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Abstract: Background: The long-term success of nonsurgical weight reduction programs is variable;
thus, predictors of outcome are of major interest. We hypothesized that the intestinal microbiota
known to be linked with diet and obesity contain such predictive elements. Methods: Metagenome
analysis by shotgun sequencing of stool DNA was performed in a cohort of 15 adults with obesity
(mean body mass index 43.1 kg/m2) who underwent a one-year multidisciplinary weight loss
program and another year of follow-up. Eight individuals were persistently successful (mean relative
weight loss 18.2%), and seven individuals were not successful (0.2%). The relationship between
relative abundancies of bacterial genera/species and changes in relative weight loss or body mass
index was studied using three different statistical modeling methods. Results: When combining the
predictor variables selected by the applied statistical modeling, we identified seven bacterial genera
and eight bacterial species as candidates for predicting success of weight loss. By classification of
relative weight-loss predictions for each patient using 2–5 term models, 13 or 14 out of 15 individuals
were predicted correctly. Conclusions: Our data strongly suggest that gut microbiota patterns allow
individual prediction of long-term weight loss success. Prediction accuracy seems to be high but
needs confirmation by larger prospective trials.

Keywords: microbiota; microbiome; weight loss; prediction; machine learning; obesity

1. Introduction

Obesity has become a worldwide problem that requires substantial improvement of
both prevention and therapy in children and adults [1]. While bariatric surgery offers
a sustained therapy of obesity—albeit not without risks and side effects—nonsurgical
therapy is often not lasting [2,3]. The latter can be also effective, especially if initiated using
a formula-based, low-calorie diet (LCD), but midterm weight gain occurs very often if no
weight maintenance activities happen [4]. In a database containing data from 8296 patients
with obesity from a multicenter clinical trial, LCD-based intervention performed across
Germany, we found that a mean relative weight loss (RWL) of 20.4% and a mean excess
weight loss of 52.5% can be achieved after 6 months [5]. However, approximately 18% of
the participants did not achieve a relative weight loss of >10% after one year (per protocol
analysis) and about 71% experienced significant weight gain after three years without
further intervention [5]. Thus, initial success is great, but long-term success is moderate in
most cases, indicating the need for long-term maintenance strategies and reliable predictor
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variables of success. The analysis also shows that the outcome of such weight reduction
programs is variable, and determinants of the outcome are of major interest, among which
the intestinal microbiota might play a role [3,6].

In a previous trial [7], we studied intestinal microbiota changes in fecal samples
from individuals with obesity undergoing a nonsurgical weight loss program by using
whole metagenome shotgun sequencing. Microbiota data were analyzed in relation to
anthropometric and metabolic data over the course of two years. We found that the
microbiota pattern changed in response to the dietetic and lifestyle intervention but tended
to return to the initial situation, both at the taxonomical and functional level, at the end of
the one-year-long intervention, except for an increase in Akkermansia abundance, which
remained stable for two years. The Firmicutes/Bacteroidetes ratio was higher in subjects with
obesity with metabolic syndrome than in the so-called “healthy obese”. Most interestingly,
participants who succeeded in losing their weight consistently over the two years had a
different microbiota pattern at baseline compared to patients who were less successful in
weight reduction [7]. Therefore, we hypothesized that specific microbiota patterns could
predict weight loss success. Similar approaches have been made in the past; however, the
observation methods were quite short in most cases (between 1–6 weeks) and the data
were heterogeneous [8]. Here, we intensified our analyses by applying different predictive
statistical techniques. This methodology may allow weight-loss prediction according to the
abundance of only a few selected bacterial species or genera, which could be quantified by
straightforward qPCR technique in routine settings. Our principal aim was to identify a set
of most important bacterial predictor variables allowing for weight-loss prediction on an
individual basis.

2. Materials and Methods
2.1. Weight-Loss Intervention Trial

For the present study, we selected 15 subjects according to defined criteria (see be-
low) out of a larger cohort of adults with obesity with a mean body mass index (BMI)
of 42.4 ± 6 kg/m2 and age of 40 ± 8 years (Table 1) from a multicenter clinical trial
(ClinicalTrials.gov identifier: NCT01344525), approved by the ethics committee of the
University Hospital of Tübingen, Germany. The study was conducted at the Optifast®52
center at the Metabolic Unit of the University of Hohenheim (Stuttgart, Germany), includ-
ing adults who lived in the Stuttgart area. Advertisement for the Optifast®52 program
in Stuttgart was displayed in local newspapers, on billboards, and on social media. All
individuals included volunteered to participate in the present study after they received
detailed written information about the study and its purpose, as well as personal informa-
tive meetings with the Optifast®52 team if desired. The primary endpoint of the study was
weight-loss maintenance. The secondary endpoints comprised quality of life, as well as
anthropometric and biological assessments, as described in detail in the study registration
on ClinicalTrials.gov. The study was conducted according to the declaration of Helsinki.
Written informed consent was obtained from every subject. Study details and methodology
have been described elsewhere [7]. Briefly, exclusion criteria were gastrointestinal disease,
severe eating disorders, and treatment with anti-, pre-, or probiotics within three months
before sample collection. Selection criteria included a similar BMI (around 40 kg/m2)
and mid-age (30–50 years) at baseline, and a subject’s affiliation to the same enterotype
(Bacteroides-enterotype, determined through sequencing of the baseline sample) to min-
imize interindividual variability. Among those who fulfilled these criteria, we selected
8 individuals who were highly successful regarding weight-loss maintenance after two
years (RWL at ≥10%, persistent success = PS group), and 8 matched pairs who were not
successful (RWL < 10%, nonpersistent success = NS group). One had to be excluded
from analysis because microbiota analysis failed. A threshold of 10% weight loss and
maintenance of it for at least one year has been proposed as the definition for successful
weight-loss maintenance [9]. In fact, the RWL was on average 18.2% in the PS group and
0.2% in the NS group [7].

