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Abstract: People appear to vary in their susceptibility to lifestyle risk factors for cardiometabolic
disease; determining a priori who is most sensitive may help optimize the timing, design, and delivery
of preventative interventions. We aimed to ascertain a person’s degree of resilience or sensitivity to
adverse lifestyle exposures and determine whether these classifications help predict cardiometabolic
disease later in life; we pooled data from two population-based Swedish prospective cohort studies
(n = 53,507), and we contrasted an individual’s cardiometabolic biomarker profile with the profile
predicted for them given their lifestyle exposure characteristics using a quantile random forest
approach. People who were classed as ‘sensitive’ to hypertension- and dyslipidemia-related lifestyle
exposures were at higher risk of developing cardiovascular disease (CVD, hazards ratio 1.6 (95% CI:
1.3, 1.91)), compared with the general population. No differences were observed for type 2 diabetes
(T2D) risk. Here, we report a novel approach to identify individuals who are especially sensitive to
adverse lifestyle exposures and who are at higher risk of subsequent cardiovascular events. Early
preventive interventions may be needed in this subgroup.

Keywords: cardiometabolic risk factors; risk assessment; quantile random forests; prediction interval;
sensitivity; lifestyle

1. Introduction

There is growing recognition that people vary in their susceptibility to environmental
risk factors for cardiometabolic diseases, suggesting that one-size-fits-all public health
recommendations are unlikely to yield optimal results. Early identification of individuals
who are most likely to develop diseases like type 2 diabetes (T2D) and cardiovascular
disease (CVD) is desirable, as efficacious therapies (both lifestyle and pharmacologic) exist
that can help prevent these diseases [1]. Moreover, once manifest, T2D and CVD often
cause life-threatening health complications that are often difficult and costly to treat [2].

Most statistical models examining susceptibility to lifestyle risk factors, from which
public health recommendations are drawn, assume that a given lifestyle exposure conveys
a similar effect on disease risk throughout the target population, with variability in these
effects either viewed as a consequence of measurement error [3] or ignored. However, some
of this variability is likely to reflect between-person differences in the effects of unhealthful
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lifestyle exposures, with some people more susceptible to the adverse effects of these
exposures than others.

Predictive modeling often provides a point estimate that represents a response to
be anticipated for; yet, in precision medicine a range of values where an effect would be
expected to fall may prove more informative for the design of preventive measures rather
than a single estimate. Thus, prediction intervals (PIs) allow examining a future series of
values for each individual with a given probability, making them potentially useful for
identifying where the future value is likely to appear.

Identifying subpopulations who are especially sensitive to adverse lifestyle exposures
may help optimize the delivery of cardiometabolic disease prevention programs, especially
when resources are lacking [1,4]. In aging and diseased individuals, conditions such as
frailty syndrome and nutritional deficiencies often coexist with cardiometabolic disease
(i.e., T2D and hypertension) [5]; however, it remains unclear whether vulnerability status
associated with adverse environments can be present in disease-free individuals. Here, we
used a machine learning approach [6] to differentiate error from true between-individual
variability in susceptibility to lifestyle risk factors for T2D and CVD. Accordingly, we
identified the subgroup of sensitive individuals and assessed the degree to which this
classification aids the prediction of incident disease and premature mortality.

2. Materials and Methods
2.1. Study Design and Participants

The Västerbotten Health Survey (Västerbottens hälsoundersökning; VHU) [7,8] is
a prospective, population-based cohort study designed to monitor and improve health
of the general population in Västerbotten county, northern Sweden. Adults residing in
Västerbotten are invited to attend their primary care center to undertake a baseline clinical
examination and complete detailed lifestyle questionnaires during the calendar years of
their 40th, 50th, and 60th birthdays. We used data derived from VHU (n = 42,887) in
our analyses. A total of 7039 of these participants were born outside Sweden, and the
current analysis focused only on the Swedish-born contingent of VHU. Participants in
whom diabetes or cardiovascular disease were diagnosed at baseline (n = 408) were also
removed to minimize biases that can occur when people with disease diagnoses are asked
to self-report their lifestyle behaviors. Participants with two health examinations between
1985 through 2016 (with ~10 years between each visit) were included in the final dataset,
which comprised 35,440 participants.

