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Abstract: Internet-based applications (apps) are rapidly developing in the e-Health era to assess the
dietary intake of essential macro-and micro-nutrients for precision nutrition. We, therefore, validated
the accuracy of an internet-based app against the Nutrition Data System for Research (NDSR),
assessing these essential nutrients among various social-ethnic diet types. The agreement between
the two measures using intraclass correlation coefficients was good (0.85) for total calories, but
moderate for caloric ranges outside of <1000 (0.75) and >2000 (0.57); and good (>0.75) for most macro-
(average: 0.85) and micro-nutrients (average: 0.83) except cobalamin (0.73) and calcium (0.51). The
app underestimated nutrients that are associated with protein and fat (protein: −5.82%, fat: −12.78%,
vitamin B12: −13.59%, methionine: −8.76%, zinc: −12.49%), while overestimated nutrients that
are associated with carbohydrate (fiber: 6.7%, B9: 9.06%). Using artificial intelligence analytics, we
confirmed the factors that could contribute to the differences between the two measures for various
essential nutrients, and they included caloric ranges; the differences between the two measures for
carbohydrates, protein, and fat; and diet types. For total calories, as an example, the source factors
that contributed to the differences between the two measures included caloric range (<1000 versus
others), fat, and protein; for cobalamin: protein, American, and Japanese diets; and for folate: caloric
range (<1000 versus others), carbohydrate, and Italian diet. In the e-Health era, the internet-based
app has the capacity to enhance precision nutrition. By identifying and integrating the effects of
potential contributing factors in the algorithm of output readings, the accuracy of new app measures
could be improved.

Keywords: personalized nutrition; internet-based applications; mobile app; Nutrition Data System
for Research (NDSR); social-ethnic diets; e-Health; generalized regression; dietary record; agreement
and bias

1. Introduction

For personalized precision nutrition, adequate intakes of macro-and micro-nutrients
could reduce disease risks of obesity, metabolic disease, cardiovascular disease, and cancer
across an individual’s the life span [1–4]. Hence, accurate measurements of essential micro-
nutrients, in addition to macro-nutrients, are vital in achieving precision nutrition [5,6].
Methyl donors including micro-nutrients such as vitamins (folate B9, cobalamin B12) and
amino acids are crucial for DNA methylation in nutrigenomics pathways for personal-
ized precision nutrition [7–11]. Various internet-based applications (apps) are rapidly
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developing in the e-Health era [12–14], that are accessible and convenient for assessing
nutrient intake in real-time [15–18]. However, compared to established dietary measures,
the accuracy of apps is yet to be examined for essential micro-nutrients in addition to
macro-nutrients, with records of 1–3 day diaries and longer durations including a food
frequency questionnaire (FFQ) [12,13,19].

The validity of four apps was examined against the established 1–3 day diaries of
the Nutrition Data System for Research (NDSR), and the agreement using intraclass cor-
relation coefficient (ICC) for macro-nutrients varied, ranging from excellent (0.9–1.0) for
calories, and moderate to excellent for other nutrients (carbohydrate: 0.65–0.99; protein:
0.64–1.00; fat: 0.52–1.0; fiber: 0.52–0.99; cholesterol: 0.77–1.0; sodium: 0.69–0.9) [13,19].
Using Pearson’s correlation, five apps validated against NDSR presented similar findings
ranging from excellent (0.89–0.94) for calories, and moderate to excellent for other nutrients
(carbohydrate: 0.73–0.94; protein: 0.83–0.96; fat: 0.75–0.88; fiber: 0.74–0.92; cholesterol:
0.62–0.81; sodium: 0.60–77) [19]. The differences between the apps and NDSR ranged from
−7.92 to 8.35 for calories [13], with an underestimation of 7–41% for protein, fat, fiber,
cholesterol, and sodium by the apps [19]. However, prior validation studies did not include
essential micro-nutrients, which are critical in nutrigenomics pathways for personalized
nutrition across various populations consuming various diet types [13,20]. Thus, macro-
and micro-nutrients need to be examined across various social-ethnic diets for the apps
against the established method.

Cultural ethnic inheritance, social change, and individual preferences influence hu-
man dietary habits [21], where traditional ethnic diets include examples of convenient
American, Mediterranean, Italian, Chinese, and Japanese diets [13,19–24]. Additionally, fast
foods [25,26], high school foods [26], smoothies [27–29], pure liquids [27,30], and dozens of
other diet types emerged following urbanization and growing aging populations. While
Mediterranean and Japanese diets are beneficial to prevent cardiovascular disease; some
Western diets are loaded with empty calories leading to metabolic disorders [31,32], and
rice-based ethnic diets contain insufficient zinc and iron to meet the daily requirements [33].
While smoothies have been commonly loaded with vegetables and fruits, they might in-
crease daily caloric intake via excess sugar and fat intake if unchecked, with insufficient
essential nutrients [33,34]. Hence, we included pure liquids and smoothies [27,33–35] as
they are common additions to social-ethnic human diets in various healthcare settings.
Additionally, convenient diets [25,26] and various social-ethnic diets are common in a
social-ethnic context, thus they were also included in this study [21,36,37].