ClinicalTrials.gov
ClinicalTrials.gov
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Table 1. Characteristics of the study population.

Parameter Hypothesis-Generating Cohort

n 15
Weight loss success (n) 8

Age 40 ± 6
Blood pressure systolic (mmHg) 126 ± 15
Blood pressure diastolic (mmHg) 86 ± 11
Fasting blood glucose (mg/dL) 105 ± 619

Cholesterol (mg/dL) 203 ± 641
HDL cholesterol (mg/dL) 47 ± 610
LDL cholesterol (mg/dL) 130 ± 27

Triglycerides (mg/dL) 181 ± 154
WC (cm) 123 ± 15

Weight (kg) 128 ± 20
BMI (kg/m2) 42.4 ± 6

Weight loss success is defined as relative weight loss at T24 > 10%. Data are presented as mean ± standard
deviation. Abbreviations: T24 = 24 months after baseline, HDL = high-density lipoprotein, LDL = low-density
lipoprotein, WC = waist circumference, BMI = body mass index.

After inclusion into the study, all participants underwent a defined and highly effec-
tive multidisciplinary weight loss program (Optifast®52, Nestlé Health Science Germany
GmbH, Frankfurt, Germany) described before [5]. Briefly, it consisted of a multidisciplinary
lifestyle modification over 52 weeks based on four modules (medicine, psychology, exercise,
and dietetics). Medical examinations comprised extensive individual medical monitoring
by physicians throughout the program. Psychological counseling comprised individual and
group sessions with a psychologist focusing on behavioral training and expectation man-
agement. Professional sport coaches led group sessions tailored to overweight and obese
individuals. Furthermore, individualized advice was given about how to improve physical
activity in daily routine. Dietary intervention included the use of an LCD (800 kcal/day)
offered as a formula diet for 12 weeks, a switch phase from formula to normal diet for
another 12 weeks, and a consolidation phase of 28 weeks in which participants returned to
a normal diet and were trained for weight maintenance. After this 12-month intervention,
patients were further followed up for another 12 months. During the two-year-period,
participants underwent a detailed medical examination at baseline and every six months.
All individuals collected stool samples in stool collection tubes containing DNA/RNA
stabilizer (lnvitek Molecular GmbH, Berlin, Germany; ref: 10381I1300) at the day of the
study visits at home. After collection, the stool tubes were kept at −20 ◦C in thermal packs
and transported to the Metabolic Unit where they were stored at −80 ◦C. All fecal samples
relevant for the present study were collected in 2010 and 2011. Metagenomic sequencing
was performed for all samples in one run in 2015. For the present analysis, the baseline
microbiota patterns were analyzed in relation to the outcome 24 months later. Outcome
variables were RWL and change in BMI (delta BMI) from baseline to month 24.

2.2. Analysis of Gut Microbiota

For whole metagenome analysis, we used shotgun sequencing of stool DNA to assess
taxonomic and functional features at baseline, as described earlier in detail [7]. DNA
was sequenced on an Illumina HiSeq 2500 Sequencer by ◦CeGat Inc., Tübingen, Germany.
Samples (50 ng as quantified by Qbit) were processed with the Illumina ‘Nextera-DNA-
Sample-Preparation Kit’ according to manufacturer’s protocol. Sequencing was performed
with 2 × 100 nucleotides (paired-end sequencing) on 8 lanes with 300 GB raw data. On
average, the sequencing achieved 2.1 GB/sample. Samples were sequenced with a se-
quencing depth of 10.9 million reads per paired-end sequencing file (s = 6.3 million). Raw
sequences obtained from 15 metagenomic samples (15 patients, only baseline data) were
subjected to a quality check using the FastQC software (www.bioinformatics.babraham.ac.
uk/projects/fastqc/; accessed on 6 November 2021). Quality check comprised per base

www.bioinformatics.babraham.ac.uk/projects/fastqc/
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sequence quality, per-sequence quality scores, per-base sequence content, per-sequence
GC content, per-base N content, sequence length distribution, sequence duplication levels,
kmer content, and over-represented sequences. All samples showed satisfactory val-
ues for each parameter tested. Next, the sequences were processed using PRINSEQ
for removing low-quality reads, trimming of poly-Ns, and A/T tails [10]. Each sam-
ple was subjected to a BLASTX analysis against the NCBI-NR database using an in-
house developed tool (MALT, http://ab.inf.uni-tuebingen.de/software/malt/; accessed
on 4 November 2021) with a maximum allowed e-value of 1.0. The BLASTX files were
imported into MEGAN5 (http://ab.inf.uni-tuebingen.de/software/megan5/; accessed
on 6 November 2021). MEGAN5 carries out binning of the reads into taxonomic and
functional categories based on the BLASTX hits. The minimum bit score used for the
analysis was 50 and a minimum support of 50 reads for each taxonomic category was used
for the LCA algorithm. Ultimately, reads were assigned to a taxonomic and functional cate-
gory. On average, about 50% of the reads in each sample were assigned to some category,
79% thereof were down to the level of genera and about 61% to the level of species. The
samples were normalized with respect to each other. The functional annotation of the reads
was performed based on the KEGG library (Kyoto Encyclopedia for Genes and Genomes,
http://www.genome.jp/kegg/; accessed on 6 November 2021). Microbiome data handling
was in line with recent recommendations [11]. Metagenomic data are available in the NCBI
database under Bioproject ID PRJNA290729.

