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Abstract: The metabolomic profiles of Chinese human milk have been poorly documented. The
objective of the study was to explore associations between human milk metabotypes, maternal
adiposity, infant growth patterns, and risk of allergies. Two hundred mother–infant dyads from seven
cities were randomly selected from the Chinese Human Milk Project (CHMP). Untargeted human
milk metabolomic profiles were determined using HPLC-MS/MS. Two human milk metabotypes
were identified using principal component analysis. Principal component (PC) 1 was characterized
by high linoleic acid metabolites with low purine nucleosides and metabolites of glutamate and
glutathione metabolism. PC 2 was characterized by high glycerophospholipids and sphingomyelins
content. Higher PC1 scores were associated with slower infant growth rate and higher ambient
temperature (p < 0.05). Higher PC 2 scores were related to higher maternal BMI and increased risk of
infant allergies (p < 0.05). Future work is needed to understand the biologic mechanisms of these
human milk metabotypes.

Keywords: metabotype; eczema; brown adipose tissue; thermogenesis; ambient temperature

1. Introduction

The Developmental Origins of Health and Disease (DOHaD) establishes early post-
natal life as a window of susceptibility in which the effects of nutrition, growth, and
development could influence later life. It is believed that breastfeeding grants neonates
with the optimal trajectory of growth and privileges in immune functions.

Prolonged breastfeeding has been shown to be beneficial for certain outcomes in chil-
dren, such as the ability to fight infections, malocclusion, and intelligence, while definite
evidence has not yet been established for others, including childhood obesity and aller-
gies [1]. Childhood obesity is recognized as the one of the most serious global public health
challenges of the 21st century by the World Health Organization, with the rate of childhood
and adolescent obesity increasing over ten-fold during the last four decades. In addition to
childhood obesity, eczema is a common childhood allergic condition which affects 20% of
children. Children with eczema are prone to develop other atopic conditions, including
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food allergies, asthma, and allergic rhinitis [2]. Although it has been well documented
that breastfeeding is associated with a lower risk of excessive weight gain, the relationship
between breastfeeding and childhood obesity remains inconclusive [3]. Similarly, mixed
results have been reported regarding the effects of breastfeeding on the risk of developing
allergies [4,5].

One possible reason for the aforementioned inconclusive results may be the presence
of the metabolic heterogeneity of human milk composition which leads to substantial
unexplained variance in infants [6]. It has been argued that the metabotypes (metabolic
phenotypes) which categorize individuals to homogenous subgroups based on a combina-
tion of their metabolic characteristics may be able to reduce interindividual variability and
enhance the ability of detecting significant differences between subgroups [7]. Metabotypes
of biological systems, such as the plasma and urine, have been investigated previously
to offer novel insights into health science research [8]. Recently, we derived human milk
patterns from the integrative analysis of proteomic, lipidomic and glycomic datasets that
were related to infant growth rates and allergies [8]. The advantages of human milk largely
arise from its complex composition including sufficient amounts of nutrients, as well as non-
nutritive substances such as metabolites [5]. In recent years, several studies have reported
that maternal factors such as gestational diabetes and adiposity alter the metabolites in the
milk [9]. More importantly, the association between human milk metabolites and infant
growth has been suggested [5]. Unfortunately, little is known in terms of what metabotypes
can be identified from mature human milk metabolites and how those metabotypes are
associated with infant growth rate and the risk of allergies.

Against this backdrop, the objective of the study was to identify metabotypes from
mature human milk metabolomic profiles and to investigate the association between human
milk metabotypes, maternal adiposity, infant growth, and the risk of allergies based on
the CHMP.

2. Materials and Methods
2.1. The Chinese Human Milk Project

The CHMP study is a cross-sectional study which recruited 1800 participants from
China to evaluate HM composition in a Chinese population (NCT03675204). Healthy
lactating mothers aged 25 to 35 years who were breast-feeding infants of 15 to 180 days,
and who were not smokers or alcohol drinkers, were recruited in the study. The exclusion
criteria included: mothers who were being treated for gastrointestinal symptoms; mothers
who were suffering from mastitis, infectious disease, cardiovascular disease, metabolic
disease, mental system disease, cancer, or other malignant diseases; mothers who had a
history of taking antibiotics; mothers who were not able to answer the study questions;
and mothers who had participated in any nutritional or pharmaceutical intervention
study recently.

