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Abstract: The currently available anti-obesity therapies encounter many associated risks and side
effects often causing the ineffectiveness of treatment. Therefore, various plant-derived substances
have been extensively studied as a promising support or even an alternative for existing anti-obesity
therapies. This review is dealing with the anti-obesity potential of edible and ethnomedicinal rhubarb
species and emerging possible role of the rhubarb-derived extracts or individual compounds in the
prevention of obesity and perspectives for their use in an anti-obesity treatment. A special emphasis
is put on the most popular edible specimens, i.e., Rheum rhabarbarum L. (garden rhubarb) and Rheum
rhaponticum L. (rhapontic rhubarb, Siberian rhubarb); however, the anti-obesity potential of other
rhubarb species (e.g., R. officinale, R. palmatum, and R. emodi) is presented as well. The significance of
rhubarb-derived extracts and low-molecular specialized rhubarb metabolites of diversified chemical
background, e.g., anthraquinones and stilbenes, as potential modulators of human metabolism is
highlighted, including the context of cardiovascular disease prevention. The available reports present
multiple encouraging rhubarb properties starting from the anti-lipidemic action of rhubarb fibre
or its use as purgative medicines, through various actions of rhubarb-derived extracts and their
individual compounds: inhibition of enzymes of cholesterol and lipid metabolism, targeting of key
molecular regulators of adipogenesis, regulators of cell energy metabolism, the ability to inhibit
pro-inflammatory signalling pathways and to regulate glucose and lipid homeostasis contributing to
overall in vivo and clinical anti-obesity effects.

Keywords: anti-lipidemic action; obesity; rhubarb; rhubarb fibre; adipocyte; adipogenesis

1. Introduction

According to data reported by the World Health Organization, the number of obese
subjects has nearly tripled since 1975, leading to more than 1.9 billion overweight adults
in 2016 [1]. Obesity has become the largest global chronic health problem in Western
civilization, and the available anti-obesity therapies are limited by many side effects, risks
associated with surgical interventions and obesity relapse [2]. For that reason, lifestyle
factors such as balanced diet and physical activity remain fundamental both at the stage
of obesity prevention and treatment. In addition, many studies suggest that some of the
plant-derived substances and herbal medicines can be helpful anti-obesity agents [3]. Their
beneficial properties have been attributed to various mechanisms of action, including
appetite reduction, stimulation of thermogenesis, pancreatic lipase inhibitory effects, re-
duction in dietary fat absorption, stimulation of lipolysis and reduction in lipogenesis
(Figure 1) [4,5].

The present work covers a review of the available literature related to anti-lipidemic
properties of the rhubarb-derived extracts and individual substances, use of rhubarbs in
the prevention of obesity and prospects for their application in an anti-obesity treatment.
A special emphasis is put on bioactive properties of two edible specimens, i.e., Rheum
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rhabarbarum L./syn. Rheum undulatum L. (garden rhubarb) and Rheum rhaponticum L.
(rhapontic rhubarb, Siberian rhubarb) (www.theplantlist.org, accessed on 11 April 2022;
www.worldfloraonline.org, accessed on 11 April 2022) as sources of dietary fibre and
numerous bioactive (poly)phenolic compounds. However, biological properties of other
rhubarb species are also presented and discussed in the context of their anti-lipidemic
effects, body weight control and obesity prevention.

Figure 1. Main mechanisms of anti-obesity action recognised for different natural, plant-
derived substances.

The review is based on in vitro and in vivo data (from both animal and human stud-
ies), originating from peer-reviewed journals indexed in international databases (i.e., Med-
line/Pubmed, Scopus, Science Direct/Elsevier and Springer Link/ICM) and published
up to April 2022. In regard to the type of experimental design, the inclusion criteria
covered conclusive studies with appropriate controls and methodology, with a special
emphasis on randomized controlled trials (RCTs). To present general topics or to extend
readers’ knowledge of particular aspects, well-written, comprehensive reviews were also
included into this work. Editorials, conference communications, commentaries, papers
from journals non-indexed in scientific databases as well as articles written in languages
other than English were excluded. The main search criteria covered a combination of the
“rheum” or “rhubarb” words with “obesity”, “obese” “hypecholesterolemia”, “adipocyte”,
“adipogenesis” and “fibre”.

