads to the development of an atrophic pheno-
type, including that of sarcopenia. It should also be mentioned that a number of cancer
therapies showing the most promise in recent clinical trials target the PI3K/AKT/mTOR
pathway [65]. The side-effects of these therapies on muscle homeostasis and quality of life
will need to be closely monitored.

4. Muscle Mass Loss during Sarcopenia

Sarcopenia, defined as the age-associated decline in skeletal muscle mass and function,
represents a well-established risk factor for most health-related conditions and events,
including frailty, fractures, various disabilities, and death [66–69]. Muscle strength and
muscle mass reduction are the two recognized components of sarcopenia [20] as defined by
the 2010 European Working Group on Sarcopenia in Older People (EWGSOP), [66].

Skeletal muscle affected by sarcopenia shows severe alterations in cellular turnover
and is characterized by abundant cellular vacuolization and mitochondrial damage, which
compromise skeletal muscle homeostasis. Sarcopenia predominantly affects the type II
(fast) muscle fibers with a size reduction of up to 50%, which is gradually replaced by
type I fibers and fat-tissue deposits [70]. The loss of muscle mass is due to both muscle
atrophy and myofiber death; conditions exacerbated by motor unit deterioration which
finally results in loss of strength [71]. Several biological mechanisms have been proposed
to explain sarcopenia development, including hormone imbalance (for instance IGF-1
deregulation), chronic activation of inflammatory pathways, and oxidative stress; in some
conditions, such as myositis, there also appears to be involvement of an acquired immune
response. All these conditions lead to mitochondrial dysfunctionality, altered proteostasis,
aberration in muscle fiber composition, and reduced satellite cell potential. In particular, it
has been documented that the loss of muscle mass and strength, that occurs during aging,
is highly correlated with hormonal decreases, including IGF-1 and testosterone [71].

Growth hormone (GH, also known as Somatotropin), the main anabolic signal for
muscle protein synthesis, appears impaired in sarcopenic subjects. As a consequence,
lower serum levels of IGF-1, whose production is stimulated by GH, and functional per-
formance levels have been observed in sarcopenic patients with respect to non-sarcopenic
ones [72–74]. Furthermore, the IGF-1 impairment observed in sarcopenic patients is respon-
sible for the up-regulation of myostatin and the associated deficiency in muscle differen-
tiation, reduced protein synthesis, and enhanced protein degradation. The expression of
IGF-1 also reflects the influence of inflammation, which accounts for a significant part of
muscle mass loss occurring during aging [66]. In this context, it is known that low-grade
chronic inflammation is involved in age-related diseases, including sarcopenia [75,76]. In
fact, during aging, skeletal muscle cells produce inflammatory molecules able to induce
losses in muscle mass, muscle strength and physical performance [77].

Several cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and
interferon-γ (IFN-γ), are implicated in the pathogenesis of muscle mass reduction as-
sociated with aging [78,79]. In particular, TNF-α is considered a potent trigger of muscle
wasting in vitro and in vivo, through the inhibition of myogenesis and induction of apopto-
sis and proteolysis, via the activation of NF-κB and various UPS components [80]. Several
authors documented high levels of TNF-α in individuals of advanced age compared to
young individuals, and this finding appeared correlated with a reduced satellite cell number
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which contributed to sarcopenia development [81,82]. Furthermore, TNF-α up-regulation
leads to inhibition of mTOR signaling and a reduction in muscle biosynthesis [83].

In addition to inflammatory cytokines, increased oxidative stress plays a crucial
role in sarcopenia pathogenesis. During aging, mitochondria produce excessive levels of
ROS and antioxidant defenses are less efficient to counteract this enhancement [84]. As a
consequence, oxidative stress and lipid peroxidation events increase, leading to muscle fiber
damage and death [85–87]. Strong experimental evidence indicates that the accumulation of
mitochondrial dysfunction plays an important role in the muscle aging process, so much so
that the progressive reduction in mitochondrial number and efficiency has been proposed as
a mechanism capable of inducing sarcopenia [85,88,89]. Thus, age-related sarcopenia seems
to be intimately linked to increased ROS production, increased mitochondrial apoptotic
susceptibility, and reduced mitochondrial biogenesis.