2.2. MDCS

The Malmö Diet and Cancer Study (MDCS) is a prospective, population-based cohort
study conducted between 1991 and 1996. All men and women residing in the city of
Malmö, southern Sweden born between 1923 to 1950 were invited to participate. Up
to 30,446 participants (~40% men) completed the baseline assessment [9–11]. Glycemic
and lipid traits were assessed in a subset of participants, the MDCS Cardiovascular Cohort
(MDCS-CC; n = 6103), who were randomly selected for assessment of cardiometabolic risk
markers between 1991 and 1994 [12]. As with the VHU cohort, data from non-Swedish
participants and those with prevalent diabetes or CVD were removed prior to analysis. In
total, a maximum of 18,067 CC participants were included in the analysis from MDCS or
MDCS-CC (see flowchart in Figure 1).
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Figure 1. Study flowchart of VHU and MDC studies, data processing, and model training. VHU:
Västerbotten Health Survey; MDCS: Malmö Diet and Cancer Study; MDCS-CC: MDCS Cardiovascu-
lar Cohort.

2.3. Cardiometabolic Risk Markers

Clinical assessment methods in VHU [7] and MDCS are reported elsewhere [9,12].
Briefly, height and weight were measured with calibrated stadiometer and weighing scales
respectively, with participants wearing light clothing and no shoes. Body mass index
(BMI) was calculated as the body weight in kilograms divided by height in meters squared.
Systolic and diastolic blood pressures were measured with participants resting supine,
using either manual or automated sphygmomanometers. Peripheral blood was drawn
after overnight fasting, and a venous blood sample was drawn two hours after the admin-
istration of a 75 g oral glucose load (the latter only in VHU). Blood glucose (i.e., fasting and
2 h glucose), total cholesterol, and triglyceride levels were then measured using a Reflotron
bench-top analyzer (Roche Diagnostics Scandinavia AB); HbA1c was measured only in
MDCS-CC using standard procedures at the Department of Clinical Chemistry, Univer-
sity Hospital Malmö. High-density lipoprotein cholesterol (HDL-C) was also measured,
and low-density lipoprotein cholesterol (LDL-C) was calculated using the Friedewald
formula [13]. In September 2009, blood lipids and blood pressure measurements in VHU
changed; thereafter, blood pressure was measured twice in a sitting position and averaged.
Triglycerides and total cholesterol levels were analyzed using standardized chemical analy-
sis in the hospital clinical biochemistry laboratory. Validated conversion equations were
used to adjust the blood pressure and lipids measurements taken before and after September
2009 [14]. For participants on lipid-lowering and/or blood pressure lowering medications,
lipid levels and/or blood pressure levels were corrected by adding published constants
(+0.208 mmol/L for triglycerides, +1.347 mmol/L for total cholesterol, −0.060 mmol/L for
HDL-C, +1.290 mmol/L for LDL-C, +15 mm Hg for systolic, and +10 mm Hg for diastolic
blood pressure) suggested in the literature [15,16]. Cardiometabolic trait values outside the
thresholds for plausible values suggested by VHU data managers were considered outliers
and removed in all datasets (Supplementary Table S1 in Supplementary Materials).
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2.4. Lifestyle and Dietary Assessments

For both Swedish cohorts, all participants were requested to complete a self-administered,
validated, comprehensive lifestyle questionnaire during each visit, which queried socioeco-
nomic factors, physical/mental health, quality of life, social network and support, working
conditions, and alcohol/tobacco use. In VHU, physical activity was assessed using the
modified version of the International Physical Activity Questionnaire [17,18], and a vali-
dated semiquantitative food frequency questionnaire (FFQ), designed to capture habitual
diet over the last year, was used to obtain information on various dietary factors [19]. In
1996, the FFQ was reduced from 84 to 66 items by merging similar items and removing
those deemed redundant. For MDCS, a modified diet history method consisting of a 7-day
food diary covering all cooked meals and a 168-item FFQ covering the noncooked meals
for the previous year were administered. Moreover, a 1 h interview was used to determine
portion sizes, cooking methods and food choices. Nutrient and energy contents were
calculated using the Swedish Food Composition Database (https://www.livsmedelsverket.
se/en/food-and-content/naringsamnen/livsmedelsdatabasen; accessed on 16 February
2021), which is based on meal frequency and portion size. In VHU, food intake level
(FIL) was calculated as total energy intake (TEI) divided by estimated basal metabolic
rate; individuals with extreme TEI (below the fifth and above the 97.5th percentile of food
intake level) were excluded from the analyses [20]. Observations with lifestyle values
considered biologically implausible were removed (Supplementary Table S2). Written,
informed consent was obtained from all living participants at enrolment into VHU and
MDCS. VHU study was approved by the Region Ethical Review Board in Umeå and MDCS
by the Ethical Committee at Lund University (LU 51-90).