The Bland-Altman analysis is a commonly used method to examine the validity of
a new measure against another measure [13,19,38–41]. Additionally, machine-learning-
based, artificial-intelligence (AI), generalized regression (GR) models could be employed to
identify the source factors that could contribute to the differences between measures [7,42],
with enhanced prediction accuracy [7,12]. A previous study noted that the source factors
that could contribute to the differences between the two measures of an app and FFQ
included caloric ranges; the difference between two measures for carbohydrates, protein,
fat; and diet types [12]. Therefore, in this study, we further validated the app against
NDSR, to identify factors that could contribute to the differences between two measures
for essential nutrients including various diet types, integrating AI method to confirm the
source factors to the differences between the two measures.

2. Materials and Methods

We evaluated the essential nutrients from 131 social-ethnic diets taken by various
vulnerable populations, continued from our series of studies [7,12,42]. Under-reporting
is a common human behavior in human studies in recording dietary intake [13,43,44];
thus, validation of dietary intake with model social-ethnic diets as recipes or menus can
offer precise and controlled nutrient intake for individuals to follow and consume [12,45].
We examined four groups of diets, including: (1) pure liquids [27,30,46]; (2) convenient
diets [25,26,34]; (3) ethnic diets of Western and Eastern origins [21,24]; and (4) smoothies-
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added [27–29]. We selected various diets to enhance the delivery of nutrients based on
possible forms of liquids and solid foods. To add variations to the baseline daily recipes of
these diets, excess calories, proteins, vegetables, fruits, and fats were included.

We evaluated essential nutrients of these diets based on the United States National
Institute of Health’s dietary reference intake [47] using both NDSR and the app based on
3-day 24-h dietary diaries throughout the week. Macro-nutrients included total calories,
carbohydrates, protein, total fat, saturated fat, cholesterol, and fiber [12]. Micro-nutrients
included vitamins: thiamin B1, riboflavin B2, niacin B3, pyridoxine B6, folate B9, and
cobalamin B12, A, C, D, E; amino acids: methionine, glycine [47]; choline; and minerals: zinc,
calcium, magnesium, iron, and sodium. Foods that are rich in carbohydrates also commonly
contained fiber, vitamins A, B9, and C. Whereas, foods that are meat-based are rich in
protein, fat, saturated fat, cholesterol, vitamin B12, methionine, glycine, and zinc [47].

2.1. Social-Ethnic Diets

Details of these diets were included in a prior report [12] are summarized in the
following sections. Liquids are necessary for human hydration and gut motility [27,28].
Pure liquid diets have been commonly recommended for frail elderly individuals and
patients with terminal illness and gastrointestinal dysfunction following surgery [27,30].
Examples of liquid diets comprise: various liquids loaded with minerals, fruits, vegetables,
and soups. Convenient diets in modern industrial societies include canned-foods, café
diets, and fast foods [25,26]. The canned-foods are comprised of items such as soups,
various vegetables, noodles, and fish. The café diets include foods offered at high schools,
frequently were loaded with sodium and saturated fat [34] such as chicken wings, chicken
tenders, grilled cheese sandwiches, mini cheeseburgers, pizza, cheese sticks, hot dogs,
and corn dogs. The fast-foods also contain high fat, saturated fat, sodium, sugar, and
empty calories [25,26,48], such as fried meats, fries, biscuits, sandwiches, wraps, and hash
browns [12,25,26].

Various ethnic diets include Western influences from American, Mexican, Italian,
and Mediterranean diets, and Eastern influences from Japanese, Chinese, and Korean
diets [21,24,37]. The American diet embodies fried foods and salads [31]. The Mexican diet
contains grain- and bean-based foods with meats and chili soups. The Italian diet includes
grains and vegetables. The Mediterranean diet contains plenty of fruits, vegetables, whole
grains, nuts, and olive oil, with some meat [37]. The Japanese diet includes seafoods, soups,
and tempura [49]. The Chinese diet embodies meats, tofu, eggs, noodles, and rice [50].
The Korean diet includes rice, meats, mixed bowls of vegetables, and soups [21,24]. A
smoothie-added diet could be used when people perform physically strenuous activities
that require additional hydrations or nutrients. The smoothie-added diet includes a variety
of fruits and vegetables added to the base diet, with ethnic-based ingredients and multi-
grains [27–29,51].

2.2. Dietary Measures and Nutrient Intake

We analyzed 3-day dietary intake of nutrients from various social-ethnic diets using
both NDSR and an app. We used NDSR software version 2015 based on published values
in the USDA nutrient database (NDSR, Minnesota University, MN, USA; http://www.ncc.
umn.edu/products/nutrients-nutrient-ratios-and-other-food-components/primary-energy-
sources/ (assessed on 1 June 2022)), which was initiated in 1974 by the National Heart,
Lung, and Blood Institute (NHLBI) [7]. NDSR was developed from 19,000 foods that
embody an array of ethnic foods and common menu items for analysis of 178 nutri-
ents [12,52–54]. NDSR is widely used for nutrient analysis based on the 24-h diary, recipes,
and menus, across populations in many countries with different diet types [12,52–54].
NDSR provided detailed reports on the quantity of macro- and micro-nutrients [55].
The app was developed by a nutrigenomics company that specialized in the internet-
based mobile app to assess daily dietary intake (GB HealthWatch, San Diego, CA, USA,
https://healthwatch360.gbhealthwatch.com, accessed on 1 June 2021) [12,23,56]. The

http://www.ncc.umn.edu/products/nutrients-nutrient-ratios-and-other-food-components/primary-energy-sources/
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app, based on daily food logs, could extricate 30 essential nutrients. Data accuracy was
confirmed by team members before analysis.

