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Abstract: Recent studies have suggested that prevention of obesity and non-alcoholic fatty liver
disease (NAFLD) should start with maternal dietary management. We previously reported disrupted
methionine cycle, associated with NAFLD, in male offspring liver due to maternal high-fat (HF)
diet, thus we hypothesize that maternal one-carbon supplement may reduce the risk of NAFLD in
offspring via the normalizing methionine cycle. To test it, female mice (F0) were exposed to either
a maternal normal-fat diet (NF group) a maternal HF diet (HF group), or a maternal methyl donor
supplement (H1S or H2S group) during gestation and lactation. The offspring male mice (F1) were
exposed to a postweaning HF diet to promote NAFLD. While the HF offspring displayed obesity,
glucose intolerance and hepatic steatosis, the H1S and H2S offspring avoided hepatic steatosis. This
phenotype was associated with the normalization of the methionine cycle and the restoration of
L-carnitine and AMPK activity. Furthermore, maternal HF diet induced epigenetic regulation of
important genes involved in fatty acid oxidation and oxidative phosphorylation via DNA methylation
modifications, which were recovered by maternal one-carbon supplementation. Our study provides
evidence that maternal one-carbon supplement can reverse/block the adverse effects of maternal HF
diet on promoting offspring NAFLD, suggesting a potential nutritional strategy that is administered
to mothers to prevent NAFLD in the offspring.

Keywords: non-alcoholic fatty liver disease (NAFLD); pregnancy; offspring; high-fat diet; one-carbon
supplement; epigenetics; DNA methylation

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is closely associated with obesity, type
2 diabetes, hypertension and hyperlipidemia, and is the liver manifestation of metabolic
syndrome, which has a significant impact on global health [1]. 2015, 25% of the global
adult population was affected by NAFLD, with regional differences [2]. East Asia has the
highest case numbers, followed by South Asia. However, the highest prevalence of NAFLD
was observed in North Africa and the Middle East, while Western Europe had the greatest
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increase [3]. Since the incidence and severity of obesity is increasing at an alarming rate,
all classifications of NAFLD are trending higher in prevalence [4]. The longitudinal risk
of NAFLD is now of greater focus in children and adolescents, where rapid weight gain
during school years is directly associated with the histological characteristics of NAFLD
in adulthood [4].

It is now well established that in utero and early life exposure to under- or over-
nutrition can disrupt normal growth and development, and this thus changes the offspring
phenotype to one that is prone to future diseases [5–12]. The risk of childhood obesity is
higher in kids whose mothers are obese prior to pregnancy [13]. Importantly, the recent
concept of “the first 1000 days”, defined by the period from conception to age of two,
highlights the best time for obesity prevention [14]. Therefore, obesity prevention should
emphasize preconception and pregnancy care.

Previous work has demonstrated that maternal dietary restriction or the supple-
mentation of a methyl-donor both altered lipid metabolism and body fat composition
in offspring [15–17], suggesting a potential link between maternal HF diet and the off-
spring obesity and NAFLD via the level of methyl donor. Impaired folate metabolism
(methyl-trap) has also been reported in offspring exposed to maternal high-fat (HF) diets
in different animal models [18–21]. In our previous study, we reported that the maternal
HF diet disrupts methionine cycle in the male offspring liver, which further inhibits the
mitochondrial β-oxidation of long-chain fatty acids via reduced L-carnitine production [21].
Thus, we will test a hypothesis that maternal methyl donor supplementation will block
the adverse effect of maternal HF diet on promoting offspring obesity and NAFLD. In
this study, female pregnant mice exposed to overnutrition induced by an HF diet will
be treated with two different types of maternal one-carbon supplement, the obesity and
NAFLD phenotypes of male offspring will be examined and the underlying molecular and
epigenetic mechanisms will be investigated.

2. Materials and Methods
2.1. Experimental Design

Mixed background (B6/129/SvEv) four-week-old female mice were used in this study
and were fed either a high fat diet (60% kcal from fat) or a normal fat diet (10% kcal from
fat, the NF group) for 12 weeks. One third of the female mice on the HF diet continued to
be fed an HF diet throughout gestation and lactation (the HF group). During gestation and
lactation, the rest of the female mice on the HF diet were treated with the HF diet combined
with either a methionine supplement (the H1S group) or a complete maternal one-carbon
supplement (the H2S group) (Table 1).