2.5. Outcome Ascertainment

Data pertaining to medical diagnoses and mortality were retrieved through record
linkage from the National Board of Health and Welfare in Sweden until 31 December 2019.
Using each participant’s unique personal identification number, the following diagnosis
codes were retrieved: ICD-9 code 250 and ICD-10 codes E11.0–E11.9 for T2D; for the
composite CVD outcome, ICD-9 code 410 and ICD-10 code I21 were used for myocardial
infarction (MI), and ICD-9 codes 430, 431, and 433–436 and ICD-10 codes I60, I61, I63 and
I64 for stroke. The first date of a registered event was selected as the outcome for the
current analyses.

2.6. Statistical Analysis

All numeric predictors were inverse-normalized to correct skewness, and the derived
ordinal variables were treated as continuous variables in subsequent analyses. From an
environment-wide association study (EWAS) described elsewhere [21], we prioritized
(~300) environmental risk factors that were statistically significant at the corrected p-value
threshold after multiple testing. We retrieved 167 predictors for BMI, 49 for systolic blood
pressure, 47 for diastolic blood pressure, 87 for total cholesterol, 108 for triglycerides, 50
for HDL-C, 21 for LDL-C, 43 for fasting glucose, and 58 for 2 h glucose [22]. Categorical
exposure variables with more than two levels were dichotomized into dummy variables.
Nutrient data were adjusted for TEI with the residual method [23] to minimize confounding
by energy intake and basal energy requirement. We removed correlated (>80%) and zero-
variance predictors to minimize the multiple testing burden [24] (Supplementary Tables
S3 and S4). For all datasets, we assumed missingness at random [25], and environmental
predictor variables with <50% missingness were imputed with the missForest package
from R software using a nonparametric approach for mixed data type, to allow a complete
case analysis suitable for the random forest algorithm; continuous predictor variables were
verified by the mean squared error (MSE) and categorical predictors were verified by the
proportion falsely classified (PFC) [26].

We randomly partitioned each dataset into training (50%) and testing (50%) sets to
ensure a sufficient number of events per category for the time-to-event analysis in the

https://www.livsmedelsverket.se/en/food-and-content/naringsamnen/livsmedelsdatabasen
https://www.livsmedelsverket.se/en/food-and-content/naringsamnen/livsmedelsdatabasen
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testing set. The training set was used to fit quantile regression forest (QRF) models for
predictors associated with the cardiometabolic traits, and the testing set was used to predict
future intervals. Multicollinearity of the variables within these models was assessed using
the variance inflation factor, with variables with values > 10 removed [27]. All models were
adjusted for age, age2, sex, FFQ version, BMI (when not as response variable), follow-up
time, and fasting status (for glycemic and lipid models). We utilized QRFs [6], an extension
of the supervised machine learning technique random forest, which is an ensemble of
simultaneous decision trees derived from bootstrapped samples [28]. Furthermore, we set
PIs at 90% probability (fifth and 95th quantiles) to minimize false positives ((1− α)× 100%).
The PIs were constructed from the conditional quantiles of the trait response predicted
by QRFs. Briefly, the prediction intervals of a trait response Y given the environmental
predictors X was built by I(x) = [q α/2 (Y|X = x), q 1 − α/2 (Y|X = x)]. Thus, the 90%
prediction interval for the trait value was estimated using Equation (1).