2.3. Data Analysis

We analyzed data with JMP version 15.0.0 statistical software [57–60] (SAS Institute
Inc., Cary, NC). We evaluated the agreement and bias between the apps and NDSR. Means
and standard deviations (SD) for nutrients [61] were calculated for both measures. The
agreement between the two measures for the parameters were analyzed using ICCs and
mean % differences, and bias with standard errors (SE). Pairwise correlations for ICCs (r)
between the two measures presented the strengths of association (excellent: ≥0.9, good:
0.75 ≤ 0.90, moderate: 0.50 ≤ 0.75, poor: <0.50) [39,55,62]. The Bland–Altman plots pre-
sented differences with limits of agreement (LoAs: mean differences ± 2 SD) between the
two measures [12,63,64], with good agreement at 95% or greater [65–67]. The alpha for the
significance level for all analyses was set at 0.05.

The analytics were described in detail in earlier studies [7,12,42], and summarized
in the following. We employed GR models with AI-based machine learning methods to
identify the source of differences between the two measures by progressively incorporating
related factors in the analysis [7,12,42]. The source factors that could contribute to the
differences between the two measures included (1) caloric ranges of total calories (<1000,
1000–2000, or >2000); (2) effects of differences from carbohydrates, protein, fat; and (3) diet
types [12]. JMP software provided logistic regression (LR) as the default model to explain
the baseline dependent variables. Following LR, we selected the Elastic Net estimated
method (Leave-One-Out (LOO) and Validation Column for confirmatory analysis to predict
the accuracy with smaller misclassification rate for minimal prediction error by avoiding
over-fitting [7,12,42,68]. Elastic Net models were employed for effective use in handling
complex multiple domains in the datasets, balancing potential interactions [69]. Both
LOO and AICc validation are effective for small sample sizes and handling multiple
domains [7,59]. LOO is used to select source factors within domains of caloric ranges,
macro-nutrients, and diet types [70,71]. We used AICc validation columns to confirm how
well the model fits with unbiased best model prediction [70], with 80/20 randomized split
for training and validation set for predictive modeling. The selection of the best model
is based on AICc (lower score is fitter, more precise), misclassification (smaller is more
accurate), and area under the Receiver Operating Characteristics (ROC) curve (AUC, higher
coverage is better) [42,60]. The interaction profilers were used to visualize the significant
interactions, if found could be included in the final model [70,71].

3. Results
3.1. Agreement and Difference: The Bland-Altman Method

We validated 131 diets using the Bland-Altman method to assess the agreement (ICCs,
% differences) and bias (SE) between the app and NDSR per three caloric ranges (<1000,
1000–2000, and >2000) and selected essential nutrients (Table 1) using 5–10% differences as
agreement criteria [62]. The ICCs between the two measures for total calories were good
for all diets together (r = 0.85), but moderate and worst for outliers of >2000 caloric range
(<1000 calories: 0.75, 1000–2000 calories: 0.76, >2000 calories: 0.57 (95% Confidence Interval:
0.14–0.82)). The ICCs between the two measures were good for most other nutrients
(average for macro- 0.85 and 0.83 for micro-nutrients), but moderate for cobalamin (0.73)
and calcium (0.51) (all p < 0.001).
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Table 1. Agreement and bias for the internet-based application (App) against Nutrition Data System
for Research (n = 131).