Table 1. Study Design *.

Maternal Diet Offspring Diet

Pre-Pregnancy Pregnancy/Lactation after Weaning

REF (n = 15) NF NF NF
NF (n = 15) NF NF HF
HF (n = 15) HF HF HF
H1S (n = 15) HF HF + H1S HF
H2S (n = 15) HF HF + H2S HF

* Diet Description: REF Rodent diet: normal chow diet (4% cal. from fat); NF Rodent diet: normal fat
(10% cal. from fat); HF Rodent diet: high fat (60% cal. from fat); HF + H1S Rodent diet: high fat (60% cal.
from fat), L-methionine (7.5 gm/kg); HF + H2S Rodent diet: high fat (60% cal. from fat), 6 nutrients (15 g/kg
choline chloride, 15 g/kg betaine (anhydrous), 15 mg/kg folic acid, 1.5 mg/kg vitamin B12, 7.5 g/kg L-methionine,
and 150 mg/kg zinc from ZnSO4·7H2O).

After weaning, a high fat diet was fed to male offspring mice from all of the groups
for 12 weeks to promote weight gain prior to sacrifice. A separate group, birthed from
the breeders who adhered to the NF diet, were continuously fed the NF diet for 12 weeks
and were utilized as a reference control group (the REF group). Mouse experiments
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were completed according to a protocol that was reviewed and approved by the In-
stitutional Animal Care and Use Committee of the University of North Dakota and
Texas A&M University, in compliance with the USA Public Health Service Policy on
Humane Care and Use of Laboratory Animals. Approval Code: 2019-0309; Approval Date:
19 September 2019.

2.2. Diet Composition

The diets were purchased from Research Diets, LLC (New Brunswick, NJ, USA). The
NF (normal fat) diet (Cat# D12450B) had an energy density of 3.771 kcal/g (10% fat energy,
70% carbohydrate energy, and 20% protein energy). The HF (high fat) diet (Cat# D12492)
had an energy density of 5.157 kcal/g (60% fat energy, 20% carbohydrate energy, and
20% protein energy). The fat source was composed of 92% lard and 8% soybean oil. The
H1S + HF diet added a methionine supplement (L-methionine 7.5 gm/kg) to the HF
diet, and the H2S + HF diet added a complete maternal one-carbon supplement (15 g/kg
choline Chloride, 15 g/kg betaine (anhydrous), 15 mg/kg folic acid, 1.5 mg/kg vitamin B12,
7.5 g/kg L-methionine, and 150 mg/kg zinc from ZnSO4·7H2O) to the HF diet.

2.3. Intraperitoneal Injected Glucose Tolerance Test (IPGTT)

At the end of week 12, offspring mice from each experimental group were fasted
overnight for 12 h and were subjected to an IPGTT early the next morning. Glucose toler-
ance tests were conducted with 20% D-glucose in 0.9% saline, and the final concentration
of the administered dose was 2.0 g/kg of body weight.

2.4. UPLC-MS/MS

The liver content of methionine, SAM, SAH, L-Carnitine and Creatine was measured
by LC-MS analyses as described in our previous reports [20]. The following chemicals
were used as standards: L-methionine-d3, acetyl-d3-L-carnitine·HCl, (RS)-S-adenosyl-L-
methionine-d3 (S-methyl-d3) tetra (p-toluenesulfonate) salt, and creatine-d3 H2O (methyl-
d3) [CDN isotopes, Quebec, QC, Canada]; and S-Adenosylhomocysteine-d4 [Cayman
Chemical, Quebec, QC, Canada].

2.5. SAM-Dependent Methyltransferase Activity

SAM-dependent methyltransferases were measured by an enzyme-coupled assay
using the Methyltransferase Colorimetric Assay Kit (Cayman Chemical, Ann Arbor, MI,
USA), according to the manufacturer’s instructions.

2.6. DNA Methyltransferase Activity

Total DNMT activity was measured using the EpiQuik DNA Methyltransferase
(DNMT) Activity/Inhibition Assay Kit (Epigentek, Brooklyn, NY, USA), according to
the manufacturer’s instructions. The ratio or amount of methylated DNA, which is propor-
tional to enzyme activity, was calorimetrically quantified through an ELISA-like reaction.

