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Abstract: We investigated the effect of an 11β-HSD1 inhibitor (H8) on hepatic steatosis and its mech-

anism of action. Although H8, a curcumin derivative, has been shown to alleviate insulin resistance, 

its effect on non-alcoholic fatty liver disease (NAFLD) remains unknown. Rats were fed a high-fat 

diet (HFD) for 8 weeks, intraperitoneally injected with streptozotocin (STZ) to induce NAFLD, and, 

then, treated with H8 (3 or 6 mg/kg/day) or curcumin (6 mg/kg/day) for 4 weeks, to evaluate the 

effects of H8 on NAFLD. H8 significantly alleviated HFD+STZ-induced lipid accumulation, fibrosis, 

and inflammation as well as improved liver function. Moreover, 11β-HSD1 overexpression was es-

tablished by transfecting animals and HepG2 cells with lentivirus, carrying the 11β-HSD1 gene, to 

confirm that H8 improved NAFLD, by reducing 11β-HSD1. An AMP-activated protein kinase 

(AMPK) inhibitor (Compound C, 10 μM for 2 h) was used to confirm that H8 increased AMPK, by 

inhibiting 11β-HSD1, thereby restoring lipid metabolic homeostasis. A silencing-related enzyme 1 

(SIRT1) inhibitor (EX572, 10 μM for 4 h) and a SIRT1 activator (SRT1720, 1 μM for 4 h) were used to 

confirm that H8 exerted anti-inflammatory effects, by elevating SIRT1 expression. Our findings 

demonstrate that H8 alleviates hepatic steatosis, by inhibiting 11β-HSD1, which activates the 

AMPK/SIRT1 signaling pathway. 

Keywords: 11-beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1); curcumin;  
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1. Introduction 

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease with a gradually 

increasing incidence worldwide [1–3], contributing to an increased risk of metabolic syn-

drome and cardiovascular disease [2,4]. Although there is no effective treatment for 

NAFLD, lipid and inflammatory responses are considered key mechanisms in developing 

the condition. As a result, the regulation of hepatic lipid metabolic homeostasis and anti-

inflammatory therapy have received increasing research attention [5–7]. 

In mammals, the AMP-activated protein kinase (AMPK), an energy switch, is acti-

vated when Thr 172 of AMPK is phosphorylated. It controls the cell processes of lipid 

metabolism, by reducing cholesterol and triglyceride synthesis and activating fatty-acid 

oxidation in the liver [8]. Silencing-related enzyme 1 (SIRT1) has been found to play a 

beneficial role in regulating hepatic inflammation and lipid metabolism [5]. AMPK acti-

vation enhances SIRT1 activity, and they both play important roles in regulating cellular 

metabolism [9]. Previous research has identified AMPK as a potential target for NAFLD 

therapy. In addition, 11β-ydroxysteroid dehydrogenase 1 (11β-HSD1) is present in the 

liver and increases local glucocorticoid levels, by activating 11-dehydrocorticosterone 
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[10]. Glucocorticoids inhibit AMPK activity, by stimulating gluconeogenesis [11]. There-

fore, inhibiting 11β-HSD1 to reduce AMPK activity might be a therapeutic target, for treat-

ing metabolic disorders in the liver. 

Curcumin, a polyphenol component of the traditional medicinal spice turmeric, has 

demonstrated anti-inflammatory, antioxidant, and anticancer properties as well as exerts 

control over obesity and diabetes [12]. In addition, curcumin is a natural 11β-HSD1 inhib-

itor, demonstrated to improve lipid metabolism in rats fed a high-fat diet (HFD) [13]. A 

recent randomized, controlled trial revealed that curcumin reduces liver fat content, body-

mass index, total serum cholesterol (TC), low-density lipoprotein cholesterol (LDL), tri-

glycerides (TG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), glu-

cose (GLU) and glycated hemoglobin levels, in patients with NAFLD [14]. Researchers 

have, also, demonstrated that 11β-HSD1 inhibition significantly reduces hepatic lipid lev-

els, in patients with NAFLD [15]. Therefore, we hypothesized that curcumin inhibition of 

11β-HSD1 may be an effective target for NAFLD treatment. However, the clinical thera-

peutic efficacy of curcumin is limited, due to its poor absorption, low oral bioavailability, 

and rapid degradation. We synthesized a curcumin analog: (2E,5E)-2,5-bis [2-fluoro-6-(tri-

fluoromethyl) benzylidene] cyclopentanone (H8). We, previously, reported that H8 re-

duces visceral fat as well as lowers blood glucose and anti-insulin resistance [16]. How-

ever, the specific mechanisms, by which H8 may protect against NAFLD, are unknown. 