Parameters r (95% CI) ** % Difference
M ± SD

NDSR
M ± SD

App
M ± SD SE ±2 SD%

Calories (kcal) 0.85 (0.80, 0.89) −5.20 ** ± 13.86 1333 ± 891.8 1215 ± 853.6 1.21 95.42
<1000 (n = 63) 0.75 (0.62, 0.84) −4.26 ** ± 10.01 806.5 ± 147.1 756.6 ± 162.5 1.26 95.65
1000–2000 (n = 50) 0.76 (0.60, 0.85) −4.10 * ± 11.67 1330 ± 302.9 1255 ± 346.3 1.65 92.31
>2000 (n = 18) 0.57 (0.14, 0.82) −11.56 * ± 25.71 3183 ± 1042 2708 ± 1410 6.06 95.00
Carbohydrate (g) 0.85 (0.80, 0.89) 0.93 ± 16.22 180.60 ± 141.0 178.4 ± 136.1 1.42 92.37
Protein (g) 0.85 (0.80, 0.89) −5.82 ** ± 13.05 52.20 ± 33.25 47.35 ± 33.10 1.14 93.89
Fat (g) 0.81 (0.75, 0.86) −12.78 ** ± 16.73 47.88 ± 33.56 37.76 ± 29.57 1.46 93.13
Sat Fat (g) 0.84 (0.79, 0.89) −13.77 ** ± 16.70 14.26 ± 9.81 11.54 ± 9.35 1.46 94.66
Cholesterol (mg) 0.88 (0.84, 0.91) −4.86 ** ± 15.57 184.2 ± 117.3 175.4 ± 121.7 1.36 93.89
Fiber (g) 0.85 (0.80, 0.89) 6.70 ** ± 20.93 17.99 ± 19.30 18.46 ± 18.91 1.83 92.37
Thiamin (mg) 0.85 (0.80, 0.89) 6.48 ** ± 14.00 1.04 ± 0.71 1.12 ± 0.73 1.22 94.66
Riboflavin (mg) 0.86 (0.81, 0.90) 0.19 ± 13.72 1.26 ± 0.85 1.23 ± 0.81 1.20 93.89
Niacin (mg) 0.86 (0.80, 0.90) 0.51 ± 14.15 14.43 ± 9.52 14.34 ± 10.40 1.24 93.13
Pyridoxine (mg) 0.86 (0.80, 0.90) −4.38 ** ± 15.17 1.74 ± 1.46 1.60 ± 1.42 1.33 94.66
Folate (mcg) 0.87 (0.81, 0.90) 9.06 ** ± 18.74 280.2 ± 219.6 302.3 ± 215.9 1.64 92.37
Cobalamin (mcg) 0.73 (0.64, 0.80) −13.59 ** ± 18.57 3.42 ± 2.05 2.70 ± 1.56 1.62 92.37
Methionine (g) 0.84 (0.79, 0.89) −8.76 ** ± 13.20 1.17 ± 0.72 1.03 ± 0.74 1.15 93.89
Choline (mg) 0.82 (0.76, 0.87) −4.51 ** ± 18.55 263.4 ± 177.0 240.1 ± 161.9 1.62 95.42
Glycine (g) 0.83 (0.76, 0.87) −10.47 ** ± 14.80 2.26 ± 1.42 1.93 ± 1.45 1.29 92.37
Vitamin A (IU) 0.86 (0.81, 0.90) 28.00 ** ± 31.32 13,294 ± 17,265 16,373 ± 16,564 2.74 96.95
Vitamin C (mcg) 0.88 (0.83, 0.91) 2.41 ± 24.76 149.4 ± 158.3 149.1 ± 167.3 2.16 93.13
Vitamin D (mcg) 0.89 (0.84, 0.92) 0.72 ± 14.53 3.90 ± 2.14 3.91 ± 2.20 1.27 95.42
Vitamin E (mcg) 0.82 (0.75, 0.87) −0.10 ± 24.31 6.68 ± 5.34 6.13 ± 4.91 2.12 92.37
Zinc (mg) 0.83 (0.77, 0.88) −12.49 ** ± 15.82 7.64 ± 4.55 6.19 ± 3.92 1.38 92.37
Calcium (mg) 0.51 (0.37, 0.62) 1.46 ± 31.82 548.4 ± 335.5 570.8 ± 389.0 2.78 93.13
Magnesium (mg) 0.86 (0.81, 0.90) 1.40 ± 15.69 211.6 ± 162.7 210.3 ± 159.6 1.37 93.89
Iron (mg) 0.86 (0.81, 0.90) 3.11 ± 18.52 8.98 ± 6.02 8.99 ± 5.66 1.62 94.66
Sodium (mg) 0.75 (0.67, 0.82) −19.78 ** ± 18.84 2867 ± 1869 2002 ± 1266 1.65 94.66

Note: NDSR: Nutrition Data System for Research; r: pairwise for intraclass correlation coefficient; CI: confidence
interval; M: mean; SD: standard deviation; * p < 0.05; ** p < 0.001.

Compared to NDSR, the app presented acceptable differences (<5%) on total calories
with the caloric range of <1000 and 1000–2000, but underestimated >2000 calories (>10%).
For macro-nutrients, the app underestimated total calories and protein (>5%), fat and
saturated fat (>10%); overestimated fiber (>5%); but presented acceptable differences
with carbohydrate and cholesterol (<5%). For micro-nutrients, the app underestimated
methionine (>5%); vitamin B12, glycine, zinc, and sodium (>10%); overestimated vitamin
B1 and B9 (>5%), as well as vitamin A (>10%); but presented acceptable differences with
vitamin B2, B3, B6, C, D, E, choline, calcium, magnesium, and iron (<5%). Thus, we found
good agreement between the two measures on some micro-nutrients but not protein-based
micro-nutrients that are essential in personalized precision nutrition.