2.3. Correlation Coefficients

Correlation coefficients between each predictor variable from the set of genera/species
on one hand and delta BMI/RWL on the other hand were calculated and ranked to obtain
a first overview of potentially promising candidate variables (Supplementary Table S1).

2.4. Metagenomic Data Sets Used for Statistical Modeling

Determination of the gut microbiome of the patients led to two native data sets com-
prising the bacterial genera and the bacterial species data. Both these data sets contained
the patient ID, the success rate (PS or NS), RWL and delta BMI, and relative abundances at
baseline for the respective genera and species, i.e., the relative abundances of 1020 different
bacterial genera (first data set) and 2529 different bacterial species (second data set). Next,
the data sets were reduced to contain only the first 102 (first data set, genera) and 106 (sec-
ond data set, species) columns, corresponding to the most abundant genera or species,
which cover ~99% (first data set, genera), and ~96% (second data set, species) of the gut
microbiome, respectively. The rationale of this approach is due to many genera or species
only occurring in a low number of individuals, and at very low frequencies; thus, increasing
the potential of a considerable effect of measurement errors. In case of the genera data set,
three genera (Caldicellulosiruptor, Thermaerobacter, and Thermobacillus) were eliminated prior
to reduction, as they do not normally occur in the gut microbiome, and hence, are likely
misclassifications. Third, the respective proportions of genera and species were calculated
and represented the values of the predictor variables for each data set.

The definition of regression models and the subsequent model selection both require a
set of suitable terms (T = {xi, i = 1, . . . , p}). In our case, the number of predictor variables
(p = 102 and p = 106 for the two data sets) is quite large compared to the number of patients
(n = 15). Therefore, three avenues were pursued to locate the most important predictor
variables contained in T: (I) the determination of the correlation between each predictor
variable and delta BMI/RWL, (II) an elastic net regularization approach, and (III) multiple
linear regression models in a Monte Carlo approach to complement the set of the most
important predictor variables (for details see Supplementary Table S3A,B).

2.5. Ordination and Differential Abundance Analyses

Prior to the downstream analyses, microbial raw count data were converted into
different forms: relative abundance, Z score of relative abundance, and centered log-ratio

http://ab.inf.uni-tuebingen.de/software/malt/
http://ab.inf.uni-tuebingen.de/software/megan5/
http://www.genome.jp/kegg/
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transformed (Clr) data. Clr data were used in principal component analyses (PCA) and
in computing the Euclidean distance for permutational multivariate analysis of variance
(PERMANOVA) tests using the Adonis function in the vegan package [12] (further details
are described in [13]). While bacterial abundance was visualized by Z scores, Clr data of
individual taxa between the PS and NS groups were compared using Mann–Whitney U
tests with the respective p-values being adjusted with a false discovery rate of 5%. All
analyses were performed using R version 4.1.2 (R Core Team: www.r-project.org, Vienna,
Austria; accessed on 23 November 2021).

3. Results
3.1. Elastic Net Regularization

As the number of predictor variables p is high compared to the sample size n, elastic
net regularization, a regularized regression method, was subsequently applied. This results
in a model with certain terms that are present or absent for each repeat and each setting
(defined by the number of folds and value of the elastic net mixing parameter α), always
for the optimal λ cross-validated in the same repeat. As responses that quantify the success
of the intervention, both delta BMI and RWL were used independently. Applying this
method, we identified four bacterial genera and three bacterial species as candidates for
predicting success of the weight-loss intervention: the genera were Akkermansia (class
Verrucomicrobia), Alistipes (class Bacteroidia), Symbiobacterium, and Pseudoflavonifractor (both
class Clostridia), while the species were Alistipes finegoldii, Akkermansia muciniphila, and
Ethanoligenens harbinense (Table 2 and Supplementary Table S2).

Table 2. Selection of genera and species predictor variables according to elastic net regularization.

Predictor Variable Occurrence (Delta BMI) Occurrence (RWL)

Genera Akkermansia 10.40% 46.10%

Symbiobacterium 3.40% 51.80%

Alistipes 10.40% 26.40%

Pseudoflavonifractor 6.90% 15.90%

Species Alistipes finegoldii 100.00% 22.00%

Akkermansia
muciniphila 10.10% 19.10%

Ethanoligenens
harbinense 0.30% 17.10%

Bacteroides ovatus 0.20% 1.30%

Bacteroides eggerthii 0.00% 1.00%

Only predictor variables with an occurrence of at least 1% over all repeats for one of the
response variables (delta BMI or RWL) are shown. Variables have been sorted by highest
values for genera and species. In both cases, ∝ = 1 and 5 folds were used. Genera and
species that were eventually selected are in boldface. The same information for other values
of ∝, and 3, 8, or 15 folds, is shown for both genera and species in Supplementary Table S2.