In the current study, we explored whether H8 regulates lipid metabolism and exerts 

anti-inflammatory effects, by restoring AMPK/SIRT1 signaling in NAFLD models. 

2. Materials and Methods 

2.1. Material 

H8 was synthesized and characterized, as previously reported [17]. H8 and curcumin 

(Sigma, Shanghai, China) were dissolved in 1% sodium carboxymethyl cellulose (CMC-

Na) for the in vivo experiments and dissolved in dimethyl sulfoxide (99.7%; Sigma) for 

the in vitro experiments. Streptozotocin (STZ) (Sigma), Compound C (MCE, Shanghai, 

China), oleic acid (OA) (Sigma), palmitic acid (PA) (Sigma), SRT1720 (Solarbio, Beijing, 

China), and EX527 (MCE) were all utilized in this study. 

2.2. Experimental Animals 

Male Sprague Dawley (SD) rats and male C57BL/6J mice were purchased from Liao-

ning Changsheng Biotechnology Co., Ltd., production license number SCXK (2015-0001; 

Liaoning, China). All animal studies were conducted in accordance with the ethical stand-

ards of the “Guidelines for the Care and Use of Laboratory Animals”, approved by the 

Mudanjiang Medical University Committee for Animal Experiments (Certificate No. 9 

[2020]). The animals were housed in a specific pathogen-free environment, maintained at 

22 °C and 65% humidity, with a light/dark cycle of 12 h; rodent nestlets and cardboard 

homes were provided as environmental enrichment. The animals had free access to stand-

ard animal food and water. All the experimental animals were acclimated to the new en-

vironment in the animal room, for a week prior to the experiment. 

Forty male SD rats were randomly divided into five groups (n = 8). The control group 

was fed a normal diet (3601 kcal/kg, 10% fat, 75.9% carbohydrates, and 14.1% protein, as 

a percentage of kcal; Trophic Animal Feed High-Tech Co., Ltd., Jiangsu, China). The 

HFD+STZ group was fed an HFD (5000 kcal/kg, 60% fat, 25.9% carbohydrate, and 14.1% 

protein, as a percentage of kcal) combined with an intraperitoneal streptozotocin (STZ) 

injection (25 mg/kg). The low-dose H8 (H8-L), high-dose H8 (H8-H), and curcumin groups 

were HFD+STZ rats orally administered 3 mg/kg/day H8, 6 mg/kg/day H8, and 6 

mg/kg/day curcumin, respectively. Four weeks after treatment, all rats were, additionally, 

euthanized to collect the blood and liver. 

Thirty-two male C57BL/6J mice were randomly divided into four groups (n = 8). The 

solution of lentivirus was centrifuged (500× g for 10 min), to remove the cellular debris 
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and purify the lentivirus. The administered virus titer was 107 [18]. The tail veins of 16 

mice were injected with lentivirus solution, containing pLVX-EF1α-IRES-ZS green plas-

mid, and the other half were injected with pLVX-11β-HSD1 green plasmid every 3 days, 

for 6 consecutive injections of 500 μL. After two weeks, the mice transfected with pLVX-

EF1α-IRES-ZS green plasmid were gavaged with CMC-Na (Con group) and H8 (5 

mg/kg/day) (Con+H8 group), respectively; the mice transfected with pLVX-11β-HSD1 

green plasmid were gavaged with CMC-Na (11β-HSD1 group) and with H8 (5 

mg/kg/day) (11β-HSD1+H8), respectively. All mice were, additionally, euthanized at four 

weeks. Individual body and liver tissue weights were measured. Blood and other tissues 

were collected and snap frozen in liquid nitrogen for subsequent analyses. 

2.3. Cell-Culture Treatments and Transfection 

HepG2 cells (hepatocellular carcinoma) were purchased from the Procell Life Science 

Technology Co., Ltd. (CL-0103); these cells are useful for constructing the conditions of 

lipid deposition [19,20]. The cells were cultured in DMEM (Gibco, Carlsbad, CA, USA), 

comprising 10% fetal bovine serum (FBS) (Gibco) and 1% antibiotic (Invitrogen, Carlsbad, 

CA, USA), at 37 °C in a humidified 5% CO2 atmosphere. For each experiment, HepG2 cells 

were used in the logarithmic phase. The HepG2 cells (1 × 105 cells/well) were cultivated in 

6-well plates, and the cells were adhered to the plate walls for 12 h. To establish the 

hepatocyte-lipid-accumulation state, the HepG2 cells were incubated with a 1 mM solu-

tion of free fatty acids (FFAs), composed of OA and PA (2:1) in a serum-free DMEM me-

dium, for 24 h [21,22]. We tested the biosafety using the MTT assay and found that the 

concentration (1 mM) did not affect cell activity (Supplementary Figure S1). FFA-stimu-

lated HepG2 cells were treated with H8-L (2.5 μM), H8-M (5 μM), and H8-H (10 μM), for 