The bias (SE) increased with increased caloric ranges (1.26 for <1000 calories, 1.65 for
1000–2000 calories, and 6.06 for >2000 calories). The bias was greater (>2) for vitamins A, C,
E, and calcium when compared to all other nutrients including fiber and sodium (ranges
1.14–1.83). Furthermore, we used Bland–Altman plots to visualize the differences and LoAs
between the app and NDSR. We presented side-by-side comparison of correlations (left
panel) and Bland–Altman plots (right panel) on exemplary macro-nutrients of calories
(Figure 1a,b), fat (Figure 2a,b), protein (Figure S1a,b), carbohydrate (Figure S2a,b); and
micro-nutrients of folate (Figure 3a,b) and cobalamin (Figure 4a,b). Correlation plots
presented good agreement between the two measures on all nutrients as presented in these
figures. Bland–Altman plots displayed a wide variability of differences for both macro-
(calories, fat, protein, carbohydrate) and micro-nutrients (folate, cobalamin). Furthermore,
Bland–Altman plots illustrated the underestimation by the app compared to NDSR on total
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calories (−5.2%, Figure 1b), fat (−12.78%, Figure 2b), protein (−5.82%, Figure S1b), and
cobalamin (−13.59%, Figure 4b); but overestimation on carbohydrate (0.93%, Figure S2b)
and folate intake (9.06%, Figure 3b).
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Additionally, we assessed the differences between the app and NDSR for various
nutrients in association with caloric ranges and diets (Table 2 and Table S1–S4). To continue
findings in Table 1 for the underestimation of total calories with >2000 calories, the app un-
derestimated total calories with canned food, Mediterranean, Chinese, and smoothie-added
diets (>5%), and fast food (>10%); but presented acceptable differences for other diets (<5%).
For carbohydrates, the app presented acceptable differences with <1000 calories (<5%),
but overestimated with 1000–2000 calories (>5%) and underestimated with >2000 calories
(>5%). Additionally, for carbohydrates, the app underestimated with smoothie-added diets
(>5%); overestimated with canned food and high school (>5%), and Mexican diets (>10%);
but presented acceptable differences (<5%) with other diets (pure liquid, fast food, Italian,
Mediterranean, American, Japanese, Chinese, and Korean). For protein, the app under-
estimated with <1000 calories (>5%) and >2000 calories (>10%), but presented acceptable



Nutrients 2022, 14, 3168 8 of 15

differences with 1000–2000 calories (<5%); and underestimated with diets including pure
liquids, Mexican, and smoothie-added diets (>5%), Mediterranean, Chinese, and Korean
diets (>10%); but presented with acceptable differences with other diets of canned-food,
high school, fast-food, Italian, American, and Japanese (<5%). The app underestimated fat
with all caloric ranges (>10%); with diets, including high school, Mexican, Italian, Mediter-
ranean, and Japanese diets (>5%); as well as canned food, fast food, Chinese, Korean, and
smoothie-added diets (>10%); but presented acceptable differences with pure liquids and
American diets (<5%). For folate, the app presented overestimation with 1000–2000 calories
(>5%), <1000 calories (>10%), and underestimation with >2000 calories (>5%); overestima-
tion with Italian, Mediterranean, American, Japanese, and Korean diets (>5%); pure liquid,
canned food, high school, fast food, and Mexican diets (>10%); but acceptable differences
with Chinese and smoothie-added diets (<5%). For cobalamin, the app underestimated
with all caloric ranges (>10%); underestimated canned food and Italian (>5%) diets; pure
liquid, high school, Mexican, Mediterranean, Chinese, Korean, and smoothie-added diets
(>10%); overestimation with Japanese (>5%) diet; but presented acceptable differences
with American and fast-food diets (<5%). Additionally, the app underestimated nutrients
that are associated with protein- and fat-based intake, including saturated fat, cholesterol,
methionine, choline, glycine, vitamins B12 and E; but overestimated nutrients that are
associated with carbohydrate-based intake, including fiber, and vitamins B9, A, and C
(Tables S1–S4).

Table 2. Differences between the internet-based application and Nutrition Data System for Research
per domains of caloric ranges and various diets for essential macro-and micro-nutrients (n = 131).

Parameters (n) Calories, kcal
%Diff M ± SD

Carb, g
%Diff M ± SD

Protein, g
%Diff M ± SD

Fat, g
%Diff M ± SD

Folate, mcg
%Diff M ± SD

Cobalamin, mcg
%Diff M ± SD

Caloric range
<1000 (63) −4.26 **± 10.01 −0.70 ** ± 12.55 −6.27 ** ± 11.35 −10.58 **± 13.73 12.79 **± 18.86 −13.43 **± 18.61
1000–2000 (50) −4.10 **± 11.67 5.15 **± 11.60 −3.03 **± 9.04 −14.34 **± 17.19 9.54 **± 10.94 −12.27 **± 15.28
>2000 (18) −11.56 ± 25.71 −9.98 ± 29.51 −12.03 * ± 23.09 −16.16 **± 23.74 −5.35 ± 27.79 −17.83 * ± 26.04
Diet types
Pure Liquid (8) −0.38 ± 7.32 2.88 ± 4.52 −9.53 ± 17.28 −0.66 ± 17.65 20.05 ± 38.13 −22.04 ** ± 23.39
Convenient Diet (30) −8.30 ** ± 12.81 4.18 ** ± 9.94 1.85 ± 10.41 −23.65 ** ± 20.16 20.47 ** ± 15.55 −8.11 ** ± 12.91

Canned Food (10) −6.83 * ± 9.16 5.60 ** ± 4.15 3.84 ** ± 4.35 −27.27 ** ± 17.56 30.51 ** ± 15.86 −8.96 ** ± 1.84
High School (10) 0.55 ± 3.84 5.50 ** ± 2.64 0.42 ± 8.33 −5.32 * ± 5.35 19.10 ** ± 6.64 −12.51 * ± 15.18