2. Rhubarbs as Ethnomedicinal Plants

The Rheum genus (rhubarb, Polygonaceae) includes over 60 species, commonly known
as edible and medicinal plants in Asia, Europe and other regions of the world. Petioles
of garden (R. rhabarbarum/R. undulatum) and rhapontic (R. rhaponticum) rhubarbs are pri-
marily used as foods, while their underground parts provide herbal material. The current
knowledge of phytochemical profile, ethnomedicinal relevance and main directions of
physiological activity of individual compounds and extracts originated from R. rhaponticum
and R. rhabarbarum and other rhubarbs have been extensively reviewed elsewhere [6–9].
Hence, in this paper, these issues have been only briefly mentioned. In traditional medicine,
both species are used to alleviate various gastrointestinal disorders. Furthermore, mixtures
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based on R. rhaponticum were also used to cure heart problems, pulmonary system dysfunc-
tions, and disorders related to the reproductive system, including uterine and breast pains.
R. rhabarbarum was administered as a purgative and sedative remedy [9]. R. officinale Baill.
(Chinese rhubarb) and R. palmatum L. are well-known medicinal plants widely used in tra-
ditional Chinese medicine and in many other regions of the world to treat gastrointestinal
disorders, chronic renal failure inflammations and liver diseases [10]. Additionally, Rheum
emodi Wall ex. Meissn has been known in Chinese and Ayurveda medicine, useful in the
treatment of different types of cancer, ulcers, headaches, diarrhoea and liver disorders [11].
In Turkish folk medicine, R. officinale and R. ribes L. (Syrian rhubarb) are traditionally used
for the treatment of obesity [12].

3. Rhubarb-Based Preparations in a Contemporary Pharmaceutical and Food Market

R. officinale (Chinese rhubarb), R. palmatum and other anthraquinone-rich rhubarb
species, belonging to typical medicinal rhubarb specimens, are predominantly administered
as laxatives [13]. They are commercially available as Radix Rhei or as components of different
herbal mixtures, dietary supplements and tea dedicated to alleviating gastrointestinal
disorders and to treat constipations.

Petioles of edible rhubarbs such as R. rhaponticum and R. rhabarbarum are used for
culinary purposes, while their underground parts are a source of herbal material. The
estrogenic activity of R. rhaponticum has been well-documented in animal and clinical
studies. It has been primarily attributed to the presence of different hydroxystilbenes and
their derivatives, including rhaponticin, desoxyrhaponticin, rhapontigenin, desoxrhapon-
tigenin, resveratrol and piceatannol. A special extract (ERr 731®) prepared from roots of
this plant specimen has been registered as a bioactive component of herbal preparation
recommended to alleviate menopausal symptoms, as an alternative to the conventional
hormone replacement therapy [14]. The stilbene-containing R. rhaponticum extracts are
also available in different dietary supplements. In addition, the contemporary food and
pharmaceutical market offers numerous dietary supplements based on powdered rhubarb
rhizome and fibre. Components of R. rhabarbarum were also reported to bind to estrogen
receptors ERα and ERβ [15], but the hormone-like activity of this species has been hitherto
demonstrated using only in vitro experimental models.

Owing to a protective activity of phytoestrogens on homeostasis [16,17], this activity
of rhubarb-extracts, in some extent, may be helpful in maintaining of proper body weight
and reduction in incidence and severity of cardiovascular diseases. However, in the context
of a direct impact on development and progression of obesity, other molecular mechanisms
as well as other bioactive phytochemicals seem to be more crucial. Originally, scientific
attention was focused on the rhubarb fibre. Further studies (presented below) extended this
approach by findings confirming that low-molecular bioactive metabolites from rhubarbs
might affect different metabolic pathways related to obesity development, including the
endocrine activity of adipose tissue, lipid metabolism and glucose uptake. Main groups
of the low-molecular specialized metabolites synthesized by various rhubarb species are
shown in the (Figure 2).
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Figure 2. Graphical summary of main groups of the specialized metabolites synthesized by
rhubarb species.

4. Hypolipidemic Effects of Rhubarb: Not Only the Fibre

Edible varieties of rhubarb are considered a rich source of various types of dietary fibre.
Comparative analyses of the fibre content in vegetables and fruits revealed that rhubarb
stalks contained 26.7% of insoluble fibre, whereas 54.9% were residues after digestion with
Driselase. In apple, insoluble fibre amounted to 9.8%, and digestion residue content was
46.2%. For carrot, the comparative values were 10.3% and 34.6%, respectively [18]. The total
dietary fibre in a preparation from fresh and frozen rhubarb stalks amounted to 741 g/kg
of dry weight (d.w.), including 659 g of insoluble dietary fibre/kg d.w. and 82 g of soluble
dietary fibre/kg d.w. [19]. It has been also reported that 140 g of stewed rhubarb provided
3.8 g of the total NSP (non-starch polysaccharides), 2.2 g of insoluble NCP (non-cellulosic
polysaccharides) and 0.7 g of soluble NCP fibre [20].