24 h. To induce 11β-HSD1 overexpression, we transfected HepG2 cells with pLVX-EF1α-

IRES-ZS green plasmid as a Con group or pLVX-11β-HSD1 green plasmid as a 11β-HSD1 

group, at 37 °C in a humidified 5% CO2 atmosphere, for 24 h. We used fluorescence mi-

croscopy to determine transfection efficiency. We determined that the transfection effi-

ciency was higher after 48 h of transfection (Supplementary Figure S2). Therefore, the cells 

were transfected for 48 h and treated with H8 (5 μM) for 24 h. To verify the role of AMPK 

and SIRT1, we pretreated the cells with the AMPK inhibitor Compound C (10 μM) for 2 h 

or either the SIRT1 activator SRT1720 (1 μM) or the SIRT1 inhibitor EX527 (10 μM) for 4 

h. We confirmed the effect of Compound C, SRT1720, and EX527 using Western blotting 

(Supplementary Figure S3). 

2.4. Biochemical Analysis 

The biochemical parameters measured in rodent sera included serum cholinesterase 

(CHE), ALT, AST, TC, TG, GLU, LDL, and high-density lipoprotein (HDL), using an au-

tomatic analyzer (Beckman Coulter, Brea, CA, USA) in accordance with the instructions 

of the manufacturer. A human-glucocorticoid-enzyme-linked immunosorbent assay 

(ELISA) Kit (SAB Biotech, College Park, MD, USA) was used to establish a standard curve, 

to detect intracellular glucocorticoid levels. The absorbance at the corresponding maxi-

mum absorption wavelength was measured with a spectrophotometer. 

2.5. Morphological Examination 

Liver tissues from the rodents were fixed in 10% formalin for 48 h, dehydrated via an 

ethanol gradient, and, then, embedded in paraffin wax. The paraffin-embedded tissues 

were sliced into 4 μm sections, with a microtome (Leica, Wetzlar, Germany). In accord-

ance with the instructions of the manufacturer, liver steatosis and liver fibrosis were meas-

ured by hematoxylin and eosin (H&E) as well as Masson staining (Solarbio, Beijing, 

China). The frozen-compound-embedded tissues were sliced into 10 μm sections and 

used for Oil red O staining (Sigma), to reveal the presence of fat droplets in the liver. The 

sections were epimerized with 0.3% Triton X (Solarbio) for 3 min, rinsed with phosphate-
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buffered saline (PBS), and, then, stained with the Oil red O solution for 45 min at 65 °C. 

The samples were washed twice with PBS and, then, fixed with 10% formalin for 15 min, 

to observe the cells. Oil red O staining was performed, as described previously. All slides 

were mounted with resin or a glycerol-gelatin mix and examined under an optical micro-

scope (Olympus, Tokyo, Japan). 

2.6. RNA Isolation and Quantitative Real-Time PCR 

Total RNA was extracted from the frozen liver tissue (50 mg) or cells (1 × 105 

cells/well), using an HP total RNA kit (Omega, China), according to the manufacturer’s 

instructions. Total RNA (1 μg) was reverse transcribed, using an oligo (dT) 16 primer to 

generate cDNA, using the Transcriptor cDNA Synth Kit (Roche, Basel, Switzerland). Am-

plification reactions were conducted on an amplification system (Applied Biosystems, 

New York, NY, USA). The cDNA and primers were prepared in accordance with the in-

struction manual of the manufacturer, using the FastStart Universal SYBR Green Master 

(Roche, Basel, Switzerland); the primers are listed in Supplementary Table S1. The ampli-

fication conditions were the same as described in the instructions of the manufacturer, 

and 40 cycles were used for amplification, to measure the mRNA-expression levels in the 

liver tissue or cells. The results derived from the RT-PCR data were statistically analyzed, 

using the change in Ct values, and normalized by GAPDH Ct values. 