2.7. Genomic DNA Methylation Level

Genomic DNA was extracted using a Quick-DNATM Universal Kit (Zymo Research,
Irvine, CA, USA) according to the manufacturer’s instructions. The DNA methylation
level was determined in triplicate with a NanoDrop ND-1000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). Following the manufacturer’s instructions for the
MethylFlash Methylated DNA 5-mC Quantification Kit (Colorimetric) (Epigentek, Brooklyn,
NY, USA), global DNA methylation was quantified. The methylated fraction of DNA
was detected using capture and detection antibodies provided with the kit and then
quantified through an ELISA-like reaction by reading the absorbance in a microplate
spectrophotometer at 450 nm.
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2.8. Antibodies

An antibody against PPAR-α was purchased from Millipore Sigma (Burlington, MA,
USA). Antibodies against AMPK-α, Phospho-AMPK-α (Thr172) and GAPDH were pur-
chased from Cell Signaling Technology (Danvers, MA, USA).

2.9. Real-Time PCR (RT-PCR)

Total RNA was extracted from liver tissue with TRIzol reagent (Thermo Fisher Scien-
tific, Waltham, MA, USA), and the RNA concentration was determined in triplicate with a
NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).
Total mRNA (1 µg) was amplified and reversed transcribed with the ReadyScript®cDNA
Synthesis Mix (Sigma-Aldrich, Burlington, MA, USA), and all reactions were performed
in triplicate using a Bio-Rad real-time PCR machine with CFX Manager 3.1 software. The
∆CT values were used for statistical analysis.

2.10. Whole Genome Bisulfite Sequencing (WGBS)

Genomic DNA of liver was extracted by Quick-DNA Universal Kit (ZYMO Research,
USA), and was broken into 400–500 bp fragments using sonication(Qsonica q700). End
repair and adaptor ligation were performed by the following 2 kits: NEBNext® Ultra™ II
DNA Library Prep with Sample Purification Beads (NEB, USA) and NEBNext® Multiplex
Oligos for Illumina® (Methylated Adaptor, Index Primers Set 1) (NEB, USA). Adaptor-
ligated DNA was cleaned up without size selection. Bisulfite conversion was performed by
MethylCode™ Bisulfite Conversion Kit (Invitrogen, USA). PCR amplification of adaptor-
ligated and bisulfite converted DNA were performed by KAPA HiFi Hotstart Uracil +
ReadyMix PCR Kit (KAPA Biosystems, USA). The 1.8pM library and 20pM PhiX control
(Illumina, USA) were prepared following the NextSeq System Denature and Dilute Libraries
Guide using NextSeq 500/550 v2 Kit (high output 150 cycle) (Illumina, USA). WGBS was
performed in the Center for Epigenetics & Disease Prevention, Institute of Biosciences &
Technology, Texas A&M University (Houston, TX, USA). WGBS data is now accessible at
the BioProject database (BioProject ID: PRJNA777555).

2.11. Statistical Analysis

Measurements for single time points were analyzed by Fisher’s least significant differ-
ence test to allow multiple comparisons of differences between the groups REF, NF, HF,
H1S, and H2S. Fisher’s least significant difference test was performed by first performing
a one-way analysis of variance for all treatment groups. For longitudinal data, such as
body weight, a linear mixed model was used for the analysis of repeated measures, with
each individual mouse as a random effect. A p value less than 0.05 was considered to be
significant, while a p value less than 0.1 was considered to be marginally significant. All
analyses were performed using SAS JMP software (SAS Institute Inc., Cary, NC, USA).