I(x) = [q 0.05 (Y|X = x), q 0.95 (Y|X = x)], (1)

where, for a given x, the trait response lies within the interval I(x) with high probability. For
VHU, on the basis of the obtained PIs per trait, we defined two groups of persistence: those
above the 90% PI (‘sensitive’) and below 90% PI (‘resilient’). However, in MDCS, it was not
possible to consider two consecutive measures. Instead, QRFs were obtained only for the
baseline visit. In addition, when obtaining the quantiles, variable importance was estimated
as the percentage in mean square error (%IncMSE), calculated by permuting sample values
of the out-of-bag (OOB) in the test dataset, and increase in node purity (incNodepurity),
calculated on the basis of the reduction in sum of squared errors for each decision tree; we
rank-ordered the most important variable across all models in Supplementary Table S5 and
Supplementary Figures S1–S9) [29].

2.7. Predictive Performance

We estimated two CVD risk scores, (i) the Framingham risk score laboratory- and
nonlaboratory-based [30], and (ii) the 2013 American College of Cardiology/American
Heart Association Task Force [31]. Overall, both algorithms comprise data on age, sex,
smoking, diabetes diagnosis, systolic blood pressure and its treatment, total cholesterol, and
HDL-C. For the nonlaboratory-based risk model, BMI was used instead of lipids. We further
compared the predictive ability (i.e., area under the receiver operating characteristic curve;
ROC AUC) of two logistic regression models, one with the generated risk scores and one
with risk score plus a variable indicating risk factor ‘sensitivity’ (Supplementary Table S6).

2.8. Time-to-Event Analysis

Cox proportional hazards regression models were used to estimate hazard ratios
(HRs) and corresponding 95% confidence intervals (CIs) between sensitivity categories
for each cardiometabolic trait derived from the QRF approach and the risk of diabetes
and CVD-incidence and mortality. The proportional hazards assumption was tested with
Schoenfeld residuals. The ‘neutral’ category was used as the reference group. Statistical
significance (p-value) was set at the 5% level. Per cardiometabolic trait, a model including
age and sex (and BMI, where this was not the outcome), fasting status, FFQ version, TEI,
educational level (education was previously used as a proxy of socioeconomic status in
this population [32]), smoking status, physical activity, and alcohol consumption. The
covariates were selected a priori owing to their previously established associations with
cardiovascular mortality in the Swedish population [33]; if a covariate was already in the
environmental QRF model, it was not included. The timescale was the elapsed time from
baseline in years until an event occurred or the study ended, whichever came first. HRs
and 95% CIs were pooled for each cardiometabolic trait by sensitivity category to obtain
an overall estimate under a random-effects model [34]; heterogeneity was assessed with
Cochran’s Q statistic [35,36]. All statistical analyses were performed using R software
version 3.6.1 [37]; statistical packages are listed in Supplementary Table S7.
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3. Results

Baseline characteristics for each cohort are shown in Table 1. Median follow-up time
(interquartile range (IQR)) for VHU was 9.7 (5.8) years and 21.1 (4.9) years for MDCS.
In both cohorts, individuals classified as being ‘sensitive’ to lifestyle exposures affecting
blood pressure and lipids had more cardiovascular events and deaths compared with the
remainder of the population (all hazard ratios (HRs) and 95% CIs for CVD events, T2D,
and CVD-mortality are in Supplementary Table S8).

Table 1. Baseline characteristics of study cohorts.

VHU MDCS

n 35,440 18,067

Male (%) 15,599 (46.8) 6772 (37.5)

Age 42.96 (7.02) 57.72 (7.71)

BMI (kg/m2) 25.10 (3.71) 25.30 (3.78)

Total cholesterol (mmol/L) 5.47 (1.14) 6.20 (1.11)

HDL-C (mmol/L) 1.32 (0.57) 1.40 (0.37)

LDL-C (mmol/L) 3.92 (1.16) 4.19 (1.02)

Triglycerides (mmol/L) 1.32 (0.76) 1.47 (0.75)

Fasting glucose (mmol/L) 5.31 (0.63) 5.02 (0.83)

2 h glucose (mmol/L) 6.39 (1.30) -

HbA1c (mmol/mol) a - 31.4 (5.05)

Systolic blood pressure (mm Hg) 123.27 (15.77) 138.58 (18.97)

Diastolic blood pressure (mm Hg) 77.25 (10.86) 84.02 (9.53)
All values are the mean (SD) unless otherwise stated. VHU: Västerbotten intervention program; MDCS: Malmö
Diet and Cancer; BMI: body mass index; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density
lipoprotein cholesterol; HbA1c: glycated hemoglobin; 2 h glucose: 2 h glucose tolerance. a Raw value collected in
DCCT (Diabetes Control and Complications Trial) units, transformed to mmol/mol units using formula HbA1c
(mmol/mol) = 10.929 × (HbA1c (%) − 2.15) [38]. Note: To convert to mg/dL multiply cholesterol by 38.67, blood
glucose by 18.0182, and triglycerides by 38.67.