2.7. Western Blotting 

The liver tissue or cells were lysed with RIPA buffer (Solarbio) as well as the protease 

and phosphatase-inhibitor mixture ABC (HaiGene, Heilongjiang, China). The protein concen-

trations were measured, using a Nanodrop 2000 (Thermo Fisher, Shanghai, China). Equal 

amounts of protein samples (50 μg) were separated on 10% SDS-PAGE and electrophoreti-

cally transferred to polyvinylidene difluoride (PVDF), to cover the primary antibodies for 12 

h at 4 °C; the primary antibodies are provided in Supplementary Table S2. The PVDF mem-

branes were washed three times with Western washing buffer the next day and incubated 

with horseradish peroxidase-conjugated secondary antibody (ZSGB-BIO, Beijing, China), for 

45 min at room temperature. An ECL Western Blotting Substrate kit (Solarbio) was used to 

detect the chromogen. Finally, the positive bands were visualized, with the enhanced chemi-

luminescence system (Merck Millipore, Billerica, MA, USA), as well as quantified and normal-

ized with β-actin (Cell Signaling, 1:1000), using ImageJ software (Image J 1.8.0). 

2.8. Immunocytochemistry 

Cells were prepared in a 6-well plate and fixed with 10% formalin, for 1 h. The fixed cells 

were washed three times with PBS and permeabilized with 0.3% Triton X-100, for 30 sec. They 

were washed four times with PBS and blocked with 10% normal goat serum (ZSGB-BIO, Bei-

jing, China) for 45 min. After covering with primary p-AMPK (1: 500, Abcam, Cambridge, 

MA, USA) and SIRT1 (1: 250, Affinity, Jiangsu, China), for 12 h at 4 °C, the cells were incubated 

with the secondary antibody IgG (H&L), conjugated with FITC (1: 250, Affinity), and the IgG 

secondary antibody (H&L), conjugated with CY3 (1: 250, Affinity), for 45 min. The cell nuclei 

were stained with DAPI (Yeasen, Shanghai, China). Then, the fluorescence photographs were 

acquired, using a confocal microscope (Olympus, Tokyo, Japan). 

2.9. Statistical Analysis 

The data were assessed by GraphPad Prism version 8.2.1 software (GraphPad Software 

Inc., San Diego, CA, USA), using a one-way analysis of variance (ANOVA) for comparisons, 

followed by Bartlett’s test for equal variances. Then, the data were analyzed using Tukey’s 

test. All data pairs were compared, as appropriate. The statistical analysis was used to assess 

datasets containing groups of n ≥ 3, in which n represents the number of separate experiments 

and the number of rodents. All the data are presented as the mean ± standard error of the 

mean (SEM). A p-value ≤ 0.05 was considered statistically significant. 
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3. Results 

3.1. H8 Alleviates NAFLD in Rats 

HFD+STZ-group rats had lower body weight and a higher liver weight/body weight 

ratio than control-group rats (p < 0.01), the changes in body weight are shown in supple-

mentary Figure S4. Although the body weight of rats in the H8-treated and curcumin-

treated groups was not significantly different from the HFD+STZ group, the H8 treatment 

almost completely normalized the liver weight and liver weight/body weight ratio, to 

those of the control (p < 0.01) (Figure 1A–C). 

In addition, H&E staining indicated that the HFD+STZ group showed significant he-

patic vacuolation and hepatocyte steatosis, compared to the control group. In contrast, H8 

treatment significantly alleviated hepatic vacuolation and hepatocyte damage in 

HFD+STZ rats, and the protective effect was stronger than that of curcumin (Figure 1E, 

upper panel). Masson staining indicated that the HFD+STZ group had a higher degree of 

fibrosis around the central hepatic vein vessels than the control group. The H8-H treat-

ment decreased liver fibrosis more obviously than curcumin and H8-L treatments (Figure 

1E, middle panel). The Oil red O staining results, also, showed increased lipid droplet size 

and lipid accumulation in liver tissues of the HFD+STZ group, compared with the control, 

which was more obviously attenuated by the H8-H treatment than the curcumin and H8-

L treatments (Figure 1E, lower panel) (see Supplementary Figure S5, for oil-red grayscale 

values). 

The HFD+STZ group had significantly higher serum AST, ALT, AST/ALT ratio, CHE, 

TC, TG, GLU, and LDL levels as well as reduced HDL levels than the control (p < 0.05 or 

p < 0.01), reflecting a global metabolic disorder and an impairment in liver function. No-

tably, all these changes were significantly reversed, by treatment with both H8 and cur-

cumin (p < 0.05 or p < 0.01) (Figure 1D,F–M). Among them, the effect of H8 on AST/ALT, 

TC, and GLU was superior to that of curcumin. 