To detect differential DNA methylation and identify differentially methylated CpG
sites, Fisher’s exact test was performed between the methylation status and the two treat-
ment groups, HF and H2S. A p value less than 0.05 was considered significant. An odds
ratio was calculated to evaluate the pattern of methylation and the direction of CpG
methylation change. Specifically, whether the HF diet led to an increase or decrease in
hypermethylation or hypomethylation was examined. If the 95% confidence interval for
the odds ratio was greater than 1, it was concluded that there was a decrease in methylation
from HF to H2S. Furthermore, we wanted to test whether there were CpG sites that were
recovered by the H2S diet. If the absolute methylation difference (%) between HF and NF
for differentially methylated regions (DMRs) was greater than or equal to 10, the site was
considered to be significantly methylated. If the absolute methylation difference for the
significantly methylated site in the HF group transitioned to values between −10 and 10 in
the H2S group, it was considered as a recovery case. All analyses were performed using R
Statistical Software (Foundation for Statistical Computing, Vienna, Austria).
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3. Results
3.1. Maternal One-Carbon Supplementation Allowed Offspring to Avoid NAFLD Promoted by a
Maternal HF Diet but Not Obesity and Glucose Intolerance

We observed significantly more body weight gain in the NF and HF offspring than the
REF offspring, as expected. However, we surprisingly observed no difference in the body
weight of the HF/NF offspring and the offspring exposed to a maternal methionine supple-
ment (H1S diet) or a complete maternal one-carbon supplement (H2S) (Figure 1A). Similar
to the NF and HF offspring, both the H1S and the H2S offspring were glucose intolerant
by the end of week-12 with HFD. However, while HF offspring had significantly higher
serum TG contents, the H1S and H2S offspring presented normal serum TG (Figure 1D).
Hepatic steatosis and the largely distributed ballooning cells, observed in the HF offspring,
was not present in the NF, H1S and H2S offspring (Figure 1E).
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Figure 1. Maternal one-carbon supplementation allowed offspring to avoid NAFLD promoted by a
maternal HF diet but not obesity and glucose intolerance. (A) Body weights of male offspring were
recorded weekly after weaning for 12 weeks. (B) IPGTT was measured at the end of week 12 in
male offspring. (C) The areas under the curve (AUCs) were calculated for the IPGTT results in male
offspring. (D) Serum triglyceride was detected in male offspring. (E) H&E staining was performed
on the liver tissue of male offspring. Data are presented as the mean ± SE, n = 15. * indicates p < 0.05
vs. the NF group. # indicates p < 0.05 vs. the REF group.
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3.2. Maternal One-Carbon Supplementation Corrected and Overloaded the Disrupted Methionine
Cycle by Maternal HF Diet

With the methionine or complete one-carbon supplement, we wonder if the expression
of genes involved in folic acid metabolism was affected. Both the H1S and the H2S diets
significantly changed the offspring expression levels of many key genes involved in folic
acid metabolism. These include the genes encoding proteins that positively regulate folic
acid metabolism: Mthfd1, Mthfr, Mtr and Mthfs (Figure 2A), and those that negatively reg-
ulate it: Dhfr, Tyms, Amt and Gart (Figure 2B). Compared to that, the HF diet significantly
decreased Mtr expression, and the H1S and H2S diets significantly increased expression of
Mthfd1, Mthfs, Dhfr, Tyms and Gart, but decreased Mthfr and Amt expression. For Mtr
encoding Methionine synthase (MS), which is responsible for the regeneration of methion-
ine from homocysteine, H1S and H2S diets partially rescued its depressed expression by
the maternal HF diet, although its level was still lower than REF offspring. For the other
overexpressed genes, their expression levels were even higher than the NF offspring.
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Figure 2. Maternal one-carbon supplementation corrected and overloaded the disrupted methionine
cycle by maternal HF diet. (A) Gene expression levels of Mthfd1, Mthfr, Mtr, and Mthfs were
measured by real-time PCR in the male offspring livers. (B) Gene expression levels of Dhfr, Tyms,
Amt, and Gart were measured by real-time PCR in the male offspring livers. (C) Methionine, SAM
and SAH contents were detected via high-resolution UPLC-MS/MS. Data are presented as the mean
± SE, n = 5. * indicates p < 0.05 vs. the NF group. # indicates p < 0.05 vs. the REF group.

We further measured the hepatic content of important intermediate chemicals of the
methionine cycle including methionine, SAM and SAH. Consistent with our previous re-
port [20], the HF diet significantly reduced hepatic methionine and SAH content. However,
the H1S and the H2S offspring had dramatically increased levels of hepatic methionine,
which was about four- to five-fold of the reference level. Consistently, the H1S and H2S
offspring dramatically increased the hepatic SAM and SAH content compared with the
REF, NF and HF offspring (Figure 2C).