3.2. Monte Carlo (MC) Approach Using Multiple Linear Regression Models

After the elastic net regularization model suggested an initial set of predictor variables,
this set was complemented using an MC approach that tested a large number of multiple
linear regression models. Tables 3 and 4 (and Supplementary Table S3, which in addition
contains the detailed calculation) show the most useful predictor variables for the genera
and species data set and two different weightings. The numbers in both tables represent
the weighted indexes as described in the methods section, with higher values indicating
more-important terms.

www.r-project.org
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Table 3. Selection of genera predictor variables using the Monte Carlo approach.

Genera (Weight 1) Full List Reduced List Reduced List Reduced List Reduced List

(A 60%, B 20%, C 20%) (102 Terms) (44 Terms) (23 Terms) (15 Terms) (7 Terms)

Megasphaera 0.9957 0.9570 0.9515 0.9397 0.9551
Symbiobacterium 0.8742 0.7755 0.6916 0.6964 1.0000
Marvinbryantia 0.7179 0.7126 0.7805 0.8054 0.7513

Blautia 0.5285 0.5802 0.5475 0.5781 0.6515
Dysgonomonas 0.3212 0.6202 0.7111 0.7311 0.3895
Oscillibacter * 0.3818 0.5506 0.5359 0.5225 0.5057

Pseudoflavonifractor 0.4032 0.4131 0.4091 0.4474
Burkholderia 0.3751 0.5381 0.5932 0.6016
Treponema 0.3780 0.5865 0.6172 0.6445
Aeromonas 0.3029 0.4871 0.5573 0.5955

Gordonibacter 0.3518 0.3991
Streptococcus 0.3041 0.4350 0.4969 0.5200

Alistipes 0.5047 0.4468 0.4249
Haemophilus 0.3812 0.4531 0.4335

Bordetella 0.3540 0.4177 0.4631 0.4894

Genera (weight 2) Full List Reduced List Reduced List Reduced List Reduced List

(A 45%, B 10%, C 45%) (102 Terms) (52 Terms) (25 Terms) (15 Terms) (7 Terms)

Megasphaera 0.9973 0.9981 0.9686 0.9936 0.9609
Symbiobacterium 0.9162 0.8792 0.8201 0.8379 1.0000
Marvinbryantia 0.6671 0.6583 0.7758 0.7302 0.7180

Blautia 0.6315 0.6632 0.6414 0.6044 0.6844
Dysgonomonas 0.3434 0.5460 0.7008 0.7817 0.4112
Oscillibacter * 0.4706 0.5025 0.5379 0.5652 0.5645

Pseudoflavonifractor 0.4946 0.4854 0.4529 0.5026
Burkholderia 0.4192 0.5271 0.6486 0.6774
Treponema 0.4055 0.4918 0.5667 0.5731
Aeromonas 0.3337 0.4694 0.5539 0.6356

Gordonibacter 0.4607 0.4597
Streptococcus 0.3485 0.5570 0.5711 0.6459

Alistipes 0.6135 0.5296 0.4784
Haemophilus 0.5137 0.5667 0.5167 0.5037

Bordetella 0.3599 0.4661 0.5346 0.6305

Predictor variables for the genera data set and weightings 1 and 2 are shown in the table. Genera that were
eventually selected are in boldface. Italics represent genera that were already selected in the previous step (elastic
net regularization). * Oscillibacter was selected as it was one of the top predictor variables (together with Blautia)
in a reduced data set that only tested the 46 most common genera (data not shown). Detailed results including all
102 genera, as well as the calculation of the index values for the full list (102 terms), and weighting 2 can be found
in Supplementary Table S3.

Table 4. Selection of species predictor variables using the Monte Carlo approach.

Species (Weight 1) Full List Reduced List Reduced List Reduced List

(A: 60%, B: 20%, C: 20%) (106 Terms) (28 Terms) (16 Terms) (8 Terms)

Alistipes finegoldii 0.9043 0.6981 0.7663 0.9521
Roseburia intestinalis 0.6873 0.9467 0.9814 0.8594

Alistipes spHGB5 0.6824 0.8763 0.9004 0.6096
Bacteroides caccae 0.6871 0.6270 0.6522 0.8361

Megamonas hypermegale 0.5777 0.7872 0.8143 0.6423
Bacteroides stercoris 0.4309 0.7694 0.8154 0.6728

Ethanoligenens harbinense 0.3782 0.4657 0.4623 0.4312
Akkermansia muciniphila 0.4986 0.4376 0.4079 0.4461

Prevotella dentalis 0.3424 0.5949 0.6055
Bifidobacterium bifidum 0.4589 0.5286 0.5876

Pseudoflavonifractor capillosus 0.3900 0.5629 0.5214
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Table 4. Cont.