The role of PGC1-α in the control of mitochondrial biogenesis appears crucial for
skeletal muscle preservation. It has been demonstrated that a reduction in PGC1-α signal-
ing leads to a decrease in AKT and mTOR expression. In contrast, in aged mice, it was
observed that PGC1-α overexpression delays mitochondrial impairment, apoptosis, au-
tophagy, proteasome activity, and muscle loss [90]. These findings highlight the significant
contribution of healthy mitochondria to homeostasis and maintenance of muscle tissue, as
mitochondrial changes can greatly contribute to age-associated muscle alterations [91–93].

During age-related sarcopenia development, an accumulation of dysfunctional or-
ganelles within skeletal myofibers represents a characteristic atrophic marker and favor
impaired bioenergetics with consequent activation of aberrant catabolic pathways [94,95],
leading to muscle wasting. Therefore, to delay sarcopenia development and progression
during aging, it is necessary to identify compounds able to stimulate/activate anabolic
pathways and to counteract pathways involved in muscle degeneration, such as those
associated with inflammation and oxidative stress. Among these molecules, extra virgin
olive oil (EVOO) seems to play a key role in modulating anabolic processes and in delaying
muscle wasting.

5. Extra Virgin Olive Oil (EVOO)

EVOO, a central component of the Mediterranean diet, has an overall beneficial effect
on human health. In particular, it appears to contribute to the prevention of metabolic
disorders and cardiovascular disease [96,97]. It is known that consumption of olive oil has
several advantages: (1) it reduces lipid and DNA oxidation, (2) it improves lipid profile
and insulin-resistance, (3) it prevents endothelial dysfunction, (4) it has anti-inflammatory
properties, and (5) it ameliorates blood pressure in hypertensive patients [97]. EVOO nutri-
tional and antioxidant properties depend on the concentration of tocopherols, carotenoids,
and phenolic compounds [98–100]. These latter can be divided into different classes such as
phenyl ethyl alcohol (Hydroxytyrosol and Tyrosol), cinnamic (caffeic acid and p-coumaric
acid) and benzoic (vanillic acid) acids, flavones (apigenin and luteolin), and secorroids
(oleuropein and ligtroside derivatives). Phenolic compounds (Figure 3), in particular, Oleu-
ropein, Hydroxytyrosol and Tyrosol, appear responsible for most beneficial properties
attributed to EVOO by acting as potential scavengers of reactive oxygen species [101].
For instance, during aging they maintain genomic stability by protecting DNA (nuclear
and mitochondrial) and cellular organelles (especially mitochondria) against oxidative
stress and by stimulating endogenous antioxidant defenses [102]. Therefore, they are
involved in delaying cellular senescence through the modulation of age-related chronic
inflammation [103].

Two key modulators of human aging are integral parts of the inflammatory and ox-
idative stress responses: nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) and NF-E2-related factor 2 (Nrf-2) [104]. NF-κB up-regulation characterizes several
age-related and inflammatory diseases and is considered a hallmark of senescence [105].
In contrast, Nrf-2 levels appear to be down-regulated with age, as a result of epigenetic
suppression or enhanced expression of its negative regulators [106]; as a consequence, cells
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and tissues are more vulnerable to oxidative stress, contributing to the age-related tissue
degeneration. In this context, several studies have demonstrated that EVOO polyphenols
protect cells and tissues against oxidative injuries and pro-inflammatory stimuli via pro-
moting Nrf-2 signaling and by suppressing NF-κB activation [107]. Therefore, thanks to its
phenolic content, EVOO shows a significant effect in modulating cellular pathways related
to ROS and inflammation, and it appears interesting enough to further study its potential
in preventing skeletal muscle wasting during sarcopenia.

Nutrients 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

involved in delaying cellular senescence through the modulation of age-related chronic 
inflammation [103]. 