3.1. Cardiovascular Events

In VHU, the risk of CVD in those who were classified as ‘sensitive’ to the lifestyle
exposures affecting diastolic blood pressure was doubled, whereas, in MDCS, the risk in
this same subgroup was increased by 32%, compared to the reference group. The risk of
nonfatal and fatal CVD in people classified as sensitive to the lifestyle exposures affecting
systolic blood pressure was ~60% and ~50% higher than the reference population for
MDCS and VHU, respectively. When hazard estimates were pooled, the overall systolic
and diastolic blood pressure ‘sensitive’ HRs were statistically significant under a random-
effects model. In addition, the pooled groups of ‘sensitive’ individuals for systolic and
diastolic blood pressure were also at higher risk for early death (Figure 2).
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Figure 2. Forest plots of pooled studies by persistence category and CVD event. (A,C) Systolic
blood pressure (SBP (mm/Hg)); (B,D) diastolic blood pressure (DBP (mm/Hg)). Random- and
fixed-effects meta-analysis of the association between trait-persistence category and CVD and CVD
mortality. For (C,D), the number of events did not allow to obtain pooled estimates for the ‘resilient’
group. The square and diamond shapes represent summary estimates, while the horizontal bars
represent the 95% confidence intervals. HR: hazard ratio; ES: effect estimate; SE: standard error; CVD:
cardiovascular disease.

The risk of CVD in people classified as sensitive to LDL-C-related risk exposures was
doubled in VHU and ~60% higher in MDCS, with the pooled estimate being statistically
significant. In MDCS, those who were sensitive to lifestyle exposures lowering HDL-C
were at higher risk of CVD, but this was not the case in VHU.

3.2. T2D Incidence

For glycemic traits, those classified as ‘sensitive’ in MDCS to the lifestyle risk factors
for elevated fasting glucose had a fourfold increased risk of T2D. However, when risk
estimates from MDCS were pooled with those from VHU, this result was not statistically
significant (Table 2).
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Table 2. Pooled hazard ratios (HR) and 95% CI and outcomes from VHU and MDCS.

CVD Test between
Groups ª T2D Test between

Groups ª CVD Mortality Test between
Groups ª

Trait HR 95% (CIs) Q p HR 95% (CIs) Q p HR 95% (CIs) Q p

Fasting glucose
Pooled neutrality 1.00 1.00 1.00
Pooled resilient 0.77 0.31 1.90 0.25 0.62 0.73 0.46 1.16 0.75 0.39 1.04 0.61 1.75 0.12 0.73
Pooled sensitive 1.01 0.55 1.86 1.69 0.26 10.87 1.18 0.69 2.03

b 2 h Glucose/HbA1c
Pooled neutrality 1.00 1.00 1.00
Pooled resilient 0.77 0.54 1.12 5.41 0.02 0.62 0.08 4.55 0.36 0.55 0.75 0.39 1.47 0.74 0.39
Pooled sensitive 1.46 0.99 2.17 1.23 0.46 3.31 1.11 0.62 2.00

Diastolic blood pressure
Pooled neutrality 1.00 1.00 1.00
Pooled resilient 0.72 0.38 1.38 3.88 0.05 0.64 0.26 1.55 0.15 0.70 1.05 0.81 1.37 3.45 0.06
Pooled sensitive 1.61 1.01 2.55 0.81 0.36 1.82 1.47 1.16 1.85

HDL-C
Pooled neutrality 1.00 1.00 1.00
Pooled resilient 1.21 0.50 2.98 0.03 0.87 2.22 0.96 5.12 1.12 0.29 1.39 0.79 2.44 0.01 0.94
Pooled sensitive 1.12 0.67 1.84 0.69 0.10 5.03 1.47 0.38 5.62