Species (Weight 1) Full List Reduced List Reduced List Reduced List

(A: 60%, B: 20%, C: 20%) (106 Terms) (28 Terms) (16 Terms) (8 Terms)

Bacteroides ovatus 0.3736 0.5577 0.5795
Clostridium hathewayi 0.3342

Species (Weight 2) Full List Reduced List Reduced List Reduced List Reduced List

(A: 45%, B: 10%, C: 45%) (106 Terms) (32 Terms) (21 Terms) (15 Terms) (8 Terms)

Alistipes finegoldii 0.9522 0.8361 0.8729 0.8527 0.9760
Roseburia intestinalis 0.6167 0.8676 0.9245 0.9609 0.8501

Alistipes spHGB5 0.6871 0.8249 0.8489 0.8990 0.6666
Bacteroides caccae 0.7308 0.7343 0.7362 0.7914 0.8713

Megamonas hypermegale 0.5581 0.7228 0.7384 0.7799 0.7011
Bacteroides stercoris 0.4554 0.6997 0.7370 0.7894 0.6564

Ethanoligenens harbinense 0.5017 0.5354 0.5162 0.5548 0.4834
Akkermansia muciniphila 0.6040 0.5443 0.5195 0.4576 0.5029

Prevotella dentalis 0.3577 0.6112 0.6224 0.6351
Bifidobacterium bifidum 0.4012 0.5426 0.5808 0.6033

Pseudoflavonifractor capillosus 0.5032 0.6374 0.5877 0.5341
Bacteroides ovatus 0.3828 0.5227 0.5328 0.5515

Clostridium hathewayi 0.2808

Predictor variables for the species data set and weightings 1 and 2 are shown in the table. Species that were
eventually selected are in boldface. Italics represent genera that were already selected in the previous step (elastic
net regularization). Detailed results including all 106 species, as well as the calculation of the index values for the
full list (106 terms), and weighting 2 can be found in Supplementary Table S3.

3.3. Final List of Selected Predictor Variables

The predictor variables selected by elastic net regularization and the MC approach
were combined to a set of terms that represent the most-promising candidates to predict
weight loss according to the present data set. Table 5 pools and summarizes the results
of both selection methodologies, listing seven genera and eight species that should be
considered for weight-loss prediction.

Table 5. Most-relevant candidates on the genera and species level for weight loss success predictor
variables.

Weight (Importance)

1 1 3 1

Selected genera
Full MC list
(102 terms)

Average rank

Final MC list
(7 terms)

Average rank

Elastic net
selected

Strong
Correlation

(+ or −)
Final score

Symbiobacterium 2 1 1 1.5 15.5

Megasphaera 1 2 - –0.5 11.5

Marvinbryantia 3 3 - - 8

Alistipes 5 - 1 1.5 6.5

Blautia 4 4 - - 6

Akkermansia - - 1 1.5 4.5

Pseudoflavonifractor - - 1 0.5 3.5
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Table 5. Cont.

Weight (Importance)

1 1 3 1

Selected species
Full MC list
(106 terms)

Average rank

Final MC list
(8 terms)

Average rank

Elastic net
selected

Strong
Correlation

(+ or −)
Final score

Alistipes finegoldii 1 1 1 2 17

Bacteroides caccae 3 2.5 - −0.5 9

Roseburia intestinalis 3 2.5 - - 8.5

Akkermansia
muciniphila 5 - 1 1.5 6.5

Alistipes spHGB5 3 5.5 - - 5.5

Megamonas hypermegale 5 4.5 - - 4.5

Ethanoligenens
harbinense - - 1 1 4

Bacteroides stercoris - 5 - - 2

Final sets of selected genera and species are shown in the table. A final score was calculated, based on a set of
weights (top line) for the different approaches to identify predictor variables. The first column of the table contains
the names of the selected genera and species; the next two columns show the ranks of the predictor variables for
the full (second column) and final (third column) lists in the Monte Carlo (MC) approach. The fourth column
shows the predictor variables selected by the elastic net approach (1), while the fifth column identifies predictor
variables with strong correlations (positive or negative) to both delta BMI and RWL. Negative correlations are
identified with a minus sign, and the absolute values are calculated by grouping the predictor variables into four
classes based on strength of correlation: for an absolute value of correlation between 45% and 50%, rounded to
full percent, a value of 0.5 is assigned, between 50% and 55%, a value of 1 is assigned, between 55% and 60%,
a value of 1.5 is assigned, and 60% and above leads to a value of 2. The final score for each predictor variable
is calculated by subtracting the MC ranks (columns 2 and 3) from 7 and multiplying them with the respective
weights (1 in both cases) before summing up these two values with the product of the value of column 4 with its
weight (3) and the absolute value of column 5 with its weight (1). Only predictor variables with final scores of 2
and above are shown.

3.4. Weight-Loss Prediction

Using predictor variables from Table 5, linear regression models with 1–5 terms were
created from the set of variables and fitted (i.e., the coefficients βj were calculated) for both
genera and species, and for delta BMI and RWL. The best models for each number of terms
and their predictions for each patient, when applied to the data sets with an added weight-
loss column, are listed in Table 6 and—in more detail—in Supplementary Tables S4 (models
and model verification via cross-validation) and S5 (weight-loss predictions; relative and
absolute deviations of the predicted weight loss to the observed weight loss).