The above results showed that rats in the HFD+STZ group developed obvious he-

patic steatosis with NAFLD characteristics, while H8 alleviates this phenomenon. 
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Figure 1. H8 reduces lipid accumulation and improves liver function in HFD+STZ rats. (A) Body 

weight; (B) liver weight; (C) liver weight/body weight; (D) AST/ALT levels. In rat liver: (E) H&E 

staining in upper panel; Masson staining in middle panel; Oil red O staining in lower panel (scale 

bar, 20 μm or 100 μm). (F–M) Serum biochemical indexes of rat. The data represent the mean ± 

SEM. n = 8, # p < 0.05, ## p < 0.01 versus the control; * p < 0.05, ** p < 0.01 versus the HFD+STZ; ns p 

> 0.05 not significant. 
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3.2. H8 Improves Lipid Metabolism in NAFLD Models 

Compared to the control, the HFD+STZ group had reduced CPT-1β, HSL, and p-ACC 

as well as increased SREBP1 levels. The above effects were reversed by treatment of H8 

and curcumin (p < 0.01); however, curcumin did not cause changes in the HSL protein 

levels (Figure 2A–C). In the cell experiments, we, first, confirmed by MTT assay that cy-

totoxicity was not significant, when cells were treated with H8 at concentrations of 2.5–10 

μM, for 24 h. The results are shown in Supplementary Figure S6. Moreover, we found that 

the FFAs-induced-HepG2-lipid-accumulation model had reduced CPT-1β, HSL, and p-

ACC expression as well as elevated SREBP1 and FASN expression, compared to the con-

trol. Notably, these effects were reversed, when the H8 concentration was 5 μM (p < 0.05 

or p < 0.01). Consistent with the results of animal experiments, H8 did not affect FASN at 

the genetic level (Figure 2D–F). 

The above results demonstrate that H8 promoted lipid catabolism and inhibited 

anabolism in hepatocytes with NAFLD. 

3.3. H8 Alleviates Liver Injury by Inhibiting 11β-HSD1 

HFD+STZ rats had significantly elevated 11β-HSD1 but reduced p-AMPK and SIRT1 

levels, compared to the controls. H8 effectively reversed these results (p < 0.01) (Figure 

3A–C). In HepG2, 11β-HSD1 was similarly reduced in response to H8, while SIRT1 and 

p-AMPK levels were increased (p < 0.01) (Figure 3D–F). Immunofluorescence-staining re-

sults further confirmed that H8 restored the expression of p-AMPK and SIRT1, in FFAs-

induced HepG2 cells (Figure 3G). The above results showed that the level of 11β-HSD1 

increased, but the levels of P-AMPK and SIRT1 decreased, under high-lipid conditions, 

while H8 reverses these phenomena. 

To determine if H8 inhibition of 11β-HSD1 improves liver function, we established a 

stable expression system of 11β-HSD1 in mice and cells. 

Body weight was not significantly changed, but liver weight and the liver 

weight/body weight ratio increased, in mice injected with pLVX-11β-HSD1. Treatment 

with H8 significantly restored liver weight and liver weight/body weight to normal, in the 

11β-HSD1 group (p < 0.05) (Figure 4A–C). Liver and cell-lipid-droplet changes in the dif-

ferent groups, defined by Oil red O staining (Figure 4D,E), were increased in the groups 

transfected with 11β-HSD1 lentiviral plasmids and decreased by H8 treatment. The 11β-

HSD1-group mice had elevated serum ratios of AST/ALT, CHE, TC, TG, and GLU (p < 

0.01 or p < 0.05), reflecting the occurrence of liver injury. However, all the above damage 

was alleviated, after treatment with H8 (Figure 4F–J). 

The above results indicated that H8 ameliorates liver injury, probably through the 

inhibition of 11β-HSD1. 
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Figure 2. H8 improves the balance of lipid metabolism in hepatocytes. In rat liver: (A) the relative 

mRNA expression; (B) the representative Western blot images; (C) the protein-expression levels. In 

cells: (D) the relative mRNA expression; (E) the representative Western blot images; (F) the protein-

expression levels. The data represent the mean ± SEM. # p < 0.05, ## p < 0.01 versus the control group; 

* p < 0.05, ** p < 0.01 versus the HFD+STZ group; ns p > 0.05 not significant. 
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Figure 3. H8 inhibits 11β-HSD1 as well as increases the expression of SIRT1 and phosphorylation of 

AMPK. In rat liver: (A) the relative mRNA expression; (B) the representative Western blot images; 

(C) the protein=expression levels. In cells: (D) the relative mRNA-expression levels; (E) the repre-

sentative Western blot images; (F) the protein expression levels; (G) immunofluorescence staining, 

green fluorescence FITC represents the protein P-AMPK, red fluorescence CY3 represents the pro-

tein SIRT1, nuclei were visualized by DAPI (scale bar, 50 μm). The data represent the mean ± SEM. 