BMI
Pooled neutrality 1.00 1.00 1.00
Pooled resilient 1.07 0.84 1.37 0.59 0.44 1.37 0.30 6.24 0.98 0.32 1.57 1.20 2.06 1.70 0.19
Pooled sensitive 0.86 0.51 1.44 0.59 0.31 1.13 1.22 0.93 1.60

LDL-C
Pooled neutrality 1.00 1.00 1.00
Pooled resilient 1.34 0.91 1.98 0.99 0.32 0.59 0.24 1.44 0.03 0.87 1.31 0.80 2.15 0.21 0.65
Pooled sensitive 1.75 1.24 2.46 0.65 0.29 1.48 1.72 0.60 4.97
Total Cholesterol
Pooled neutrality 1.00 1.00 1.00
Pooled resilient 1.17 0.55 2.51 0.32 0.57 1.07 0.62 1.85 0.20 0.66 1.58 0.99 2.53 0.23 0.63
Pooled sensitive 1.58 0.78 3.19 1.30 0.67 2.53 1.25 0.53 2.92
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Table 2. Cont.

CVD Test between
Groups ª T2D Test between

Groups ª CVD Mortality Test between
Groups ª

Trait HR 95% (CIs) Q p HR 95% (CIs) Q p HR 95% (CIs) Q p

Triglycerides
Pooled neutrality 1.00 1.00 1.00
Pooled resilient 1.09 0.66 1.78 0.01 0.94 - - - - - 0.84 0.44 1.59 1.53 0.22
Pooled sensitive 1.06 0.74 1.52 1.04 0.48 2.25 1.39 0.85 2.29

Systolic blood pressure
Pooled neutrality 1.00 1.00 1.00
Pooled resilient 0.72 0.40 1.28 6.55 0.01 0.74 0.38 1.47 3.17 0.07 1.01 0.77 1.32 5.74 0.02
Pooled sensitive 1.58 1.32 1.88 1.65 0.95 2.84 1.53 1.25 1.89

ª Test for subgroup differences between resilient and sensitive groups; b VHU; ‘-’ indicates that it was not possible to estimate the number. Pooled estimates were obtained with inverse
variance method and DerSimonian–Laird estimator for random-effects models; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; BMI: body mass
index; HbA1c: glycated hemoglobin CVD: cardiovascular disease. T2D: type 2 diabetes. Adjustment for each cohort model included age, sex, BMI, fasting status, FFQ version, TEI,
educational level, smoking status, physical activity, and alcohol intake.
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4. Discussion

Overall, a 50% to 60% higher risk of CVD and fatal CVD was observed in those indi-
viduals sensitive to the environments associated with blood pressure traits. Similarly, those
with sensitivity to the environment related to LDL-C had 74% higher risk of CVD incidence.
These findings are in line with others where higher blood pressure and dyslipidemia were
shown to be associated with cardiovascular risk [39].

Public health guidelines to reduce disease risk rely on population-averaged estimates
of risk factor susceptibility, often focusing on intermediate markers of cardiometabolic
risk such as blood pressure or serum cholesterol levels. This strategy assumes that broad
recommendations work well for most people, yet risk factor susceptibility and treatment re-
sponse are highly heterogeneous [40], justifying public health interventions that are tailored
to subgroups of the population. To explore whether doing so might be of clinical value,
we used machine learning to identify, avoiding distributional assumptions, a population
subgroup that is especially sensitive to modifiable lifestyle exposures for cardiometabolic
disease. We showed that those who are especially sensitive to these risk exposures tended
to develop CVD more rapidly. This type of risk classification is important, as it highlights
individuals with ‘normal’ or ‘low’ levels of intermediate cardiometabolic markers, who
are at relatively high risk of clinical events overlooked by conventional screening and risk
classification approaches.