In case of the genera, a model with 4 terms (df = 6) had the lowest AICc in terms of
the delta BMI response (74.9), while the best models for 3 and 4 terms had nearly equal
AICc values (100.3 vs. 101.2) for the RWL response. The terms used in these models were
Marvinbryantia, Megasphaera, and Symbiobacterium in the case of the model with just three
terms and the RWL response, and Marvinbryantia, Megasphaera, Symbiobacterium, and Blautia
in the other cases. For both responses, relative standard errors for the coefficients varied
between 12% and 50%, while adjusted R2 value varied between 82% and 86%. Estimating
an R2 value for an independent test data set by performing a cross-validation on the data
set with 3, 5, 8, and 15 folds, and calculating the R2 value from the averaged predictions,
we obtained values between 67% and 69%, again for both responses.
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Table 6. Classification of relative weight-loss predictions for each patient under different models.

Classification Classification Classification Classification Classification

RWL RWL RWL RWL RWL

DS 1 Term Model 2 Terms Model 3 Terms Model 4 Terms Model 5 Terms Model

1 correct(−) correct(−) correct(−) correct(−) correct(−)
2 correct(−) correct(−) correct(−) correct(−) correct(−)
3 underpredicted underpredicted correct(+) correct(+) correct(+)
4 correct(−) correct(−) correct(−) correct(−) correct(−)
5 correct(−) correct(−) correct(−) correct(−) correct(−)
6 correct(+) correct(+) correct(+) correct(+) correct(+)
7 correct(−) correct(−) correct(−) overpredicted correct(−)
8 correct(+) correct(+) correct(+) correct(+) correct(+)
9 correct(+) correct(+) correct(+) correct(+) correct(+)

10 underpredicted correct(+) correct(+) correct(+) correct(+)
11 overpredicted correct(−) correct(−) correct(−) correct(−)
12 underpredicted correct(+) correct(+) underpredicted underpredicted
13 correct(−) correct(−) correct(−) correct(−) correct(−)
14 underpredicted underpredicted underpredicted correct(+) correct(+)
15 correct(+) correct(+) correct(+) correct(+) correct(+)

correct(+) 4 6 7 7 7
correct(−) 6 7 7 6 7

underpredicted 4 2 1 1 1
overpredicted 1 0 0 1 0

sum correct 10 13 14 13 14
sum incorrect 5 2 1 2 1

Classification of the predicted relative weight loss (RWL) for each patient under the optimal linear regression
models with one to five linear terms containing predictor variables from the final set of selected species of Table 5
is shown. Predictions for patients, numbered from 1–15 (column “DS”) were classified as “correct(+)” in cases
where significant weight loss occurred and was predicted, as “correct(−)” in cases where significant weight loss
did not occur and was predicted as not occurring, as “overpredicted” in cases where a model predicted significant
weight loss but it did not occur, and as “underpredicted” in cases where a model predicted no significant weight
loss but significant weight loss occurred. The threshold for a significant relative weight loss was chosen as 10.
Analogous tables for delta BMI, and for predictor variables from the final set of selected genera of Table 5 for both
RWL and delta BMI, can be found in Supplementary Tables S5 and S6.

For the species, a model with four terms (df = 6) had the lowest AICc in all cases, and
the terms used in the models were Alistipes finegoldii, Bacteroides caccae, Bacteroides stercoris,
and Roseburia intestinalis in all cases. The relative standard errors for the coefficients
varied between 10% and 31%, the adjusted R2 value ranged between 91% (delta BMI) and
93% (RWL), and the cross-validated R2 value from the averaged predictions were ~80% for
the delta BMI response and 83–85% for the RWL response, depending on the number of
folds used (see Supplementary Table S4).

Finally, to illustrate the findings of our prediction models, we plotted the predictive
genera and species from Table 5 using PCA. As shown in Figure 1A, there was a trend of
different genera patterns between the PS and the NS groups in terms of the seven predictive
genera (PERMANOVA, p = 0.076). In detail, patients who were successful in the program
had a higher abundancy of Akkermansia, Alistipes, Pseudoflavonifractor, and Symbiobacterium
genera (Figure 1B). On the species level, there was a clear separation between successful
and nonsuccessful individuals in terms of the eight predictive species (PERMANOVA,
p = 0.002, Figure 2A). Most dominantly, successful individuals had a higher abundancy of
Alistipes finegoldii and Ethanoligenens harbinense, whereas nonsuccessful individuals had a
higher abundancy of Bacteroides caccae (Figure 2B).
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Figure 1. Microbial differences between individuals from the persistent success and the nonpersistent
success groups on genus level. (A) This principal component analysis plot shows the 7 weight-loss
predictive genera as well as the 15 individuals, color-coded by their persistent/nonpersistent weight
loss status. Distances between the dots (representing individuals) were computed by the Euclidean
index on centered-log ratio transformed data of the seven weight-loss predictive genera presented in
Table 5. Dim, dimension/principal component; PERMANOVA, permutational multivariate analysis
of variance. (B) Boxplots showing the comparisons of bacterial abundance (Z score) between the two
groups for each genus using Mann–Whitney U tests with the respective p-values being adjusted with
the false discovery rate method (q-value). Only comparisons with q < 0.1 are shown.
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Figure 2. Microbial differences between individuals from the persistent success and the nonpersistent
success groups on species level. (A) This principal component analysis plot shows the 8 weight-loss
predictive species as well as the 15 individuals, color-coded by their persistent/nonpersistent weight-
loss status. Distances between the dots (representing individuals) were computed by the Euclidean
index on centered-log ratio transformed data of the eight weight-loss predictive species shown in
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Table 5. Dim, dimension/principal component; PERMANOVA, permutational multivariate analysis
of variance. (B) Boxplots showing the comparisons of bacterial abundance (Z score) between the two
groups for each species using Mann–Whitney U tests with the respective p-values being adjusted
with the false discovery rate method (q-value). Only comparisons with q < 0.1 are shown.