Fast Food (10) −18.61 ** ± 14.93 1.43 ± 16.78 1.30 ± 15.94 −38.36 ** ± 18.54 11.81 ** ± 16.93 −2.87 ± 15.82
Ethnic Food (71) −3.22 ** ± 9.90 2.01 ± 13.96 −7.40 ** ± 8.35 −9.14 ** ± 8.53 7.10 ** ± 9.35 −13.62 ** ± 16.05
Western Diet (38) −1.90 ± 9.66 2.86 *± 14.24 −5.15 ** ± 7.57 −6.53 **± 9.03 7.78 ** ± 9.60 −12.82 **± 14.22

Mexican (10) 3.40 ± 11.83 13.04 * ± 17.65 −5.01 ** ± 3.45 −6.59 ± 11.83 11.94 ** ± 9.62 −14.35 ** ± 4.66
Italian (10) −1.31 ± 3.10 4.46 ** ± 1.98 −2.95 ± 7.29 −8.11 ** ± 3.76 5.02 ** ± 2.75 −9.77 * ± 10.05

Mediterranean (9) −6.80 ± 8.68 −3.11 ± 8.65 −10.10 ± 9.10 −8.94 ± 10.88 8.68 ** ± 6.48 −27.93 ** ± 16.92
American (9) −3.53 ± 11.07 −4.27 ± 16.67 −2.81 ± 8.34 −2.28 ± 7.41 5.32 ± 15.27 0.58 ± 6.08

Eastern Diet (33) −4.75 ** ± 10.10 1.03 ± 13.78 −9.99 ± 8.57 −12.15 ± 6.88 6.31 ** ± 9.14 −14.55 ** ± 18.11
Japanese (10) −3.13 ** ± 2.20 1.92 * ± 2.86 −4.57 ** ± 1.61 −8.34 ** ± 3.76 9.44 ** ± 2.95 8.90 ** ± 3.65
Chinese (10) −6.85 ** ± 2.31 1.83 * ± 2.87 −10.74 ** ± 1.57 −16.71 ** ± 2.09 3.65 ** ± 0.83 −20.62 ** ± 4.73
Korean (13) −4.38 ± 16.07 −0.26 ± 22.16 −13.57 ** ± 12.38 −11.57 ** ± 9.09 5.94 * ± 14.20 −27.91 ** ± 12.88

Smoothie (22) −9.13 ± 23.79 −7.70 ± 27.16 −9.86 * ± 21.40 −14.12 ** ± 23.53 −4.18 ± 25.22 −17.89 ** ± 27.84

Note: M: mean; SD: standard deviation; n ≤ 30 used Signed-Rank test * p < 0.05; ** p < 0.001.

3.2. Predictive Modeling for the Difference between the Internet-Based App against NDSR:
Generalized Regression Analysis

For predictive modeling, we progressively examined significant factors per domains
of caloric ranges (coded as one of the three versus the other two categories for <1000,
1000–2000, and >2000), energy-producing macro-nutrients, and diets. We included the
significant factors of all domain factors in the final combined model (Table S5 progression
examples for total calories, Table S6 for folate, and Table S7 for cobalamin). For total calories,
differences of <1000 over other caloric ranges, fat, and protein were significant contributing
factors to the difference between the app and NDSR (misclassification 0.19, AICc 30.29, and
AUC 0.89) (Table 3, baseline LR model on the left panel and GR model validation on the
right panel). As an example, Figure 5 illustrates the AUC curve for total calories with 89%
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for both sensitivity and specificity for the accuracy of the selected model [71]. Through the
progressive analysis, we observed a higher AICc and less precise model by including an
additional factor, the Chinese diet, thus producing a less favorable model than the selected
model (Table S5).

Table 3. Significant factors contributing to the differences between the internet-based application
against Nutrition Data System for Research on total calories.

Parameters
Logistic Regression Original Model Generalized Regression

Elastic Net Model Validation

Estimate (95% CI) p (χ2) Estimate (95% CI) p (χ2)

(Intercept) 3.1970 (1.8086, 4.5855) <0.0001 3.1367 (1.7804, 4.4933) <0.0001
<1000 caloric range −1.4626 (−2.7979, −0.1274) 0.0318 −1.4136 (−2.7006, −0.1265) 0.0313

Fat % Difference −3.3411 (−4.6729, −2.009) <0.0001 −3.2879 (−4.5876, −1.9883) <0.0001
Protein % Difference −1.3791 (−2.4530, −0.3052) 0.0118 −1.3600 (−2.4073, −0.3127) 0.0109

MR 0.1852 0.1852
AICc 30.29 30.29
AUC 0.8920 0.8920

Note: MR: misclassification rate; AICc: Akaike’s information criterion with corrections; AUC: Area under the
curve; CI: confidence interval.
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Area under the receiver operating characteristic curve (AUC) for baseline logistic regression model (a)
and Elastic Net with validation model (b).

We selected folate and cobalamin as the most representative essential micro-nutrients
in precision nutrition for more detailed presentation. Factors that contributed to the
differences in folate between the two measures included caloric range (<1000 versus the
other two categories), carbohydrate, and Italian diet (misclassification 0.30, AICc 38.5,
and AUC 0.90) (Table 4). Through the progression analysis, we noted a higher AICc and
AUC by including an additional factor, the Chinese diet, thus, this factor was not included
(Table S6). For cobalamin, significant factors that contributed to the differences between
the two measures included protein, and American and Japanese diets (misclassification
0.26, AICc 37.7, and AUC 0.81) (Table 5). In the progression analysis, we observed a
higher AICc by including additional factors of Chinese and Mexican diets, which presented
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less favorable models than the selected model; thus, they were not included in the final
model (Table S7).