 
Figure 3. EVOO contains phenolic compounds such as Oleuropein, Hydroxytyrosol and Tyrosol 
with antioxidant and anti-inflammatory properties which could be useful for sarcopenia prevention. 

Two key modulators of human aging are integral parts of the inflammatory and oxi-
dative stress responses: nuclear factor kappa-light-chain-enhancer of activated B cells 
(NF-κB) and NF-E2-related factor 2 (Nrf-2) [104]. NF-κB up-regulation characterizes sev-
eral age-related and inflammatory diseases and is considered a hallmark of senescence 
[105]. In contrast, Nrf-2 levels appear to be down-regulated with age, as a result of epige-
netic suppression or enhanced expression of its negative regulators [106]; as a conse-
quence, cells and tissues are more vulnerable to oxidative stress, contributing to the age-
related tissue degeneration. In this context, several studies have demonstrated that EVOO 
polyphenols protect cells and tissues against oxidative injuries and pro-inflammatory 
stimuli via promoting Nrf-2 signaling and by suppressing NF-κB activation [107]. There-
fore, thanks to its phenolic content, EVOO shows a significant effect in modulating cellular 
pathways related to ROS and inflammation, and it appears interesting enough to further 
study its potential in preventing skeletal muscle wasting during sarcopenia. 

6. Can EVOO Prevent Sarcopenia? 
Reduction in muscle size and quality and an accumulation of fat deposits character-

ize the aging process in skeletal muscle. The excessive adiposity contributes to the physi-
cal decline that occurs during aging by promoting frailty, physical inactivity, and loss of 
independence, impairing the quality of life [108,109]. To date, there is no specific pharma-
cological treatment for preventing sarcopenia, only strategic interventions primarily fo-
cused on physical exercise and resistance training, which are able to partially restore mus-
cle function in the elderly [110–112]. 

In the last few years, researchers have been focusing their attention on dietary inter-
ventions as crucial tools to counteract sarcopenia; among these dietary interventions 
EVOO administration showed positive effects against aged-related muscle alterations. 
Even if the literature is not exhaustive regarding the role of EVOO in delaying the sar-
copenic phenotype, some reports demonstrated that a regular consumption of EVOO has 
beneficial effects on body composition, including skeletal muscle (Figure 4), where an im-
provement of tissue morphology and function has been observed [113,114]. For instance, 
in older, obese subjects, EVOO administration during energy intake restriction stimulates 

Figure 3. EVOO contains phenolic compounds such as Oleuropein, Hydroxytyrosol and Tyrosol with
antioxidant and anti-inflammatory properties which could be useful for sarcopenia prevention.

6. Can EVOO Prevent Sarcopenia?

Reduction in muscle size and quality and an accumulation of fat deposits charac-
terize the aging process in skeletal muscle. The excessive adiposity contributes to the
physical decline that occurs during aging by promoting frailty, physical inactivity, and
loss of independence, impairing the quality of life [108,109]. To date, there is no specific
pharmacological treatment for preventing sarcopenia, only strategic interventions primarily
focused on physical exercise and resistance training, which are able to partially restore
muscle function in the elderly [110–112].

In the last few years, researchers have been focusing their attention on dietary inter-
ventions as crucial tools to counteract sarcopenia; among these dietary interventions EVOO
administration showed positive effects against aged-related muscle alterations. Even if
the literature is not exhaustive regarding the role of EVOO in delaying the sarcopenic
phenotype, some reports demonstrated that a regular consumption of EVOO has beneficial
effects on body composition, including skeletal muscle (Figure 4), where an improvement of
tissue morphology and function has been observed [113,114]. For instance, in older, obese
subjects, EVOO administration during energy intake restriction stimulates protein synthesis
and delays the loss of skeletal muscle mass and strength with an improvement in physical
performance and quality of life [109]. Silveira and co-workers demonstrated that EVOO
consumption associated with a healthy diet improved strength and muscle functionality in
elderly, obese patients, highlighting its potential role in sarcopenia prevention [115].