4. Discussion

Prediction variables for weight loss are of major interest for the care of patients with
obesity. It is known that the type of intervention and individual factors influence the
outcome of weight-reductions means [2,3]. Among the individual factors, the intestinal
microbiota is a highly interesting data source that might yield such predictive variables,
since it has been shown that obesity and metabolic processes and disease are affected by
individual microbiota patterns [6–8,13–15]. Here, we show for the first time that defined
microbiota patterns can be related to individual weight loss success following a nonsurgical,
multidisciplinary weight loss program performed over one year. Baseline gut microbiota
analysis allowed the identification of bacterial patterns that might predict long-term weight
loss success two years after start of the multidisciplinary weight loss program. The results
provide information on the relative importance of predictors at the genus and species
level. On the genus level, relative abundance of Symbiobacterium was the most important
predictor variable in the present study, as it was selected in every approach applied,
followed by Megasphaera, which showed a very strong performance in the MC approach,
and a moderately negative correlation to delta BMI and RWL. On the species level, relative
abundance of Alistipes finegoldii was identified as the most important predictor variable,
being selected by every approach while showing a substantial positive correlation with
delta BMI and RWL.

Using the seven genera or the eight species selected by the MC procedure in the
present analyses, linear regression models were fitted. Comparing all models as before
using the AICc, the predictive power of the best model for each df was determined. On
the one hand, finding models to make accurate predictions regarding weight loss using
the proportions of genera or species of gut microbes of a patient is rather unrealistic given
the low sample size in the present study. On the other hand, it is nevertheless helpful to
calculate summary statistics of models containing only genera and species from the final
lists of the MC procedure in order to identify the most important terms of the final set of
terms. This also provides a rough estimate of standard statistics of models composed only
of predictor variables from the final set, such as R2 values and relative standard errors of
the estimated coefficients of the terms. The adjusted R2 values, but also the cross-validated
R2 values, appear to be higher than what could be expected, considering the small sample
size. This is in part owing to the methodology of the present analyses, as the large number
of predictor variables considered in combination with the MC approach applied some
correlations between explanatory variables and the response might be the result of chance
rather than represent a genuine relationship. While we are aware of the risk that not all
15 identified genera and species might be useful predictors, we nevertheless consider our
approach to be a useful strategy to determine candidates for predictor variables when the
sample size is low but the number of predictors is relatively high.

The predicted weight loss success for each patient in the present study, based on
the optimal model for a specified number of terms, revealed a high rate of successful
predictions for all models with at least 2 terms, and also for the models with genera as
predictors, even though these models have, on average, lower predictive power than those
with species as predictors. However, as large numbers of linear regression models were
fitted with the MC method, a certain amount of overfitting might be expected, even as we
tried to counter that by using the AICc, and the results should be validated with a larger
cohort of patients.

Our present analysis revealed a set of seven bacterial genera and eight species from
the commensal intestinal microbiota that are potential candidates to predict the likeli-
hood of long-term weight loss success. In our previous studies, the genera Alistipes,
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Pseudoflavonifractor, and Symbiobacterium were shown to be significantly more abundant in
the PS group [7]. At the species level, several Bacteroides species were less abundant, while
Clostridium leptum was more abundant in the PS group compared to the NS group [7]. In
the present study we confirm by using predictive modeling that the genera Symbiobacterium,
Alistipes, and Pseudoflavonifractor, and the species Bacteroides caccae and Bacteroides stercoris,
are candidate indicators for persistent success following the weight-loss intervention pro-
gram. Moreover, we identified an additional four genera (Megasphaera, Marvinbryantia,
Blautia, and Akkermansia) and six species (Alistipes finegoldii, Alistipes spHGB5, Roseburia
intestinalis, Akkermansia muciniphila, Ethanoligenens harbinense, and Megamonas hypermegale)
as candidate indicators for persistent success in weight loss. Preliminary confirmation
studies revealed that a single genera or a single species of bacteria are obviously insufficient
to make a prediction (own unpublished results); however, it is likely that the identified
patterns of bacterial genera or species do allow a prediction of weight loss success. The
present study constitutes an important first step to assess possible associations between gut
microbial composition and success of a multidisciplinary weight loss program. Based on the
findings shown here, future studies can be designed to establish specific recommendations
and guidelines for clinical practice, e.g., thresholds for each of the predictive bacteria.

Our findings on weight-loss prediction by microbial patterns based on statistical anal-
yses are confirmed by biological considerations regarding the known functionality of the
bacterial candidates we identified [16]. For example, several studies have demonstrated
an inverse association between obesity and the abundance of Alistipes in the gut. Alistipes
was more abundant at baseline in PS participants. This is in line with Lapthorne et al. [17],
who showed that microbiota changes associated with surgery included a decreased rel-
ative abundance of Alistipes. In a recent study, the abundance of Alistipes was positively
correlated with body weight, fat mass, serum cholesterol and triglycerides, leptin, IL-6 and
lipopolysaccharide contents, as well as PPARγ gene expression in mice [18].