Table 4. Significant factors contributing to the differences between internet-based application against
Nutrition Data System for Research on folate.

Parameters
Logistic Regression Original Model Generalized Regression

Elastic Net Model Validation

Estimate (95% CI) p (χ2) Estimate (95% CI) p (χ2)

(Intercept) 11.4831 (−139.76, 162.72) 0.8817 10.3903 (9.0613, 11.7193) <0.0001
<1000 caloric range 1.4607 (0.4860, 2.4354) 0.0033 1.4604 (0.4854, 2.4354) 0.0033

Carbohydrate, % difference −1.1903 (−2.9901, −0.9379 0.0001 −1.9187 (−2.8978, −0.9395) 0.0001
Italian diet −11.2367 (−162.48, 140.00) 0.8842 −10.1439 (−11.3112, −8.9767) <0.0001

MR 0.2963 0.2963
AICc 38.52 38.52
AUC 0.9046 0.9046

Note: MR: misclassification rate; AICc: Akaike’s information criterion with corrections; AUC: Area under the
curve; CI: confidence interval.

Table 5. Significant factors contributing to the differences between internet-based application against
Nutrition Data System for Research on cobalamin.

Parameters
Logistic Regression Original Model Generalized Regression

Elastic Net Model Validation

Estimate (95% CI) p (χ2) Estimate (95% CI) p (χ2)

(Intercept) −23.3204 (−314.45, 267.81) 0.8752 −5.0243 (−6.7635, 3.2852) <0.0001
Protein, % difference −3.2596 (−4.4292, −2.0901) <0.0001 −2.6890 (−3.6172, 1.7607) <0.0001

American diet 12.3545 (−207.66, 232.37) 0.9124 2.8874 (1.3699, 4.4048) 0.0002
Japanese diet −23.3204 (−117.56, 203.75) 0.8752 3.8314 (2.7588, 4.9040) <0.0001

MR 0.2593 0.2593
AICc 37.73 37.42
AUC 0.8083 0.8083

Note: MR: misclassification rate; AICc: Akaike’s information criterion with corrections; AUC: Area under the
curve; CI: confidence interval.

We also assessed significant factors between the app and NDSR for other nutrients in
the progressive analysis, and summarized the final models in the Supplementary Tables
(carbohydrate, protein, fat, saturated fat, cholesterol, and fiber in Table S8; thiamin, ri-
boflavin, niacin, pyridoxine, choline, glycine, and zinc in Table S9; and vitamins A, C, D,
and E, and calcium, magnesium, iron, and sodium in Table S10). Significant factors that
contributed to the differences between the two measures for carbohydrate included calories,
fiber, and Italian diet; for protein: caloric range (1000–2000 versus others), total calories,
cholesterol, and canned foods; for fat: saturated fat, cholesterol, and fast food; for saturated
fat: total calories, fat, and Korean diets; for cholesterol: fat and pure liquids; for fiber:
caloric range of 1000–2000, carbohydrate, and canned-foods (misclassification 0.11–0.22,
AICc 24.0–33.7, AUC 0.82–0.98). Similarly, significant factors for thiamin included total
calories, fiber, high school, and Chinese diet; for riboflavin: carbohydrate, protein, and high
school diets; for niacin: total calories and Chinese diet; for pyridoxine: total calories and
canned-food; for choline: total calories, and canned-food; for glycine: protein, canned-food,
and Japanese diet; and for zinc: total calories, protein, canned-food, and Japanese diet
(misclassification 0.04–0.22, AICc 19.8–35.7, AUC 0.88–0.97). Additionally, significant fac-
tors for vitamin A included protein, and Korean and smoothie-added diets; for vitamin D:
cholesterol, canned-food, and Mediterranean diet; for vitamin E: fat, fast food, and Italian
diet; vitamin C: fiber, fast food, and Mexican diet; for calcium: cholesterol, and Mexican and
Chinese diets; for magnesium: total calories, protein, fiber, canned-food, and high school
food; for iron: protein, high school food and Mediterranean diet; for sodium: saturated
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fat, high school food, and Mexican diet (misclassification 0.11–0.33, AICc 31.2–41.7, AUC
0.73–0.90). The canned-food diet type was a common contributing factor to the differences
between the two measures for protein, fiber, pyridoxine, choline, glycine, zinc, vitamin D,
and magnesium (Tables S8–S10). We did not explicitly test the model for methionine, as
methionine is purely dependent on protein for calculating the intake level. The interaction
profiler plots did not present any significant three-way interactions for inclusion in the final
models for all nutrients.