3.3. Maternal One-Carbon Supplementation Overactivated the SAM-Transferase Activity but Did
Not Correct the Genomic DNA Hypermethylation Caused by a Maternal HF Diet

Consistent with the enhanced SAM and SAH levels, SAM-transferase overactivity was
observed in the H1S and the H2S offspring compared with the REF, NF and HF offspring
(Figure 3A). Interestingly, while the HF diet significantly overactivated DNMT in offspring,
the H1S diet completely eliminated such an effect, while the H2S diet did not (Figure 3B).
The gene expression level of Dnmt1, Dnmt3a and Dnmt3b was further assessed by RT-PCR.
The significantly increased expression of Dnmt1 and Dnmt3b were observed in HF liver
compared to the REF or NF offspring. However, the H1S diet resulted in the decreased
expression of all three genes compared to either REF or NF offspring. Notably, the H2S diet
only corrected the lower expression level of Dnmt1 caused by the maternal HF diet. The
H2S diet also over-reversed the higher expression of Dnmt3a and Dnmt3b to levels even
lower than the NF or REF offspring (Figure 3C). Interestingly, similar to the HF offspring,
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the H1S and the H2S offspring still displayed hypermethylation of genomic DNA and its
level of H1S was even higher than that of the HF offspring (p < 0.05, Figure 3D).
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activity of SAM was detected in male offspring. (B) The enzymatic activity of DNMT was detected in
male offspring. (C) Hepatic gene expression levels of Dnmt1, Dnmt3a and Dnmt3b in male offspring
were measured by real-time PCR. (D) Genomic DNA methylation levels were detected in the male
offspring livers. Data are presented as the mean ± SE, n = 5. * indicates p < 0.05 vs. NF group.
# indicates p < 0.05 vs. the REF group. $ indicates p < 0.05 vs. the HF group.

3.4. Maternal One-Carbon Supplementation Promoted Methyl Group Delivery to L-Carnitine and
Normalized PPARα Expression and the AMPK Signaling Activation

Consistent with the previous report, we repeatedly observed the decreased hepatic
content of L-carnitine, a methylated product of guanidinoacetate acid, in HF offspring
(Figure 4A). Dramatically increased levels of hepatic L-carnitine and creatinine were ob-
served in the H1S and H2S offspring compared with those in the REF, NF or HF offspring
(Figure 4A). H1S and H2S also increased the level of creatine up to six-fold of the REF
offspring, another product of SAM-transferase catalyzed product (Figure 4A). These results
suggested an overloading of the methionine cycle pushed by maternal H1S and H2S diets.

Considering that the main function of carnitine is to transfer the long-chain fatty acids
to mitochondria for subsequent β-oxidation, we tested to see whether the level change
of L-carnitine was associated with the level of fatty acid oxidation. Consistent with this
change, the reduced PPAR-α expression level caused by the HF diet was recovered in the
H1S and H2S offspring (Figure 4B). Moreover, the H1S and H2S diets blocked the effects
of the NF and HF diets on the inhibition of AMPK signaling in the liver. The AMPK and
the p-AMPK expression of the H1S and H2S offspring livers were similar to those in the
REF offspring liver. The levels of p-AMPK-α/AMPK-α was significantly lower in HF
offspring than NF or REF offspring. However, these ratios in H1S and H2S offspring were
not different from REF or NF offspring (Figure 4C).
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and normalized PPARα expression and the AMPK signaling activation. (A) L-carnitine and creatine
content was detected via high-resolution UPLC-MS/MS. (B) PPAR-α expression was detected by
western blots in male offspring. (C) AMPK-α and phospho-AMPK-α (Thr172) expression were
detected by western blots in male offspring. Relative amounts were expressed as the ratio of Phospho-
AMPK-α (Thr172)/AMPK-α. Data are presented as the mean ± SE, n = 5. * indicates p < 0.05 vs. the
NF group. # indicates p < 0.05 vs. the REF group.
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3.5. Genes Involved in Lipid Metabolism and Oxidative Phosphorylation, Whose Hepatic
Expression Was Associated with DNA Methylation Modification, Were Identified in the
Offspring Liver