# p < 0.05, ## p < 0.01 versus the control group; * p < 0.05, ** p < 0.01 versus the HFD+STZ group. 
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Figure 4. H8 alleviates liver injury, by inhibiting 11β-HSD1. In mice: (A) body weight; (B) liver 

weight; (C) liver weight/body weight ratios. Oil red O staining images of (D) mouse liver (scale bar, 

20 μm); (E) HepG2 cells (scale bar, 20 μm). (F–J) Serum biochemical indexes of mice. The data rep-

resent the mean ± SEM. # p < 0.05, ## p < 0.01 versus the Con group; * p < 0.05 and ** p < 0.01 versus 

the 11β-HSD1 group; ns p > 0.05 not significant. 
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3.4. H8 Elevates AMPK/SIRT1 by Inhibiting 11β-HSD1 

We found, in the mice and cells of the 11β-HSD1 group, that treatment with H8 de-

creased the expression level of 11β-HSD1 (p < 0.01 or p < 0.05), with elevated expression 

of SIRT1 and p-AMPK (p < 0.01) (Figure 5), indicating that H8 promotes the APMK/SIRT1 

pathway, by inhibiting 11β-HSD1. ELISA results show that glucocorticoid levels were el-

evated in cells transfected with 11β-HSD1. Furthermore, after H8 treatment, glucocorti-

coid levels decreased (p < 0.01) (Figure 5D). 

 

Figure 5. H8 elevates AMPK/SIRT1, by inhibiting 11β-HSD1. In mouse liver: (A) the relative mRNA 

expression; (B) the representative Western blot images; (C) the protein-expression levels. In cells: 

(D) glucocorticoid levels; (E) the protein-expression levels; (F) the representative Western blot im-

ages. The data represent the mean ± SEM. # p < 0.05, ## p < 0.01 versus the Con group; * p < 0.05, ** p 

< 0.01 versus the 11β-HSD1 group. 
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We used the AMPK inhibitor (Compound C) and SIRT1 inhibitor (EX527), to inves-

tigate the interaction of 11β-HSD1 with AMPK and SIRT1. 

In HepG2, Compound C significantly reduced SIRT1 and elevated 11β-HSD1 pro-

tein-expression levels (Figure 6A–C); EX527 significantly decreased p-AMPK and ele-

vated 11β-HSD1 protein-expression levels (Figure 6D–F). Treatment of H8 restored the 

expression levels of AMPK and SIRT1, thus decreasing the protein expression of 11β-

HSD1 (p <0.05 or p < 0.01) (Figure 6). This suggests that the expression level of 11β-HSD1 

is negatively correlated with the AMPK/SIRT1 signaling pathway. 

 

Figure 6. AMPK/SIRT1 signaling pathway negatively regulates 11β-HSD1. In HepG2: (A) the rep-

resentative Western blot images; (B) SIRT1 protein-expression level; (C) 11β-HSD1 protein-expres-

sion level; (D) the representative Western blot images; (E) p-AMPK protein-expression level; (F) 

11β-HSD1 protein-expression level. The data represent the mean ± SEM. n = 3, # p < 0.05, ## p < 0.01 

versus the Con group; * p < 0.05, ** p < 0.01 versus the FFAs group. 

3.5. H8 Improves Hepatocyte Lipid Metabolic Disorder by Promoting AMPK 

We used the AMPK inhibitor (Compound C) to investigate whether H8 regulates 

lipid metabolism in hepatocytes, through AMPK. 

Oil red O staining (Figure 7A) showed an increase in lipid-droplet expression in the 

Compound C and FFAs groups, suggesting that inhibition of AMPK increased lipid syn-

thesis equally, regardless of high lipid conditions, while H8 significantly reduced lipid-

droplet accumulation, suggesting the potential effect of balancing lipid metabolism. 

The Compound C group demonstrated lower CPT-1β, HSL, and p-ACC as well as 

higher SREBP1 and FASN than the Con group (p <0.05 or p <0.01); these results were con-

sistent with the FFAs group. In contrast, H8 had a significant recovery effect on lipid-

metabolism disorder in the Compound C group (p < 0.01 or p < 0.05) (Figure 7A–C), sug-

gesting that H8 balances lipid metabolism, by restoring AMPK level. 



Nutrients 2022, 14, 2358 13 of 19 
 

 

 

Figure 7. H8 restores the abnormal lipid metabolism, caused by the inhibition of AMPK. In HepG2 

cells: (A) Oil red O staining images (scale bar, 20 μm); (B) the relative mRNA expression; (C) the 

representative Western blot images; (D) the protein expression levels. The data represent the mean 

± SEM. n = 3, # p < 0.05, ## p < 0.01 versus the Con group; * p < 0.05, ** p < 0.01 versus the FFAs group. 
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3.6. H8 Exerts Anti-Inflammatory Effects by Activation of SIRT1 

PPAR-γ [23] and PGC-1α [24], previously reported to have anti-inflammatory effects 

[25], were used as anti-inflammatory markers in this study. 