Although the hypolipidemic action of dietary fibre has been well established [21],
the use of Rheum species as a source of natural fibre or other lipid-lowering substances is
still under examination. Current knowledge of physiological effects of rhubarb-derived
fibre is mainly based on results originated from experiments employing animal models of
hypercholesterolemia and obesity; however, data from studies on human subjects are also
available (for details see Table 1). The R. rhaponticum fibre has been shown to effectively
decrease plasma cholesterol in animals fed a high-cholesterol diet, although its effect on
cholesterol synthesis in hepatocytes was not found [22]. As evidenced, the fibre may
influence secretory processes in the liver and gallbladder functions by both direct and
indirect mechanisms. Directly, it binds bile acids [23]. The binding rate of taurocholic acid
(TCA) for rhubarb fibre was established to be 6.2 µmol/100 mg and increased linearly
with the fibre concentration. For a comparison, the TCA-binging rate for cereal bran
ranged between 2.3 and 3.5 µmol/100 mg, and for cellulose, this rate amounted to 1.0 µmol
TCA/100 mg [24]. The bile-binding rate for the different digested cereal products and
alcohol-insoluble substances from fruits and vegetables such as apples, strawberries, rowan
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berries, carrots, white cabbage, red beets and sugar beet pulp attained 1.21–1.77 µmol bile
acids/100 mg of the examined preparation [25].

Table 1. Hypolipidemic action of the rhubarb-derived fibre.

The Examined Substances Type of
Study

Experimental Model, Doses
and Concentrations

Main Effects of the Rhubarb
Fibre and Stilbenes

Administration
References

ANIMAL STUDIES

R. rhaponticum stalk-derived
preparation containing 74% of

dietary fibre/dry mass (incl.
66% insoluble and 8% soluble)

animal

mice fed with
cholesterol-enriched diet with
5% of rhubarb stalk fibre, for

4 weeks

↓ the acyl CoA: cholesterol
acyltransferase (ACAT) activity;
no effects on the cholesterol-rich

diet enhancement of the
β-hydroxyβ-methyl coenzyme A

reductase (HMGR) activity

[22]

R. rhaponticum stalk fibre animal
cholesterol-fed C57BL/6J mice

receiving the fibre-rich diet
(50 g/kg b.w.) for 4 weeks

↓ plasma cholesterol (−13%); ↓
the hepatic concentrations of
total cholesterol (by 34%) and
cholesteryl esters (by 34%); ↓

acyl CoA: cholesterol
acyltransferase activity; ↓ the

faecal bile acid loss; ↓the
gallbladder bile acid pool

[19]

R. rhaponticum stalk fibre animal

the diabetes-prone and the
streptozotocin-induced

diabetic rats receiving the
fibre-rich diet (50 g/kg b.w.)

for 2 weeks

No effect on the plasma
cholesterol and triacylglycerol

levels in diabetic rats
[26]

HUMAN STUDIES

the rhubarb-stalk-derived
preparation containing 74%
dietary fibre/dry mass (incl.

66% insoluble and 8% soluble)

human

Ten hypercholesterolemic men
(BMI of 27.9 ± 3.8 kg/m2);

27 g of rhubarb fibre/day, for
4 weeks

↓ serum total cholesterol (−8%)
and LDL cholesterol (−9%); no

changes in HDL cholesterol
level; a return of the

cholesterol-lowering effect to
baseline after the fibre

supplementation withdrawal for
one month

[23]

Indirectly, rhubarb fibre regulates cholesterol metabolism. In vivo examination re-
vealed a stimulatory effect of rhubarb fibre on the expression of cholesterol 7α-hydroxylase
gene and excretion of bile acid in cholesterol-fed C57BL/6J mice [19]. Furthermore, the
hypocholesterolemic effect of rhubarb fibre was also observed in hypercholesterolemic
men, consuming 27 g of rhubarb stalk fibre daily for 4 weeks [23].