We have previously reported differentiated genes (DEGs) between the HF group and
the NF group by RNA-seq analysis [21]. Thus, by RT-PCR we validated the expression
change of DEGs involved in two KEGG signaling pathways: the NAFLD pathway and the
oxidative phosphorylation pathway. These included the NAFLD-related genes including
Acsl1, Akr1a1 and Hadh and oxidative phosphorylation genes including Atg2b, Atp5h,
Cox7a2l, Ndufb9 and Ndufs4. It is noted that Hadh is reported to be a target of PPARα [22].
All repressed their expression in HF offspring liver (Figure 5A,B). The H2S diet normalized
the expression of all these genes in the offspring livers. The H1S diet completely reversed
the expression of all NAFLD-related genes and two oxidative phosphorylation genes, Atg2b
and Ndufs4. The H1S diet also further enhanced the expression of Atp5h, Cox7a2l and
Ndufb9 to a level even higher than the NF offspring liver.

We further asked if the gene expression changes by different maternal diets were
associated with the DNA methylation changes in the offspring liver. Thus, WGBS was
performed to detect the differentiated methylation region (DMR) between the HF vs. NF
and H2S vs. NF. Thus, regions with a methylation difference more than 10% were screened
within the 10 kbp genomic region that covers the 5 kbp upstream and 5 kbp downstream
of the gene’s TSS site. The HF offspring displayed distinct DNA methylation patterns in
several genomic regions of the eight genes; however DNA methylation patterns in most of
the regions were not different between H2S and NF offspring (Figure 5C–J, indicated by
red arrow).

The DNA methylation pattern differences were further analyzed to elucidate if the
DNA methylation level changes in these regions were statistically significant (see methods).
For the eight genes, we identified a total of 262 DMRs modified by the HF diet and a total
of 175 DMRs modified by the H2S diet (Table 2). Among the 262 HF-diet induced DMRs,
233 were normalized (96.95%, Table 3, see detailed CpG site information in Table S1). H2S
recovered the majority of methylation changes induced by HF in five genes including
Acsl1 (100% recovered), Atg2b (100% recovered), Atp5h (99.31% recovered), Cox7a2l (100%
recovered), Ndufb9 (93.18% recovered) and Ndufs4 (100% recovered). It is interesting
that the H2S diet also resulted in additional DMRs with a dominantly hypermethylation
modification of the offspring liver compared to the NF offspring (Table 3 and Table S1).
For the gene Akr1a1 and Hadh, HF diet only induced 4 and 1 DMRs respectively, among
which only 1 DMR was recovered by H2S. However, H2S resulted in 27 and 24 additional
DMRs, suggesting an association between these DMRs and the normalized expression of
Akr1a1 and Hadh. We further performed Fisher’s Exact Test to determine if the H2S diet
significantly modified the DMRs compared to the HF diets. The statistical results indicated
that the H2S diet significantly modified DNA methylation changes induced by the HF diet
on all except for Atg2b and Ndufs4, whose DMR modification between H2S and HF was
marginally significant (Table 3).
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Figure 5. Genes involved in lipid metabolism and oxidative phosphorylation, whose hepatic ex-
pression was associated with DNA methylation modification, were identified in the offspring liver.
(A) Gene expression levels of Acsl1, Akr1a1, and Hadh were measured by real-time PCR in the
male offspring livers. Data are presented as the mean ± SE, n = 5. * indicates p < 0.05 vs. NF
group. (B) Gene expression levels of Atg2b, Atp5h, Cox7a2l, Ndufb9 and Ndufs4 were measured
by real-time PCR in the male offspring livers. (C–J) DNA methylation patterns of a 10 kbp genomic
region extending from 5 kbp upstream of the TSS to 5 kbp downstream of the TSS were analysed
by WGBS. The y-axis indicates the percentage of methylation at each DNA nucleotide. Only those
DNA methylation changes of more than 20% were considered potential methylation pattern changes.
The x-axis indicates the location of each DNA nucleotide around the TSS. Typical DMRs induced by
maternal HF diet but recovered by H2S diet are labeled by red arrow. Modified CpG loci are labeled
with short red lines on the x-axis.
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Table 2. Summary of DMRs by HF and H2S diets.