2.2. Sample Collection Protocol

Participants were asked to collect a HM sample at 9:00–11:00, at least 1.5 h from the
last lactation in the morning. An electric pump was used to express one breast fully. The
milk collected was then carefully weighted using a calibrated scale. Ambient temperatures
(Ta) of the collection date and city were obtained from the website of China Meteorological
Administration. As the meteorological temperature of cities from different regions vary
significantly in China, the temperatures were related to potential cold exposure or heat
stress during maternal daily outdoor activities. The milk was gently mixed to ensure
homogenization and then aliquoted to 6 × 5 mL tubes; the remaining samples were
aliquoted to 10 mL tubes as needed. Aliquoted samples were delivered to our laboratory
using dried ice before being stored at −80 ◦C. A questionnaire to identify maternal and
infant characteristics was given to each participant. The study was approved by the review
board of Shanghai Nutrition Society Ethics Committee (Ethic Approval [2016] No. 006).
Informed written consent was obtained from all participants. The present study was based
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on the CHMP study: 200 mother–infant dyads in the second and sixth months of lactation
were randomly selected from seven cities (Guangzhou, Weihai, Chengdu, Beijing, Jinhua,
Lanzhou and Zhengzhou).

2.3. Maternal and Infant Characteristics

Maternal education, occupation, parity, delivery mode, family annual income, pre-
pregnancy weight, sleeping duration, and smoking and drinking habits were assessed by
the questionnaire. Eczema was estimated using a self-reported questionnaire by asking if
eczema had ever occurred. Maternal postpartum body weight and height were measured
upon sampling by calibrated electronic scales while participants were only wearing indoor
clothing and no shoes. Weight and length of the infant were measured using a tared scale
and a length board with a sliding foot piece, respectively. The sampling season was defined
according to the sample collection date, as follows: spring (March to May), summer (June
to August), autumn (September to November) and winter (December to February).

2.4. Feature Selection and Principal Component Analysis (PCA)

A total of 4301 metabolites were detected in all the samples, with 525 metabolites
being annotated using the in-house MS2 database. In general, relative standard deviation
(RSD %) of the three IS of the QC samples were 3.6%, 5.0% and 5.1%, respectively. The
coefficient of variation (CV) for all metabolites was calculated from 21 quality control
samples (ranging from 1.6% to 29.9%), and metabolites with a CV over 25% (n = 37) were
excluded from further analysis. To minimize the possible noise of this high-dimensional
metabolomics data, metabolites with an RSD less than 25% (n = 49) were further excluded,
leaving a final metabolite number of 439. The data were log-transformed and Pareto-scaled
and then fitted to the PCA by FactoMineR R package [10]. The PC score of each sample, the
correlation between the metabolites and the factors, and contributions of each metabolite
were calculated. p-values of correlation between the features and factors were adjusted
using the Benjamini–Hochberg method [11]. To decide the number of PCs and to the
evaluate stability of each PC, one thousand bootstrap samples were drawn and PCA was
performed for each bootstrap sample. The mean, SD, and 95% bootstrap confidence interval
(CI) of the loadings of all bootstrap samples were calculated and compared with original
factor correlation. The number of PCs was chosen based on the scree plot, eigenvalue and
stability of each PC. Each PC was characterized by metabolites with an absolute original
loading above 0.5.