Contrary to the above results, a study on diabetic rats maintained on a diet rich in
rhubarb fibre, i.e., 50 g of rhubarb stalk fibre/kg of body weight (b.w.), did not demon-
strate a beneficial effect on the plasma cholesterol or triacylglycerol concentrations in the
examined animals [26]. Moreover, the literature clearly indicates that the lipid-lowering
action of rhubarb may be also dependent on the presence of other constituents, i.e., low
-molecular phytochemicals as well as synergistic action of different types of phytocom-
pounds. Based on studies from the 1990s, demonstrating the cholesterol-lowering prop-
erties of pectins [27–29], the hypolipidemic properties of rhubarb were strictly attributed
to its fibre content. Later decades revised this point of view and revealed that stilbene
compounds such as resveratrol [30–32], rhaponticin and rhapontigenin [33,34] display anti-
hyperlipidemic effects in vivo (Table 2). Administration of rhaponticin and rhapontigenin
to animals fed a high-cholesterol diet significantly improved the blood lipid profile and
reduced the extent of pathological changes in fatty liver [33].
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Table 2. Exemplary data originated from animal studies on the hypolipidemic and anti-obesity
properties of stilbenes that are present in rhubarb.

The Examined Substances Experimental Model, Doses and
Concentrations

Main Effects of the Stilbene
Administration References

Rhaponticin and
rhapontigenin isolated from

R. rhabarbarum roots

rats fed a high-cholesterol diet,
followed by oral rhapontin or

rhapontigenin treatment (1, 2.5
and 5 mg/kg b.w. (body

weight)/day)

↓ the serum lipid level; ↑ HDL cholesterol;
improvement in the degenerating fatty

liver structure; the aspartate
aminotransferase (AST) and the alanine

aminotransferase (ALT) levels comparable
to the control group

[33]

Rhaponticin from
R. rhabarbarum roots

KK/Ay type 2 diabetic mice
treated with rhaponticin

(125 mg/kg b.w., 4 weeks)

↓ the plasma triglyceride, LDL, cholesterol,
non-esterified free fatty acids; ↓ lactate

dehydrogenase, creatine kinase, AST and
ALT activities

[34]

Resveratrol

high-fat diet (HFD)-fed C57BL/6 J
mice, a daily dose of 200 mg/kg
b.w. of resveratrol, for 8 weeks

anti-hypercholesterolemic effects:
improvement in serum lipid parameters,
↓ hepatic cholesterol, ↓ body weight, ↑ bile

acid pool size, ↑ liver CYP7A1 mRNA
expression and CYP7A1 enzyme activity

[30]

apoE-deficient mice fed an
atherogenic diet containing 0.02%

resveratrol (w/w), for 12 weeks

↓ the plasma total cholesterol, LDL
cholesterol, non-high-density-lipoprotein

cholesterol, apoB/apoA1 ratio, hepatic
cholesterol and triglyceride; ↑ the plasma

HDL cholesterol

[31]

mice fed standard diet plus
resveratrol (4 g/kg of food to
provide a 400-mpk dose), for

8 weeks

↑ brown adipose tissue thermogenesis;
↑mRNA of thermogenesis-related genes,

incl. uncoupling protein 1 (UCP1), sirtuin 1
(SIRT1), phosphatase and tensin homolog
(PTEN) and bone morphogenetic protein 7
(BMP-7) expression; ↓ fat accumulation in

adipose tissue; ↓ total cholesterol and
glucose levels in plasma

[35]

C57BL/6 mice fed a high-fat diet
with a low dose of resveratrol, i.e.,

200 mg/kg b.w./day
(HFD-RES/L) or with a high dose

of resveratrol, i.e., 400 mg/kg
b.w./day (HFD-RES/H)

↓ insulin resistance; ↑ expressions of pAkt,
glucose transporter type 4 (GLUT4) and

insulin receptor substrate 1 (IRS-1) in white
adipose tissue (WAT); ↓ proinflammatory
cytokine levels in serum; ↓macrophage
infiltration and C-C chemokine receptor
type 2 (CCR2) chemokine expression in

white adipose tissue (WAT)

[36]

rats with hyperlipidemia; a daily
dose of 20 mg/kg b.w., of

resveratrol, for 30 days

↓ LDL and triglyceride levels; ↑ HDL levels
in animals; [32]

Among reports dealing with the anti-obesity properties of stilbene-type compounds,
the action of resveratrol has been described and evidenced in the widest extent of exam-
inations, including clinical trials. Although the anti-obesity [35,36] effects of resveratrol
appeared to be a very promising research trend, results derived from studies involv-
ing human subjects are inconclusive, or even, in some cases, research hypotheses have
failed [37–52] (Table 3). The synergistic activity of resveratrol and other substances (either
polyphenolics [53,54] or drugs [55]) was examined to find an effective combination for
treatment of obesity or its complications. In a randomized controlled trial, study partic-
ipants were assigned into one of four groups, i.e., placebo, resveratrol (100 mg), orlistat
(120 mg), or a combination of orlistat-resveratrol (O-R; 120 mg + 100 mg) group. After
6 months, results obtained for the resveratrol monotherapy group did not significantly
differ from the placebo group. The anti-obesity action and weight loss were found in both
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the orlistat and O-R groups. However, the most effective reduction in BMI, fat mass and
waist circumference was found in subjects taking the O-R combination [55].