HF vs. NF H2S vs. NF

Hypo-Met
DMR

Hyper-Met
DMR Total Hypo-Met

DMR
Hyper-Met

DMR Total

Acsl1 21 (100%) 0 (0%) 21 0 (0%) 2 (100%) 2
Akr1a1 0 (0%) 4 (100%) 4 0 (0%) 30 (100%) 30
Hadh 0 (0%) 1 (100%) 1 17 (68%) 8 (32%) 25
Atg2b 4 (33.33%) 8 (66.67%) 12 6 (26.09%) 17 (73.91%) 23
Atp5h 0 (0%) 144 (100%) 144 0 (0%) 20 (100%) 20

Cox7a2l 2 (7.69%) 24 (92.31%) 26 0 (0%) 0 (0%) 0
Ndufb9 12 (27.27%) 32 (72.72%) 44 0 (0%) 72 (100%) 72
Ndufs4 0 (0%) 10 (100%) 10 0 (0%) 3 (100%) 3

Total 39 (14.89%) 223 (85.11%) 262 23 (13.14%) 152 (86.86%) 175

Table 3. DMRs induced by HF-diet and recovered by the H2S diet.

# of HF-Induced
DMRs

Recovered DMRs Un-Recovered DMRs Additional
DMRsInduced

by H2S

p Value
HF vs. H2S

(Fisher Exact Test)
# % of

HF-Induced # % of
HF-Induced

Acsl1 21 21 100 0 0 2 0
Akr1a1 4 1 25 3 75 27 0
Hadh 1 0 0 1 100 24 0
Atg2b 12 12 100 0 0 23 0.054
Atp5h 144 124 99.31 1 0.69 19 0

Cox7a2l 26 24 100 0 0 0 0
Ndufb9 44 41 93.18 3 6.82 69 0
Ndufs4 10 10 100 0 0 3 0.051

Total 262 233 96.95 8 3.05 167 –

#: Number(s).

4. Discussion

Current recommendations from the National Institute for Health and Care Excellence
(NICE) and the American Congress of Obstetricians and Gynecologists (ACOG) are that
women of childbearing age should modulate their BMI to a value within the normal range
before conception by engaging in lifestyle changes such as moderate increases in exercise
activity or improvements in the quality of their diet [23,24]. However, healthy body weight
management takes a long time. Thus, dietary interventions during pregnancy are important
in optimizing the pregnancy outcomes in both the mother and children. In this study, we
evaluated the impacts and mechanisms of maternal one-carbon supplements on NAFLD
prevention in male offspring of a high risk, HF diet (due to maternity).

Both of the different methyl donor supplements (H1S and H2S diets) prevented
offspring hepatic steatosis but not offspring obesity or glucose intolerance. These findings
are consistent with previous reports that maternal high folate intake increases the risk
for obesity and glucose intolerance in male offspring [25,26]. However, the two diets,
whether composed of methionine only or containing other essential cofactors for methyl
group delivery displayed similar effects on the prevention of offspring NAFLD, suggesting
that maternal supplementation with methionine only is sufficient to prevent offspring
NAFLD. In this model, we confirmed the activated methionine cycle in offspring liver
by maternal methyl-donor supplement, which further replenished the methyl donor and
enhanced SAM-catalyzed methyl group delivery. Although several previous studies have
reported that methyl donor supplementation alleviates hepatic lipid accumulation in
murine models fed with a HF diet [18–20,27–29], the beneficial effects of maternal methyl
donor supplementation on offspring NAFLD has never been reported before.

Normalized PPARα level and AMPK signaling activation in the offspring liver are
responsible for the lipid homeostasis in the liver with maternal one-carbon supplement.
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Other supporting evidence includes the normalized expression of panels of genes involved
in lipid metabolism and fatty acid oxidation. This result is consistent with previous reports
that one carbon supplement activates AMPK signaling in various tissues and different
disease models [30–33]. Importantly, hepatic L-carnitine content was greatly increased by
maternal one carbon supplement, while it was significantly decreased by maternal HF diet.
As a product of methyl-group transfer and a regulator of CPT1, L-Carnitine has been used
as an efficient dietary supplement in body weight control in humans due to its well-known
effects on promoting fatty acid oxidation [34–36]. To be noted, L-carnitine is an established
mitochondrial biomarker used to screen neonates for a series of genetic disorders affecting
fatty acid oxidation [37]. Thus, our results provided mechanistic insights into how maternal
diet through one-carbon metabolism affected the offspring L-carnitine level, which further
contributes to fatty acid metabolism.