2.5. Statistical Analysis

Length-for-age z scores (LAZ), weight-for-age z scores (WAZ), BMI-for-age z scores
(BAZ) and weight-for-length (WFL) z scores were calculated based on the WHO Child
Growth Standards [12]. Multiple linear regression, adjusted for infant age, infant sex, birth
weight, birth length, maternal age, and city were carried out to explore the associations
between PC scores, infant growth z scores, and maternal BMI. Odds ratios of allergies
against factor loadings were calculated using the generalized linear model with a further
adjustment of the infant feeding pattern (breastfeeding vs. breastfeeding + formula feeding).
All the regression analyses were performed using R (version 4.0.3) [13]. The mediation
model was used to explore the mediation effects of human milk metabolite PCs in the
maternal postpartum BMI and the risk of allergies using Mplus (version 8.3) [14]. Covariates
including infant age, infant sex, maternal age, and city were added to account for potential
treatment–outcome and mediator–outcome confounding factors. For binary outcome
(allergies), the counterfactual model was used to estimate the potential total natural indirect
effects of maternal BMI on the risk of allergies through HM metabotypes. An independent
sample t-test was used to identify the differentially expressed metabolites (DEMs) between
the samples collected in the summer (n = 20) and winter (n = 57). p-values obtained from
the t-test were adjusted using the Benjamini–Hochberg method [11]. The fold changes of
metabolites (summer vs. winter) were also calculated. Metabolites with fold changes over
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1.5 and adjusted p-values lower than 0.05 were defined as DEMs. Multiple linear regression
adjusted for infant age, sex, maternal age, and city were carried out to explore the association
between weight of milk collected, PC scores, ambient temperature, WAZ, and LAZ.

3. Results

In general, 200 participants (of which 196 were primiparous with mean maternal age of
30.0 ± 5.4 years and self-reported gestational weight gain of 14.2 ± 5.4 kg) from seven cities of
China were included in this analysis (Table 1). Over half of the infants (57.0%) were boys and
mean (SD) birth weight and length were 3361 (659) grams and 50.1 (2.4) cm, respectively.

Table 1. Maternal and infant characteristics (n = 200).

- Total (n = 200)

Maternal Characteristics Mean SD

Age (years) 30.0 5.4
BMI (kg/m2) 22.8 2.8

Gestational weight gain (kg) 14.2 5.4
Parity

1 196 (98.5%)
2 3 (1.5%)

City
Beijing 27 (13.5%)

Chengdu 29 (14.5%)
Guangzhou 25 (12.5%)

Jinhua 30 (15.0%)
Lanzhou 36 (18.0%)
Weihai 20 (10.0%)

Zhengzhou 33 (16.5%)
Infant characteristics

Sex (n)
Male 114 (57.0%)

Female 86 (43.0%)
Birth weight (gram) 3361.0 659.1

Birth length (cm) 50.1 2.4
Age
2 mo 106 (53.0%)
6 mo 94 (47.0%)

Self-reported eczema, Yes 63 (31.5%)
z Score
WAZ 0.57 1.73
LAZ 0.14 2.09
BAZ 0.74 2.27
WFL 0.90 2.50

WAZ—weight-for-age z score; LAZ—length-for-age z score; BAZ—BMI-for-age z score; WFL—weight-for-length
z score.

3.1. Characteristics of HM Metabotypes

The characteristics of the HM metabotypes are presented in Figure 1, Tables S1 and S2.
PC 1 was positively associated with linoleic acid (LA) metabolism derivatives (including
arachidonic acid (ARA), 13S-hydroxyoctadecadienoic acid (13(s)-HPODE), 12,13-epoxy-9-
octadecenoic acid (12,13-EpOME), and α-dimorphecolic acid (9(s)-HODE)), ARA metabolism
derivatives (including ARA and ∆-12-Prostaglandin J2), and a α-linolenic acid metabolism
derivative (colnelenic acid) (Table S1). In contrast, PC 1 was negatively associated with
purine derivatives (including adenine, adenosine, and 5-hydroxyisourate), and glutamate
and glutathione metabolism (D-glutamine, pyroglutamic acid, 4-hydroxy-L-glutamic acid
and N2-gamma-Glutamylglutamine). In addition to adenine and adenosine, PC 1 was
also negatively (although with weaker loadings: see Table S3) associated with guanine
(loading = −0.38) and guanosine (loading = −0.37). Interestingly, PC 1 also showed
some characteristics related to bile acid metabolism, including a positive loading for
cholesterol (0.54) and a negative loading for 5beta-Cholestane-3alpha,7alpha,24,26-tetrol
(5BCT, −0.56), which is a bile acid lipid molecule. In terms of PC 2, positive associa-
tions were observed for a group of phospholipids (PL), including glycerophospholipids
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(mostly phosphatidylethanolamines and phosphatidylcholines) and sphingomyelins (SMs)
(Table S2). Notably, region-specific effects were observed (Figure S1A): samples from
eastern China tended to cluster together.
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Figure 1. PCA loadings of bootstrap samples.