Table 3. Evaluation of hypolipidemic effects and anti-obesity action of resveratrol in clinical trials.

Number of Participants (n),
Resveratrol Doses and

Study Duration
Participant Diagnosis

Main Effects of Resveratrol
Supplementation in the Context of an

Anti-Obesity Action
References

n = 11; 150 mg/day, for 30 days; a
randomized, placebo-controlled,

double-blind and cross-over study
obesity

Calorie-restriction-like effects; reduction in
the sleeping and resting metabolic rate; ↓

intrahepatic lipid content, circulating
glucose and triglycerides; ↓ inflammation

markers; ↓ the systolic blood pressure;
improvement in the HOMA index

[37]

n = 24; 500 mg, 3 times/day, for
4 weeks; a randomized,

placebo-controlled study
obesity (BMI > 30 kg/m2)

No effect on the total cholesterol, HDL,
LDL, plasma triglyceride and blood
pressure; no changes in the resting
metabolic rate and lipid oxidation

[38]

n = 28; 75 mg/day, for 6 weeks; a
randomized, placebo-controlled,
double-blind, cross-over study

obesity (BMI of 33.3 ±
0.6 kg/m2)

No effects on blood pressure; the
flow-mediated dilatation (FMD) increased

by 23%
[39]

n = 45; 150 mg/day, for 4 weeks; a
randomized, placebo-controlled,

cross-over study

overweight or obesity (BMI
of 25–35 kg/m2)

No effects on metabolic risk markers
related to cardiovascular health [40]

n = 50; 500 mg/day, for 12 weeks; a
randomized, placebo-controlled,

double-blind study

overweight (BMI of 28.35 ±
3.49 and 28.75 ± 3.50 kg/m2,

for the intervention and
placebo group, respectively);

non-alcoholic fatty
liver disease

Reduction in BMI, waist circumference,
HDL cholesterol and apo A1 both in
intervention and placebo group; no
differences in the above parameters

between these groups; ↓ alanine transferase
(ALT) and hepatic steatosis, compared

to placebo

[41]

n = 8; 1000 mg once a day for a
week, then 2000 mg/day for the

next week; a randomized,
placebo-controlled study

overweight or obesity (BMI
of 27.0–40.0 kg/m2), mild

hypertriglyceridemia

No effects on insulin sensitivity and blood
plasma triglyceride level; ↓ apoB-48 and

apoB-100 production rate
[42]

n = 10; 150 mg/a day, for 30 days; a
randomized, placebo-controlled,
double-blind, cross-over study

obesity (BMI of 32 ±
1 kg/m2)

Suppression of postprandial glucagon
responses; no changes in fasting

glucagon levels
[43]

n = 32; 300 mg/day or 1000 mg/day
for 90 days; a randomized, placebo

controlled, double-blind study

overweight or obesity (BMI
of 25.0–34.9 kg/m2)

↓ glucose levels compared to placebo; no
changes in blood pressure, body weight

and waist circumference
[47]

n = 11; 150 mg/day for 30 days; a
randomized, placebo-controlled,
double-blind, cross-over study

obesity (BMI of
28–36 kg/m2)

↓ adipocyte size; changes in the adipose
tissue morphology: reduction in the
proportion of large and very large

adipocytes; increase in small adipocytes;
enhanced adipogenesis

[44]

n = 23; 200 mg/day for 26 weeks, a
placebo-controlled study

overweight (BMI of
25–30 kg/m2), healthy older

adults (50–80 years)

↓ body fat and leptin increase compared to
placebo; no significant changes in body

weight, BMI or blood pressure compared
to placebo

[45]
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Table 3. Cont.