Maternal diets reprogramming lipid homeostasis in the liver could be via an epigenetic
mechanism involving DNA methylation modifications. Previously, we and others reported
global DNA hypermethylation in the HF offspring liver with a disrupted methionine cycle,
while readjusting the maternal diet to a healthier one avoided these changes with a corrected
methionine cycle in the offspring liver [21], indicating an association between methionine
cycle and DNA methylation. In the current study, maternal one-carbon supplement led to
overactivation of the methionine cycle, evidenced by higher levels of methionine, SAM,
and methylation substrates including L-carnitine, creatine and methylated-DNA, due
to overactivation of SAM methyltransferase. However, DNMT, which belongs to SAM
methyltransferase, behaved in the opposite manner. A maternal HF diet significantly
enhanced its enzymatic activity, which was completely reversed by maternal H1S but not
by an H2S diet, suggesting that a normal enzymatic activity of DNMT requires sufficient
methionine but excessive levels of other co-factors for one-carbon metabolisms may not
necessarily beneficial. In the liver, it is previously reported that development of hepatic
steatosis was accompanied by changes in Dnmt1 and Dnmt3a expression [38]. In our
study, DNMT activity changes were inconsistent with the expression change of Dnmt
genes, neither with the presence of hepatic steatosis. Moreover, maternal one-carbon donor
supplementation did not correct DNA hypermethylation in the offspring liver, which
is unexpected. These intriguing results with unknown molecular mechanisms suggest
complicated feedback mechanisms between DNMT enzymatic efficiency and one-carbon
donors and intermediate transmitters contributing to hepatic steatosis. Nevertheless,
our data suggested that abundant substrates and co-enzymes fueling the one-carbon
metabolism could be a major driving force of genome-wide DNA hypermethylation, and a
normal level of DNMT activity is capable of handling the excessive catalytic reactions.

When specific CpG loci were evaluated, except for normalizing the HF-induced DMRs,
the H2S diet also caused a total of 167 additional DMRs, although without further en-
hancement of the gene expression. Among these DMRs, about 90% were hypermethylated.
It is possible that maternal one-carbon supplement provided excessive substrates and
co-enzymes, which push forward the reaction that additional CpG loci, “of nonsense”,
were methylated non-specifically. If this is true, whether the stability of EU chromosome is
affected should be further investigated. However, we must also point out that the methyla-
tion modification on Akr1a1 and Hadh may not support that the additional DMRs are “of
nonsense” due to that the additional DMRs might be associated with the normalized gene
expression. Future studies are required to validate that these hypermethylated DMRs on
Akr1a1 and Hadh are responsible for the gene expression changes.

Mechanistically, it is also possible that different maternal diets result in differential
DNA methylation modifications within specific genomic regions responsible for transcrip-
tion regulation. We and others have reported important DMRs associated with important
genes and signaling pathways such as insulin and IGF-signaling in the offspring liver
responsible for the maternal HF diet [21,39–42]. Studies also reported associations between
gene expression and DNA methylation on important genes involved in lipid metabolism,
e.g., Lep, Ppar-α, Scd, Slc2a4, MT-ND6 (mitochondrial gene NADH dehydrogenase 6) and
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PGC1-α [40,43–46]. However, evidence and validation of the expression-DNA methylation
association on these specific genes contributing to hepatic steatosis are missing, resulting in
an obvious limitation to these studies. Nonetheless, we reported that the maternal HF diet
induced a total of 262 DMRs on eight down-regulated genes involved in NAFLD develop-
ment and oxidative phosphorylation. More importantly, the H2S diet normalized about
97% of the HF-induced DMRs, associated with normalized gene expression, providing
strong evidence that a maternal diet reprograms the offspring metabolism associated with
DNA methylation modifications.

In summary, we provided evidence to support a potential nutritional strategy that
is administered to mothers to prevent NAFLD in the offspring and that suggests new
directions of future human studies to mitigate the increasing trend of NAFLD, beginning
with maternal dietary interventions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nu14122545/s1, Table S1: Details of DMRs by NF, HF
and H2S diets.
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