The inflammatory response was reflected by increased p-p65, IL-6, and TNF-α as well 

as decreased levels of PPAR-γ and PGC-1α in HFD+STZ groups, compared to the control 

group. Moreover, treatment with H8 prevented an inflammatory response in HFD+STZ 

rats (p < 0.05 or p < 0.01) (Figure 8A–C). 

 

Figure 8. H8 alleviates the inflammatory response in HFD+STZ rat liver. In rat liver: (A) the rela-

tive mRNA expression; (B) the representative Western blot images; (C) the protein-expression 

levels. The data represent the mean ± SEM. n = 8, # p < 0.05, ## p < 0.01 versus the control; * p < 0.05, 

** p < 0.01 versus the HFD+STZ; ns p > 0.05 not significant. 

Consistent with animal experiments, H8 effectively decreased TNF-α and elevated 

PGC-1α (p < 0.01) at the gene level, in HepG2 cells (Figure 9A). The EX527 group had 

elevated IL-6 and decreased PPAR-γ, while the SRT1720 group had decreased IL-17 and 

IL-6 as well as increased PGC-1α (p < 0.05 or p < 0.01), indicating that inhibited SIRT1 

promotes inflammatory responses. Although the results were not statistically significant, 

the p-p65 level tended to increase in the EX527 group and decrease in the SRT1720 group. 

In contrast, the H8-treatment group reduced (p < 0.05) the level of p-p65 (Figure 9B,C). 

Our study suggests that the restoration of SIRT1 is a potential pathway for H8 to 

exert anti-inflammatory effects. 
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Figure 9. H8 exerts anti-inflammatory effects by activating SIRT1. In cells: (A) the relative mRNA 

expression; (B) the representative Western blot images; (C) the protein-expression levels. The data 

represent the mean ± SEM. n = 3, # p < 0.05, ## p < 0.01 versus the Con group; * p < 0.05, ** p < 0.01 

versus the FFAs group. 

4. Discussion 

Our study found that the livers of HFD+STZ induced rats have NAFLD characteris-

tics, while H8 improved the symptoms of NAFLD and is more effective than curcumin. 

We used the NAFLD rat model of hepatic steatosis, feeding the rats an HFD and in-

traperitoneally injecting them with STZ [26]. The rats in the HFD+STZ group began to lose 

weight after STZ injection and, ultimately, weighed less than the control group (Supple-

mentary Figure S4), exhibiting the typical diabetic symptoms of polyuria, polydipsia, and 

weight loss. H&E staining and Oil red O staining showed that the HFD+STZ group had 

developed liver steatosis, with NAFLD characteristics. H8 restored liver histology and 

serum biochemical indexes significantly, suggesting that it improves liver lipid metabo-

lism. 

Improving hepatic lipid metabolism is significant, when treating NAFLD induced by 

lipid accumulation or obesity. To elucidate how H8 balances lipid metabolism, we tested 

indicators related to lipid metabolism in the rat liver. Phosphorylation of Ser79 in ACC 

reduces malonyl coenzyme A levels [27,28]. Decreased malonyl coenzyme A increases the 

level of CPT-1β, to restore fatty acid β-oxidation [29]. SREBP1 regulates the transcriptional 

activation of the lipid-synthesis-rate-limiting enzyme FASN, which is involved in choles-

terol uptake as well as generation of fatty acids and lipids. Furthermore, it is associated 

with increased lipogenesis in NAFLD [30]. H8 increased the phosphorylation level of ACC 

and inhibited the level of SREBP, suggesting a role in the hepaticlipid-metabolism-balanc-

ing effect. However, its target of effect requires further study. 
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It has been reported that 11β-HSD1 has important effects on lipid metabolism, by 

activating glucocorticoids in peripheral tissues [31]. Curcumin is a natural inhibitor of 

11β-HSD1, extracted from the Chinese medicinal spice turmeric, which demonstrates 

multiple physiological functions [13] and low bioavailability [32]. We constructed a cur-

cumin analog, H8, that stably and strongly inhibited 11β-HSD1 [17], alleviated insulin 

resistance, AND reduced glucocorticoid levels by inhibiting 11β-HSD1. We demonstrated 

that elevated 11β-HSD1 causes liver injury, increases lipid accumulation, and decreases 

AMPK and SIRT1 activities. In contrast, treatment with H8 reverses these effects, by in-

hibiting 11β-HSD1. This function may work by regulating glucocorticoid levels. 