4. Discussion

For precision nutrition, we validated the accuracy of an internet-based app in assessing
macro- and micro-nutrients in various social-ethnic diets, against 3-day NDSR in this study,
in addition to previous validation against FFQ [13,14,19]. Compared to previous findings
with excellent ICCs on calories (0.9–1) between the app and NDSR [13,19], we found
good agreement (≥0.75) between the two measures for total calories (0.85). We further
identified good agreement (≥0.75) between the two measures for total calories with caloric
ranges of 1000–2000 (0.76), but moderate agreement with caloric ranges of <1000 (0.75)
and >2000 (0.57). Compared to previous findings of moderate to excellent agreement for
other major nutrients [13,19], the ICCs in this study between the two measures for most
macro-nutrients were good (≥0.75) (average: 0.85 for all macro-nutrients). We further
demonstrated the good agreement between the two measures using ICCs for most micro-
nutrients (average 0.83), but found only moderate agreement for cobalamin (0.73) and
calcium (0.51) (all p < 0.001).

In comparison to NDSR, the app underestimated protein and fat-based nutrients (pro-
tein: −5.82%, fat: −12.78%, vitamin B12: −13.59%, methionine: −8.76%, zinc: −12.49%),
while it overestimated carbohydrate-based nutrients (fiber: 6.7%, B9: 9.06%). Thus, we
found similar underestimation of protein and fat for macro-nutrients between the app
and NDSR, as in a previous study [19]. Contrary to the validation against FFQ with the
acceptable estimation of vitamins B1 (2.46%) and B9 (3.24%), this study demonstrated that
the app overestimated vitamins B1 (6.48%) and B9 (9.06%) against NDSR. For choline, the
app presented acceptable estimation (−4.51%) using 5% criteria, against NDSR, while it
was underestimated with the app against FFQ (−6.23%). The bias (SE) was small for all
three caloric ranges (0.63–0.88), between the two measures of the app and NDSR; which
are smaller and more precise in this study compared to the findings in a prior study with
the app against FFQ (1.44–5.91) [12,19]. The smaller bias could be due the same recording
duration of 3-day diaries with both the measures in this study, as contrary to a longer dura-
tion in measure with FFQ for the prior study. The correlations between the two measures
in this study were strong ≥0.70 for most nutrients (average for macro- 0.85 and 0.82 for
micro-nutrients) except for calcium (0.51), that are of similar findings as in a prior study
with app being validated against FFQ [12].

We identified the factors that contributed to the differences between the two mea-
sures. For total calories, the sources that contributed to the difference between the two
measures included caloric range (<1000 versus others), fat, and protein. For folate, the
sources included caloric range (<1000 versus others), carbohydrate, and Italian diet. Ad-
ditionally, for cobalamin, the sources included protein, and American and Japanese diets.
Therefore, continuing from a previous study [12], caloric ranges and various diets could be
used to identify the sources that might contribute to the differences between the two mea-
sures, when validating a new measure such as an internet-based app against established
dietary measures.

In summary, fat and protein continued to be the major nutrient sources of differences
in the validation of the app against established dietary measures, when compared to NDSR
as well as FFQ [12]. The confirmatory predictive modeling further substantiated this result,
with specific caloric ranges and diet types also as sources of differences. Hence, these
source factors could be used to adjust the algorithm of readings in the development of the
internet-based app. With advanced technology and AI analytics in the e-Health era, these
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apps have the capacity to enhance precision nutrition, by integrating potential contributing
factors in the development of new accurate measures. Various diets across populations and
related factors should be included in future studies to further validate dietary measures.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu14153168/s1, Supplementary Table S1: Bias and agreement between internet-based applica-
tions and Nutrition Data System for Research per domains of caloric ranges, energy nutrients, and
various diets for major nutrients (n = 131). Supplementary Table S2. Bias and agreement between
internet-based application and Nutrition Data System for Research per domains of caloric ranges,
energy nutrients, and various diets for vitamins Bs (n = 131). Supplementary Table S3. Bias and
agreement between internet-based application and Nutrition Data System for Research per domains
of caloric ranges, energy nutrients, and various diets for methyl donors and vitamins A, C, and D
(n = 131). Supplementary Table S4. Bias and agreement between internet-based application and
Nutrition Data System for Research per domains of caloric ranges, energy nutrients, and various diets
for vitamin E and minerals (n = 131). Supplementary Table S5. Progression on selecting significant
factors contributing to the differences between internet-based application and Nutrition Data System
for Research on total calories. Supplementary Table S6. Progression on selecting significant factors
contributing to the differences between internet-based application and Nutrition Data System for
Research on folate. Supplementary Table S7. Progression on selecting significant factors contributing
to the differences between internet-based application and Nutrition Data System for Research on
cobalamin. Supplementary Table S8. Summary of significant factors contributing to the differences
between internet-based application and Nutrition Data System for Research on major nutrients.
Supplementary Table S9. Summary of significant factors contributing to the differences between
internet-based application and Nutrition Data System for Research on methyl-donors and co-factors.
Supplementary Table S10. Summary of significant factors contributing to the differences between
internet-based application and Nutrition Data System for Research on other vitamins and minerals.
Supplementary Figure S1: (a) Correlation, (b) Bland and Altman plots between internet-based appli-
cation and Nutrition Data System for Research (NDSR) for protein (a,b). Supplementary Figure S2.
(a) Correlation, (b) Bland-Altman plots between internet-based applications and Nutrition Data
System for Research (NDSR) for carbohydrate (a,b).
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