To evaluate the robustness of each PC obtained using PCA, 1000 bootstrap samples
were drawn and PCA was performed over each bootstrap sample. The bootstrap loadings
were averaged and plotted as shown above. The original PCA loadings are colored in
black, while mean bootstrap loadings are colored in grey. Light grey areas represent a 95%
bootstrap CI, calculated using 1000 bootstrap samples.

3.2. Regression and Mediation Analysis

The association between HM metabotypes, maternal BMI and infant growth z-score
are shown in Table 2. Higher scores of PC 1 were associated with lower infant WAZ
(β = −0.06, p = 0.004) and LAZ (β = −0.08, p = 0.004) after adjustment for infant age, sex,
city, maternal age, birth weight, and birth length. However, PC 2 was positively associated
with maternal postpartum BMI (β = 0.08, p = 0.018) and the risk of allergies in infants
(OR = 1.07, p = 0.019) after adjustment for infant age, sex, city, maternal age, birth weight,
and birth length. The results of the mediation analysis are presented in Figure S2. In general,
higher maternal postpartum BMI was directly (OR = 1.24, 95% CI: [1.01, 2.26]) related to a
higher risk of allergies. Those associations seem to be sex-specific, with associations only
significant for boys when analyses were stratified by sex (Table S6). When the mediation
effect of PC 2 was considered, the total effect (OR = 1.29, 95% CI: [1.03, 2.42]) was also
significant; however, the lower 95% CI of OR of natural indirect effect was slightly below
1.000 (0.996), suggesting a non-significant indirect effect.

Table 2. Association between human milk PC scores, infant growth, and risk of eczema (n = 200).

PC 1 PC 2

- - Estimates p Value Estimates p Value

Maternal BMI
(kg/m2)

Model 1 −0.03 0.471 0.08 0.018
Model 2 −0.03 0.497 0.08 0.018

BAZ
Model 1 −0.02 0.472 0.00 0.996
Model 2 −0.03 0.344 −0.01 0.666

WAZ
Model 1 −0.06 0.007 0.01 0.605
Model 2 −0.06 0.004 4.9 × 10−3 0.795

LAZ
Model 1 −0.09 0.001 0.014 0.554
Model 2 −0.08 0.004 0.019 0.412

Eczema
Model 1 0.96 0.241 1.06 0.032
Model 2 0.97 0.306 1.07 0.019

Estimates for allergies are presented as odds ratios. Model 1 adjusted for infant age, sex, maternal age, and city;
model 2 adjusted for infant age, sex, city, maternal age, birth weight, and birth length. Further adjustments
to infant feeding pattern (breastfeeding vs. breastfeeding + formula feeding) were added for risk of eczema.
WAZ—weight-for-age z score; LAZ—length-for-age z score; BAZ—BMI-for-age z score.
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3.3. Association between Ambient Temperature, Season and Human Milk Metabolomic Profile

The association between average Ta and PCA scores are presented in Figure 2A,B. In
general, PC1 scores were positively associated (β = 0.34, p = 1.29 × 10−14) with average
Ta after adjustment for infant age, sex, and maternal age. A sharp increase in PC1 score
was observed when Ta exceeded 10 ◦C (Figure 2A). In contrast, a mild decrease in PC2
score (β = −0.13, p = 0.002) was observed as Ta increased (Figure 2B). An independent
sample t-test was then used to explore the DEMs between samples collected in the summer
(n = 20) and the winter (n = 57), with 70 metabolites being identified (Figure 2C
and Table S7). Importantly, 42 out of those 70 DEM overlapped with the PC1 profile
(Figure 2 and Table S8), including purine and nucleoside, LA metabolites, bile acid, and
glutamate metabolites. In addition, 10 PLs were identified in both the DEMs and the PC 2
profile (Figure 2 and Table S9).
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Figure 2. Association between ambient temperature, season, and human milk metabolomic profile.
(A) Association between average ambient temperature and PC 1 score of each sample collected. Grey
area represents se of estimates. PC 1 score was positively associated (β = 0.34, p = 1.29 × 10−14) with
ambient temperature based on multiple linear regression adjusting for infant age, sex, and maternal
age. (B) Association between average ambient temperature and PC 2 score of each sample collected.
Grey area represents se of estimates. PC 2 score was negatively associated (β = −0.13, p = 0.002)
with ambient temperature based on multiple linear regression adjusting for infant age, sex, and
maternal age. (C) Volcano plot of differentially expressed metabolites between samples collected
in summer and in winter. #—metabolites that were not differentially expressed; ∆—differentially
expressed metabolites according to t-test and fold change; +—differentially expressed metabolites
which were overlapped with characteristics of PC 2; �—differentially expressed metabolites which
were overlapped with characteristics of PC 1.