A previous study showed that glucocorticoid-induced kinases directly inhibit AMPK 

[33], which may explain how glucocorticoid alterations affect lipid metabolism. In mam-

malian cells, AMPK activation promotes Ser79 phosphorylation in ACC. Moreover, 

AMPK activation enhances SREBP1 phosphorylation at Ser 372, to inhibit SREBP1 matu-

ration. Recently published studies have demonstrated that acute glucocorticoid exposure 

increases cardiac-fatty-acid oxidation, by activating AMPK [34]. In contrast, in mice 

chronically exposed to glucocorticoids, AMPK phosphorylation levels and lipid metabo-

lism gene levels have been shown to decrease with activation of 11β-HSD1 [19,35,36]. 

These phenomena may be due to AMPK inhibition associated with the 11β-HSD1-induced 

time-dependence of cortisol. In addition, it has been shown that AMPK increases the or-

ganismal level of NADH, which activates SIRT1 expression [37]. Conversely, SIRT1 pro-

motes LKB1-mediated AMPK activation [38], to attenuate lipid accumulation by regulat-

ing glucose tolerance [39] and inducing white-adipose-tissue browning [40]. Based on the 

above studies, we propose that H8 treats NAFLD, by restoring AMPK and SIRT1 through 

inhibition of 11β-HSD1. We overexpressed 11β-HSD1 in mice and inhibited AMPK or 

SIRT1 in HepG2 cells, confirming that 11β-HSD1 expression is inversely correlated to the 

expression of AMPK/SIRT1 pathway. 

To confirm the role of AMPK in the treatment of lipid metabolism disorders in H8, 

we used compound C [41] to inhibit AMPK activity and observe lipid metabolism indica-

tors in HepG2 cells, when AMPK activity was inhibited. Our experiments showed that H8 

increases the expression of proteins related to lipid catabolism and inhibits the expression 

of lipid-synthesis proteins, to balance lipid metabolism by restoring AMPK levels. H8 

does not affect the gene expression level of FASN, suggesting that H8 regulates FASN at 

the post-transcriptional level. These results imply that the function of H8, in alleviating 

disorders of hepatic lipid metabolism, is AMPK dependent. 

It has been shown that inhibition of 11β-HSD1 effectively reduces the gene-expres-

sion levels of pro-inflammatory factors, suggesting that inhibition of 11β-HSD1 may have 

anti-inflammatory effects, independent of lipid metabolism [42]. We suggest that this ef-

fect may be related to SIRT1, which exerts anti-inflammatory effects by activating PPAR-

γ to promote macrophage polarization to the M2 phenotype [43]. SIRT1, also, indirectly 

reduces the activation of the NF-κB signaling pathway and pro-inflammatory cytokines, 

such as TNF-α and IL-6 [37,44], by activating PGC-1α [45]. 

To confirm that H8 exerts an anti-inflammatory effect, by affecting the level of SIRT1, 

we used SIRT1 inhibitor EX527 and activator SRT172 to investigate the role of SIRT1 in 

the process [46]. First, our results confirmed that H8 effectively reduces the expression 

level of the inflammatory factor in the liver of HFD+STZ rats. In addition, we found higher 

levels of the TNF-α gene, p-p65, and IL-17 protein expression in HepG2 cells, which may 

result from HepG2 being a hepatocellular carcinoma cell, with inherently high levels of 

inflammation. Our results, also, revealed that overexpression of SIRT1 effectively attenu-

ates the expression of inflammatory factors, and inhibition of SIRT1 eliminates the anti-

inflammatory properties of H8, possibly because H8 can only indirectly activate SIRT1 

through AMPK. 

Notably, besides being a downstream target of SIRT1, PPAR-γ and PGC-1α are 

closely associated with regulating glycolipid metabolism. PPAR-γ mitigates NAFLD pro-

gression, by regulating adipocytokine expression, preventing insulin resistance [47], and 
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stimulating CPT-1β activity, to promote fatty-acid oxidation [48]. A bioinformatics analy-

sis showed that the level of PPAR-γ was reduced under lipid accumulation conditions 

[19], and that the activation of PPAR-γ reduced TG levels in patients with NAFLD [49]. 

Whether H8 plays a regulatory role in NAFLD, by affecting glycolipid metabolism 

through modulation of SIRT1, and an anticancer role, by reducing TNF-α levels, warrants 

further investigation. 

5. Conclusion  

Our experimental results confirm that H8 balances lipid metabolism and exerts anti-

inflammatory effects, by inhibiting 11β-HSD1 and upregulating the AMPK/SIRT1 signal-

ing pathway, providing promising data to inform pharmacological studies of NAFLD 

treatment. 
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antibodies used in WB. 
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