González-Hedström et al., 2020 demonstrated that an oil mixture, composed of
75% EVOO and 25% algae oil, and administrated for 21 days favored a delay in mus-
cle loss. In fact, aged rats treated with EVOO demonstrated higher gastrocnemius weight
compared to untreated aged animals, and the decrease in protein content observed in
the untreated aged rats appeared to be preserved in those treated with EVOO. In this
experiment, EVOO counteracted muscle aging by reducing inflammation mediated by the
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inflammatory cytokine IL-6, modulated myogenin expression, and induced an increase in
PGC1-α expression [116]. Moreover, these same authors also demonstrated the involve-
ment of histone deacetylase 4 (HDAC-4) in sarcopenia development. Expression of HDAC4
was up-regulated in muscle obtained from aged rats and its elevated expression correlated
with high levels of myogenin, which further activated a number of atrogenes. Treatment of
aged rats with EVOO reduced expression of HDAC-4, leading to reduced skeletal muscle
senescence [116].
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As the beneficial outcome of EVOO in counteracting muscle loss depends on the phe-
nolic compounds it contains, several studies have tested the individual activities of these
compounds during atrophic conditions. For instance, Oleuropein, an EVOO phenol, demon-
strated scavenger properties in C2C12 murine muscle cells, where it was able to counteract
an excessive increase in oxidative stress [117]. In addition, it reduced mitochondrial oxygen
species generation in primary-cultured chicken muscle cells through Sirt1 activation and
PGC1-α expression, with a consequent reduction in oxidative potential and preservation of
mitochondrial biogenesis [118]. Likewise, Hydroxytyrosol, a known antioxidant and the
main component of the EVOO phenolic fraction, is derived from hydrolysis of oleuropein,
and its concentration in EVOO depends on the altitude and latitude of the olive tree from
which the olives and oil were harvested, the variety of olive, the collection time; and the
processing conditions [119,120]. Hydroxytyrosol is able to scavenge ROS and to enhance
endogenous antioxidant systems in several cell models, as well as to prevent alteration
of mitochondrial dynamics, which plays a vital role during mitochondrial dysfunction-
associated muscle disorders [120], including sarcopenia. Studies have also reported on
the ability of Hydroxytyrosol to stimulate mitochondrial biogenesis, thereby protecting
mitochondrial function, and inhibit apoptosis in strenuous exercise-induced skeletal muscle
fatigue and in muscles of obese mice [121,122]. Wang and co-workers [123] demonstrated
that Hydroxytyrosol could significantly prevent mitochondrial membrane potential and
cell viability loss in myotubes exposed to high oxidative stress levels. These same authors
showed that Hydroxytyrosol could also reduce excessive ROS by enhancing mitochon-
drial oxygen consumption capacity and activation of mitochondrial complex I and II [123].
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Thanks to these properties, Hydroxytyrosol might be expected to have a beneficial role
in counteracting aging, as well. In this regard, a positive outcome has been observed in
skeletal muscle of aged rats treated for 6/8-weeks with a polyphenolic mixture containing
Hydroxytyrosol, and low amounts of Tyrosol, catechol, gallic acid, homovanillic acid, and
caffeic acid. This treatment improved the decline in skeletal muscle function attributable
to aging-associated oxidative stress, restoring the resting cytosolic calcium concentration,
sarcoplasmic reticulum calcium release, and preserving muscle weight and blood creatine
kinase levels [124]. The protective effects of Hydroxytyrosol have also been observed in
L6 skeletal muscle cells exposed in vitro to radical generator cumene hydroperoxide, a
known pro-oxidant agent [125]. No data in the literature was retrieved regarding the effects
of Tyrosol in skeletal muscle models or in connection with muscle aging, nevertheless
Tyrosol is widely noted for its strong activity as a neuroprotective agent [126] and as an
anti-inflammatory/antioxidant molecule [127–129]. Only a single paper, published in 2019,
highlights the potential pharmacological application of Tyrosol in skeletal muscle tissue.
In the reported study, Tyrosol was assayed as a potential small drug to treat therapeutic
angiogenesis in diabetic patients affected by hindlimb ischemia. Tyrosol was reported
to exert cytoprotective effects against hyperglycemia-induced oxidative stress in skele-
tal muscle cells, where it increased cell proliferation and acted by suppressing apoptotic
death [130]. Thus, due to its many noted properties, Tyrosol deserves further detailed
investigation in in vitro and in vivo models of skeletal muscle aging and sarcopenia. The
Table 1 summarizes the data available on the effects of EVOO and its phenolic components
in preventing skeletal muscle damage related to sarcopenia.