According to our data, Akkermansia is another potential indicator for persistent weight
loss success. Individuals with higher abundance of A. muciniphila at baseline have been
shown to display a greater improvement in insulin sensitivity markers and body com-
position after dietary intervention [19]. In humans, studies have provided evidence for
a negative correlation between A. muciniphila abundance and being overweight, obesity,
untreated type 2 diabetes mellitus, or hypertension [20–24]. Our results are in line with this,
since patients had a lower mean BMI and a higher abundance of A. muciniphila at the end of
the weight-loss intervention program than at baseline. In another study, it was shown that
relative abundances of several species including those of Alistipes spp. and A. muciniphila
increased after Roux-en-Y gastric bypass surgery in parallel with weight loss and metabolic
improvements [25].

Of interest are also the genera of Symbiobacterium and Pseudoflavonifractor, which were
more abundant in the PS group of patients, both in our previous [7] and present study.
Symbiobacterium comprises four species, of which S. thermophilum, a syntrophic bacterium
that lives in strict symbiosis with Bacilli, has been studied most extensively [26]. However,
so far none of the Symbiobacterium species had been related to obesity or metabolic disease.
The genus Pseudoflavonifractor only consists of two species, which have also never been
associated with obesity or metabolic disease. Thus, these groups of bacteria warrant more
attention, especially in the context of obesity-related diseases.

In addition, the genus Megasphaera was found elevated at baseline in the PS group
and thus can be considered to be a possible predictor for weight loss success. A major
bacterial population found that present or elevated in postsurgery subjects with obesity
is related to the species M. elsdenii [27]. It has been shown that the fecal microbiota of
postsurgery patients was significantly enriched in Megasphaera [28]. Megasphaera abundance
is associated with blood glucose and insulin levels [29], as well as Blautia, implicating a
role for these two genera in host glucose metabolism [30]. The genera Marvinbryantia and
Blautia that we newly identified as possible predictors for weight loss have been positively
correlated with body weight [31].



Nutrients 2022, 14, 3182 13 of 16

Among the bacteria associated with lower risk of weight gain, several operational
taxonomic units (OTUs) assigned to the family of Ruminococcacaeae were found [32–34].
In line with this, the genus Oscillibacter belonging to this family was significantly under-
represented in patients with nonalcoholic fatty liver disease (NAFLD) [35]. Other studies
have also associated the abundance of Oscillibacter with obesity [30,36,37]. In our study,
the abundance of Oscillibacter was a determinant of weight loss success, although less
prominent than the genera discussed before.

On the species level, eight bacterial species were identified which might have a major
impact on weight-loss prediction. Apart from A. finegoldii, A. spHGB5, and A. muciniphila,
several butyrate-producing species were identified by our statistical approach, such as
Roseburia intestinalis, which was selected as a predictor variable for weight loss success from
the MC approach using multiple linear regression models. Consistent with our findings,
results from animal studies have shown that an increased abundance of R. intestinalis was
associated with weight loss and reduced glucose intolerance [38]. In humans R. intestinalis
was shown to be present at lower concentrations in individuals with type 2 diabetes com-
pared to healthy subjects [39–42]. Similarly, Bacteroides stercoris (and likely also Bacteroides
caccae) have been identified as butyrate producers [43].

In our previous study [7], the bacterial genera Megamonas and Prevotella were identified
as strong markers in the NS group. In the present analysis, Megamonas hypermegale was also
identified as a predictor variable for weight loss success from the MC approach. To our
knowledge, these are the first data in humans hinting at a link of Megamonas with body
weight. Consistent with our results, Megamonas abundance was found to be negatively
correlated with weight-loss rate in dogs [44]. Prevotella dentalis was also found as a predictor
variable using the elastic net regularization, though it was not among the top predictors. In
contrast, Ethanoligenens harbinense, on our list of predictors, has not been studied, to our
knowledge, in the context of obesity so far.

Our study has both strengths and limitations that deserve consideration. The rather
small sample size of 15 individuals may limit the explanatory power of our analyses.
However, the accuracy of our prediction model is high; therefore, the power should be,
in fact, sufficient, despite the small number of participants. The strengths of our study
comprise the high quality of microbiome sequencing by shotgun sequencing, and the
up-to-date multivariate statistical approach. Nevertheless, our findings need confirmation
by larger prospective trials.

5. Conclusions

We identified seven genera and eight species within the fecal commensals which might
predict persistent weight loss success in obese individuals undergoing nonsurgical therapy.
Assessment of these commensals by next generation sequencing or routine qPCR techniques
could allow personalized recommendations regarding whether an individual should follow
the nonsurgical weight-loss approach or not, increasing the success rate in obesity therapy.
Despite a relatively small sample size, the detailed and complex statistical analysis enabled
an astonishingly accurate prediction of success and failure with regards to long-term weight
loss. These findings warrant further analyses in future confirmatory studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14153182/s1, Supplementary Tables S1–S6. Table S1: Corre-
lations between genera/species and both delta BMI and RWL. Table S2: Elastic net regularization.
Table S3: Calculation of importance indices and ranks and a combined index value. Table S4: Linear
regression models. Table S5: Predicted weight loss, calculated as delta BMI. Table S6: Predicted
weight loss, calculated as relative weight loss.
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