The approach we used focuses on sensitivity to modifiable risk factors trained on
intermediate biomarkers of clinical disease. Not all of these intermediate marker sets
proved informative. For example, sensitivity to obesogenic lifestyle factors did not raise
the risk of T2D or CVD. Indeed, we found no clear evidence that sensitivity to lifestyle
exposures in any biomarker set raised the risk of T2D. This may be because diagnosis of
T2D is one of exclusion, where all known causes of chronically elevated blood glucose
are eliminated, leaving the idiopathic label of T2D to be applied. Thus, T2D is highly
heterogeneous in etiology and clinical presentation, making it harder to predict than more
precisely defined diagnoses such as CVD. Nevertheless, as the wide confidence intervals
around some of the risk estimates reported here indicate, it is likely that these analyses are
underpowered, and some negative findings may be false positive.

Although these analyses benefited from comprehensive assessments of lifestyle ex-
posures in these cohorts, a limitation is that they are predominantly self-reported data.
Such data are prone to reporting biases, and some lifestyle factors are likely to have been
assessed more precisely than others. Moreover, many variables prioritized from VHU were
unavailable or captured differently in MDCS, which makes it difficult to isolate biological
from statistical heterogeneity when pooled. The observational nature of the studies makes
causal inference challenging, and one cannot rule out the possibility that some associations
are confounded. There is little one can do to mitigate this common limitation of epidemio-
logical studies. It might also be argued that to be classified as sensitive to adverse lifestyle
exposures is a function of regression dilution, as this subgroup lies at the extreme of the pre-
diction distributions, where measurement error will be greatest. However, this is unlikely
in this setting, as sensitivity to lifestyle exposures persists across many years of follow-up.
Nevertheless, trials are needed that assess whether people defined as sensitive, yet with
apparently healthy biomarker profiles, are more susceptible to cardiovascular events than
those who are not defined as sensitive and also benefit from intensive lifestyle interventions.

Most current clinical guidelines for T2D and CVD discuss the importance of person-
alized care, yet include generic lifestyle recommendations [41,42], overlooking between-
person variability in susceptibility to environmental risk factors. There has been extensive
debate about the role of precision medicine in disease prevention, which typically focuses
on population subgroups with distinct risk factor and treatment response profiles, such that
efficacy is maximized, and costs and risks are minimized [1]. The approach described here
is aligned with the objectives of precision prevention, by identifying people at high risk of
cardiometabolic disease and helping determine which modifiable exposures to intervene
in. Strategies to prevent disease in this subpopulation may include nutritional support [43],



Nutrients 2022, 14, 3171 11 of 13

lifestyle modification, and pharmacotherapy [44]; however, further investigation from
randomized clinical trials is needed to discern which modality is more appropriate.

5. Conclusions

In conclusion, the approach to cardiometabolic risk stratification presented here may
help improve the precision with which at-risk subgroups of the population are identified.
In practice, the implementation of this approach would require combined assessments of
modifiable risk exposures and intermediate markers of cardiometabolic risk. Calculating an
individual’s level of risk using the current approach is more complicated than convention
risk algorithms, because it leverages conditional probabilities. However, this could be
managed through app-based assessment and decision support systems, which have proven
successful elsewhere [45].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu14153171/s1, Table S1: VHU Criteria for exclusions on car-
diometabolic traits; Table S2: VHU Criteria for implausible values for lifestyle variables; Table S3:
Variables removed during data processing; Table S4: VHU variable meaning; Table S5: Rank-ordered
most important variables among 9 cardiometabolic traits in VHU; Table S6: AUCs for each trait in
VHU; Table S7: R packages used for the analyses in the current study; Table S8: Hazard ratios and
95%CI of prediction interval categories and clinical outcomes; Figure S1: Variable importance plot of
fasting glucose (FG) model in VHU per visit; Figure S2: Variable importance plot of 2-hour glucose
(2hr G) model in VHU per visit; Figure S3: Variable importance plot of body mass index (BMI) model
in VHU per visit; Figure S4: Variable importance plot of Cholesterol (total cholesterol) model in VHU
per visit; Figure S5: Variable importance plot of diastolic blood pressure (DBP) model in VHU per
visit; Figure S6: Variable importance plot of high-density cholesterol (HDL-C) model in VHU per
visit; Figure S7: Variable importance plot of low-density cholesterol (LDL-C) model in VHU per visit;
Figure S8: Variable importance plot of systolic blood pressure (SBP) model in VHU per visit; Figure
S9: Variable importance plot of triglycerides model in VHU per visit.
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