4. Discussion

Two robust HM metabotypes were identified which were related to maternal BMI,
infant growth rate, and risk of eczema in our study. In general, a HM metabotype (PC 1)
characterized with high LA metabolites and low purine nucleosides (adenosine, adenine,
guanosine and guanine) and glutamate derivatives was associated with a slower infant
growth rate. On the other hand, PC 2 with abundant PLs and SMs was related to maternal
BMI and an increased risk of eczema.

Human milk PC 1 identified in our study showed clear characteristics related to
reduced cold-induced thermogenesis and increased heat stress. First of all, cold exposure
induces the hepatic conversion of cholesterol to bile acids, which results in increased
heat production [15]. Additionally, the oral administration of bile acid has been found
to increase human BAT activity [16], while heat stress reduces the bile acid secretion
of Holstein cows [17]. This is in line with our study, which found that PC 1 showed
positive loading for cholesterol and negative loading for bile acid metabolite. Secondly,
acute and chronic cold exposure circulated 12,13-dihydroxy-9Z-octadecenoic acid (12,13-
diHOME) concentration, which further induces BAT fuel uptake and thermogenesis [17].
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The circulating levels of 12,13-diHOME were also negatively correlated with BMI and
insulin sensitivity [18]. This coincides with our results; we found that PC 1 had positive
loadings for a group of LA metabolites (including 12,13-EpOME, which is the precursor of
12,13-diHOME). Lastly, BAT thermogenesis is mainly regulated by uncoupling protein 1
(UCP1), whose activity is inhibited by purine nucleotide and activated by long chain free
fatty acids [19]. Recent studies have also reported that the cold-induced thermogenesis of
BAT decreases free purine nucleotides (ATP, ADP and GTP) and increases its respective
degradation products [20,21]. This is in agreement with the PC 1 profile, which presented
negative loadings for purine nucleosides and glutamate/glutathione derivatives. Taken
together, it is reasonable to speculate that human milk samples with a high score of PC
1 were collected under warmer temperature and, therefore, had a lower degree of BAT
thermogenesis. This hypothesis is further supported by the finding that PC 1 score was
positively associated with ambient temperature (Figure 2A), and by the fact that DEM
overlapped with PC1 metabolites by 60% (Table S8).

Moreover, both PC 1 score (β = −0.51, p = 0.007) and average Ta (β = −0.92, p = 0.022)
were negatively associated with the weight of milk collected from mothers after adjustment
for infant age, sex, maternal age, and city. Additionally, the weight of milk collected was
positively associated with WAZ (β = 0.01, p = 0.032), but not LAZ (β = 0.01, p = 0.210)
(Table S10). These results may well be explained by the heat dissipation limit (HDL) the-
ory [22], which suggests that the lactation performance of females largely depends on their
heat dissipation ability. The HDL theory is supported by observations that animals (such as
mice, swine, and cows) exposed to high ambient temperatures (heat stress) produced less
milk [23,24]. In contrast, cold exposure facilitates heat dissipation and, therefore, elevates
milk production and weans larger pups [25]. Therefore, it seems that a lower PC 1 score
in our study was an indicator of lower Ta, which resulted in higher milk expression and,
subsequently, the faster growth rate of infants.

In recent years, great attention has been paid regarding the effects of brown adipose
tissue (BAT) and beige adipose tissue (BeAT) thermogenesis on the risk of obesity [19,26]. BAT
is abundant in human neonates and helps infants to maintain a normal body temperature.
Additionally, BAT decreases while white adipose tissue increases as infants develop [27].
This process may be pivotal, as BAT thermogenesis is important in terms of energy expen-
diture and increased white adipocyte number is positively associated with early childhood
obesity [27,28]. A recent study reported that human milk alkylglycerols maintained beige
adipose tissue in infants and prevented the transdifferentiation of beige adipose tissue into
lipid-storing white adipose tissue [29]. However, how maternal BAT activity may affect
infant adipocyte transformation and infant growth remain largely unknown. Future studies
are needed to further characterize the potential crosstalk between human milk metabolites
and infant adipocyte transformation.