Number of Participants (n),
Resveratrol Doses and

Study Duration
Participant Diagnosis

Main Effects of Resveratrol
Supplementation in the Context of an

Anti-Obesity Action
References

n = 161; 100 mg of resveratrol or
120 mg orlistat + 100 mg resveratrol

(O-R group), 3 times a day, for
6 months; the participants

consumed 500 k calories fewer than
the usual diet; a randomized,

placebo-controlled study

obesity (BMI of
30.0–39.9 kg/m2)

No significant changes in the group treated
with resveratrol solely; ↓ BMI, waist

circumference and fat mass in the
orlistat-treated and O-R groups; the most

effective one was the O-R combination

[55]

n = 74; 150 mg or 1000 mg/day, for
16 weeks; a randomized,
placebo-controlled study

obesity (BMI of 33.8 ±
0.44 kg/m2)

No effect on blood pressure, body
composition, lipid deposition in the liver or

striated muscle; no beneficial effect on
glucose and lipid metabolism; 1000 mg
dose increased the total cholesterol and

LDL compared to placebo group

[46]

n = 45; 75 mg twice a day, for
4 weeks; a randomized,

placebo-controlled study

overweight or slight obesity
(BMI of 28.3 ± 3.2 kg/m2)

No changes in plasma biomarkers of
endothelial function or inflammation (both
in the fasting state and postprandial phase);

no changes in serum triglyceride and
insulin level

[49]

n = 38; a combination of 282 or
80 mg/day of the

epigallocatechin-3-gallate and
resveratrol (EGCG + RES), for

12 weeks; a randomized,
placebo-controlled study

overweight or obesity (BMI
of 29.7 ± 0.5 kg/m2)

↓ visceral adipose tissue mass; no effect on
insulin-stimulated glucose disposal,

endogenous glucose production
or lipolysis;

[53]

n = 25; 282 or 80 mg/day of the
EGCG + RES, for 12 weeks; a

randomized,
placebo-controlled study

overweight or obesity (BMI
of 29.7 ± 1.1 kg/m2)

No changes in adipocyte size or surface
area in abdominal subcutaneous adipose

tissue; EGCG + RES downregulated
pathways contributing to adipogenesis, cell

cycle and apoptosis in the abdominal
subcutaneous adipose tissue

[54]

n = 112; 75 mg, twice a day, for
12 weeks; a randomized,
placebo-controlled study

overweight or obesity
(BMI ≥ 27 kg/m2),
insulin resistance

No effects on cardiometabolic risk
parameters and liver fat content [48]

n = 28; 1000 mg, twice a day, for
30 days; a randomized,

placebo-controlled study

obesity (BMI of
30–40 kg/m2),

metabolic syndrome

No changes in insulin resistance; no
changes in adipose tissue metabolism [50]

n = 41; 150 mg/day, for 6 months; a
randomized,

placebo-controlled study

overweight or obesity (BMI
of 27–35 kg/m2)

No effects on intrahepatic lipid level,
energy metabolism, blood pressure,
physical performance, quality of life

and sleep

[51]

n = 25; 250 mg/day, with physical
training and diet, for 3 months; a
randomized, placebo controlled,

double-blind study

obesity (BMI ≥ 30 kg/m2),
metabolic syndrome

Resveratrol potentiated beneficial effects of
diet and physical training; ↓ VLDL and the

total cholesterol in blood plasma
[52]

BMI—body mass index.

Data obtained for the stilbenoids are also supported by results from studies on other
individual compounds that are present in the rhubarb profile, e.g., aloe-emodin [56] and
physcion [57]. Additionally, emodin displayed a hypocholesterolemic effect in vitro and
in vivo, through the capability of bile salts binding and increasing the expression of choles-
terol 7-alpha-monooxygenase (CYP7A1) [58]. In obese mice, emodin (40 or 80 mg/kg b.w.,
for 6 weeks) modulated the adipose tissue physiology, and decreased the body weight
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and the blood lipid level. As was demonstrated by the increased levels of markers of
beige adipocytes (i.e., Cd137, Tmem26 and Tbx1 mRNA), the browning processes were
stimulated in the white adipose tissue [59].

5. Molecular Targets for Rhubarb-Derived Substances
5.1. Inhibitory Effects on Key Enzymes Related to Lipid Absorption and Metabolism