Table 1. Human, animal and cell studies have been schematized to highlight the sample size (n), the
dosage end the time of administration of EVOO, Oleuropein, Hydroxytyrosol and Tyrosol.

Human Studies Animal Studies In Vitro Studies

EVOO

# - Heathly adults (n = 45) 50 mL/d EVOO
for 30 days

# - Older obese subjects (≥60 years,
n = 73), 40–60 mL/d EVOO for 12 weeks,
isocaloric diet

# - Obese subjects (18–64 years, n = 50),
52 mL/d EVOO for 12 weeks in
DietBRa program

Old rats (n = 8), 2.5 mL/kg EVOO for
21 days No data

Oleuropein No data No data

# - C2C12 myotubes exposed to
oxidative stress, pre-treated with
100–600 µM oleuropein for 24 h

# - Primary cultured chicken muscle
cells exposed to Oleuropein added
to the culture medium at 0.1%
volume (v/v)

Hydroxytyrosol No data

# - 4-week-old male C57BL/
6 mice (n = 10), 10 mg/kg/day
or 50 mg/Kg/day Hydroxytyrosol
with a high-fat diet

# - Sprague–Dawley (SD) male rats,
25 mg/kg/day Hydroxytyrosol, en-
durance exercise

L6 myotubes treated with 10 µL/mL or
50 µL/mL of Hydroxytyrosol

Tyrosol No data No data
C2C12 cells after hyperglicemia induction

were treated with 50 mg/mL Tyrosol
for 24 h

7. Conclusions

Data collected over the last ten years reveal EVOO, the main fat source in the Mediter-
ranean diet, to be a dietary nutrient of considerable importance with regard to its potential
benefits in maintaining skeletal muscle homeostasis during aging [131]. Increased incor-
poration of EVOO or its bioactive phenolic compounds into the diet could be a strategic
intervention against age-related sarcopenia, a skeletal muscle disease associated with ad-
verse outcomes due to a progressive loss in muscle mass and function as a consequence of a
sedentary lifestyle and age-related metabolic changes. This review focuses on the potential
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usefulness of EVOO consumption to promote an increase in skeletal-muscle protein synthe-
sis rates and stimulate an anabolic muscle response, thus allowing, at least in part, for an
attenuation in muscle wasting and a delay in sarcopenia progression. The beneficial proper-
ties of EVOO are strictly related to the phenolic content, which represents a minor fraction
of EVOO molecules. These compounds demonstrate a strong ability to activate anabolic
pathways and to counteract age/disease-related changes involved in muscle degeneration,
such as mitochondrial alterations and inflammatory processes [132]. In particular, several
studies point to the role of EVOO in maintaining mitochondrial homeostasis through
modulation of Sirt1 and PGC1-α expression (Figure 4), and this data appears extremely
interesting, especially in light of the fact that accumulation of dysfunctional mitochondria
is a major contributing factor to the development of sarcopenia [133–135]. Therefore, exam-
ining more closely the efficacy of EVOO phenols and studying their mechanisms of action
in skeletal muscle models of aging both in vivo and in vitro are essential for designing
new therapeutic approaches with the aim of treating sarcopenia. Such studies would also
benefit from randomized controlled human trials to assess if EVOO addition to the diet in
conjunction with standard interventive measures, such as resistance training and exercise,
enhances muscle mass and function, and, above all, quality of life in individuals affected
by or at risk of sarcopenia.
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