In our study, human milk PC 2 (characterized by high SM and PL content) was related
to the increased risk of allergic events. It has been reported that phospholipids facilitate the
intestinal uptake of food allergens by protecting them from gastrointestinal degradation,
which may promote allergic processes [30]. This is supported by studies reporting that
PC inhibits the digestion of milk allergens β-lactoglobulin and α-lactalbumin which, in
turn, leads to the increased allergenic activities of those allergens [31,32]. Our previous
study also showed that human milk patterns with lower allergen αs1-casein and PLs were
associated with a lower risk of allergies [8]. It is therefore possible that higher levels of
human milk phospholipids may increase the likelihood of allergies caused by allergens,
which merits future investigation. Importantly, the association between PC2 and risk of
eczema was only significant for boys (Table S6), which is in line with previous studies
showing that boys are more prone to allergies (eczema and asthma) than girls [33,34]. This
sex-specific effect may be related to hormonal influences [33].

Interestingly, maternal BMI was negatively associated with PC 2 in our study. Even
though we are not aware of any study that has reported such an association between
maternal adiposity and HM lipidomic profile, accumulating evidence suggests that plasma
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SMs and some PLs are significantly higher in obese subjects [35–37]. Furthermore, our study
showed that higher maternal BMI was related to increased risk of eczema
(OR = 1.14, p < 0.05) after adjustment for infant sex, city, lactation stage, and maternal age.
This is supported by numerous studies reporting that maternal adiposity may increase the
risk of allergic diseases in infants [38–40]. Taken together, we hypothesize that maternal
BMI may alter human milk PL and SM compositions, which may further translate into
increased the risk of allergic events in the infant. A mediation model was then applied
to test this hypothesis; however, the indirect effects of PC2 on the relationship between
maternal BMI and the risk of eczema was just below the boundary of significance (OR = 1.04,
95% bootstrap CI: 0.996 to 1.142, Figure S2). It might be that the sample size of the present
study was not sufficient to capture such an effect, which calls for future investigation.

The limitation of our study is the cross-sectional study design, which only reveals
correlation rather than causality. It should be pointed out that maternal BAT activity was
not directly determined in our study and future work is needed to validate our observations.
In addition, maternal dietary intakes were not assessed, which may affect both human
milk composition and BAT activity. Another limitation is that human milk components
other than metabolites (such as proteomics) were not assessed, and these may also be
involved in the overall metabolism of human milk. Lastly, meteorological temperature
rather than room temperature was used in our study, which is a potential limitation as
room temperature is directly linked to thermogenesis.

5. Conclusions

We identified two robust human milk metabotypes that were associated with either
slower infant growth rate or increased risk of allergic events. PC 1 was associated with high
linoleic acid metabolites and low purine nucleosides, as well as the metabolites of glutamate
and glutathione metabolism. PC 2 was characterized by a high glycerophospholipids and
sphingomyelins content. Higher PC1 scores were associated with slower infant growth rate
and a higher ambient temperature. Higher PC 2 scores were related to higher maternal BMI
and an increased risk of infant allergies. Future work is needed to understand the biologic
mechanisms of these human milk metabotypes and to generalize them to other populations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu14102097/s1, Table S1: Characteristics of human milk PC 1; Table S2: Characteristics of
human milk PC 2; Table S3: Details of PC 1 results; Table S4: Details of PC2 results; Table S5: Details of
PC3 results; Table S6: Association between human milk PC scores, infant growth and risk of eczema
by sex (n = 200); Table S7: Differentially expressed human milk metabolites between samples collected
in summer and winter (n = 77); Table S8: Overlapped human milk metabolites being identified from
both PC 1 and t-test; Table S9: Overlapped human milk metabolites being identified from both PC 2
and t-test; Table S10: Association between weight of milk collected, PC scores, ambient temperature,
and infant z scores; Figure S1: PCA score plot of human milk metabolites; Figure S2: Mediation
analysis between human milk PC scores, maternal postpartum BMI, and risk of allergies; 2 Materials
and Methods.
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