Administration of different types of anti-obesity drugs have been proven to have a
wide spectrum of side effects, including headache, insomnia, nervousness, constipation,
hypertension as well as an increased risk of cardiovascular complications. For example,
due to the prevalence of risk of adverse effects over the benefits, the European Medicines
Agency (EMA) recommended the removal of sibutramine from the pharmaceutical market
in the European Union after only several years of use [60]. Among synthetic anti-obesity
drugs, orlistat (tetrahydrolipstatin), an inhibitor of pancreatic lipase (EC 3.1.1.3), is the only
currently approved weight loss medicine for the long-term treatment of obesity [61,62].
The molecular target of this drug is the pancreatic lipase (PL), which is essential for di-
gestion of dietary triglycerides. For that reason, the search for new and more effective
inhibitors (including natural compounds) of this hydrolytic enzyme has gained increasing
attention [63]. Moreover, numerous reports demonstrated the ability of phytochemicals be-
longing to various classes to inhibit PL activity [64–73]. Most of the examined plant-derived
substances were weaker inhibitors of the pancreatic lipase than the reference drug, but
some of them, i.e., ferulic acid and kaempferol-3-O-rutinoside, displayed comparable PL-
inhibitory efficiency. Some of these potential inhibitors of PL, e.g., phenolic acids as well as
quercetin and kaempferol derivatives, are present in rhubarb species (Table 4). Synergistic
interactions of different compounds in the inhibition of 3T3-L1 PL activity and preadipocyte
differentiation have been also evidenced [74]. An PL inhibitor screening of the 37 plant
extracts revealed that only 6 of them had moderate or strong anti-lipase activity (more than
30% of inhibition). Extracts from Prunella vulgaris L. and Rheum palmatum were identified
as the two most potent inhibitors, displaying 74.7% and 53.8% of inhibitory effectiveness
towards PL, respectively [75]. In another screening, a methanolic extract from R. ribes
rhizome inhibited the PL activity by 43%. The most effective plant preparation in that study,
i.e., Quercus infectoria G. Olivier galls, reduced the PL activity by 85% [76]. Furthermore,
galloyl glucosides and galloylproanthocyanidins isolated from rhubarb (R. palmatum) roots
(Rhei Rhizoma) were described as promising inhibitors (acting at micromolar concentrations)
of squalene epoxidase, a key enzyme of the cholesterol biosynthesis pathway [77].

According to the literature, rhubarb contains natural inhibitors of soluble epoxide
hydrolase (sEH), which is believed to be one of the most important molecular targets in
the therapy of cardiovascular diseases as well as other disorders. sEH is a major enzyme
responsible for the hydrolysis of epoxy-fatty acids (incl. arachidonic, linoleic, eicosapen-
taenoic, and docosahexaenoic acid epoxides). The plant-derived compounds or extracts
have been examined as potential inhibitors of this enzyme. For example, ethanol extract
of Sophora flavescens Aiton roots inhibited this enzyme with IC50 = 2.07 µg/mL [78]. sEH-
inhibitory effects were also found for phenolic compounds isolated from the rhizomes and
roots of Gentiana scabra Bunge [79], extracts from aerial parts of Tetrastigma hemsleyanum
(King) Chantaran. and J. Parn. [80] and compounds isolated from roots of Lycopus lucidus
Turcz. ex Benth. [81].

Both the methanol extract, n-hexane, chloroform and butanol fractions from R. rhabar-
barum displayed sEH-inhibitory efficiency, but mechanistic analyses revealed evident
diversity in actions of individual components of the tested extracts. Piceatannol 3′-O-β-
D-glucopyranoside was found to be a competitive sEH inhibitor. In contrast, resveratrol,
desoxyrhaponticin, rhaponticin, isorhapontin, desoxyrhapontigenin, along with other com-
pounds such as astringin, chrysophanol-8-O-β-D-glucopyranoside and aloe emodin acted
as the mixed-type inhibitors. Rhapontigenin and emodin were non-competitive inhibitors
of sEH. Among the examined compounds, astringin was the most effective sEH inhibitor
(IC50 = 2.5 ± 0.5 µM), and the weakest one was desoxyrhaponticin (IC50 = 53.2 ± 4.4 µM) [82].
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Unfortunately, in the case of the search for the rhubarb-derived inhibitors of sEH, only
preliminary in vitro results are available, although similar works on sEH inhibitors from
other plants are more advanced and have reached the level of in vivo studies [83].

Table 4. Pancreatic lipase inhibitory effects of exemplary phytochemicals, present also in rhubarbs.

Compound Phytochemical Classification

Pancreatic Lipase Inhibitory Effects

ReferencesIC50 for the Examined
Compound IC50 for Orlistat

Caffeic acid

Phenolic acids

401.5 µM 4.0 µM [64]

Chlorogenic acid 110.0 µM
114.0 µM

0.23 µM
ND [65]

p-Coumaric acid 170.2 µM 4.0 µM [64]
Ellagic acid 44.78 µM 0.23 µM [65]
Ferulic acid 2.49 µM 4.0 µM [65]

Cyanidin-3-rutinoside Anthocyanidins and
their derivatives

188.28 µM ND [67]
59.4 µM 31.7 µM [68]

Delphinidin-3-glucoside 223.26 µM ND [68]
Procyanidin B2 Proanthocyanidins 7.96 µM ND [69]

cis-Piceid
Stilbene derivatives

76.1 µM 0.7 µM [70]
trans-Piceid 121.5 µM 0.7 µM [70]

trans-Resveratrol >200 µM 0.7 µM [70]
Kaempferol-3-O-rutinoside

Flavonoids and
their glycosides

2.9 µM 1.45 µM [71]

Quercetin
421.1 µM ND [72]
146 µM 1.45 µM [71]

Quercetin-3-O-β-D-
glucuronide 94 µM ND [73]

Rutin 149 µM 1.45 µM [71]

ND—not determined.

5.2. Modulation of the Adipose Tissue Physiology

Although the energy storage is commonly believed to be the main role of white
adipose tissue, current knowledge of human physiology evidently indicates its important
endocrine activity, influence on numerous molecular pathways and modulatory effect
on homeostasis [84]. Studies on anti-obesity actions of various natural substances and
herbal remedies are focused on several points that may be critical in the regulation of
either adipogenesis or secretory activity of the adipocytes. During this multistep process,
phytochemicals (including compounds present in rhubarbs) may interact at the mitotic
clonal expansion, early differentiation and terminal differentiation stages of adipogenesis
(Figure 3). Due to multifactorial etiology and pathophysiology of obesity, many mechanisms
underlying the anti-obesity effects of phytochemicals still remain only partly elucidated.
Existing evidence indicates that the main targets for most plant-derived anti-obesity agents
are key regulators of adipogenesis such as CCAAT/enhancer-binding proteins (C/EBPs)
and the peroxisome proliferator-activated receptors (PPARs), as well as the AMP-activated
protein kinase (AMPK), a regulator of energy metabolism [85–87]. An additional aspect of
the beneficial action of phytochemicals in obese subjects may be their anti-inflammatory
properties, including the ability to inhibit the nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB)-triggered signalling [88]. Exemplary molecular targets for
phytochemicals are the phosphatidylinositol 3-kinase and Akt/Protein Kinase B (PI3K/Akt)
pathway, the IκBα kinase/c-Jun N-terminal kinase (IKK/JNK), and Janus kinase/signal
transducers and activators of transcription (JAK/STAT)-mediated response [89].
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Figure 3. Modulatory effects of the plant-derived substances on different steps of adipogenesis.
The wingless-type MMTV integration site (Wnt) signalling, the growth factor-beta (TGF-β)/bone
morphogenic protein (BMP) signalling, Hedgehogs (Hh), Notch, and the fibroblast growth factor
(FGF)-dependent response are the main mechanisms regulating the commitment of multipotent
mesenchymal stem cells (MSCs). Early stages of adipocyte differentiation are primarily regulated
by C/EBPβ and C/EBPδ, responsible for the induction of C/EBPα and PPARγ—the central posi-
tive modulators of adipogenesis. The rhubarb-originated substances may interfere with different
pathways controlling the adipocyte differentiation and maturation, including the blockade of clonal
expansion as well as downregulation of PPARγ and C/EBPα. Abbreviations and explanations:
AMPK—AMP-activated protein kinase; KLF 2—Krüppel-like factor; Pref-1—preadipocyte factor 1;
DEC1,2—transcription factors DEC1,2; GATA 2/3—GATA-binding factor 2/3; SIRT1/2—sirtuin 1,2;
TGF-β—tumour growth factor beta; PI3K/Akt—phosphatidylinositol 3-kinase and Akt/Protein
Kinase B pathway; KLF4/5/9/15—Krüppel-like factors 4,5,9, and 15; CREB—cAMP response
element-binding protein; SIRT7—sirtuin 7; SREBP1—sterol regulatory element-binding protein 1;
ZFP423—C2H2 zinc-finger protein; FXR—farnesoid X receptor; C/EBPα, C/EBPβ and C/EBPδ—
CCAAT/enhancer-binding protein alpha, beta and delta; PPARγ—peroxisome proliferator-activated
receptor gamma.

The literature provides very few data originating from studies on rhubarb extracts;
however, some more information can be deduced from results reported by works on in-
dividual phytochemicals that are present in these plants. Inhibitory effects of natural
substances on adipogenesis or metabolic activity of adipose tissue were found for com-
pounds belonging to diverse phytochemical classes, e.g., stilbenes and anthraquinones.
The newest literature emphasizes a pleiotropic activity of resveratrol, including the mod-
ulation of gene expression and affecting diverse molecular targets such as AMPK, the
peroxisome proliferator-activated receptor co-activator-1α (PGC-1α) as well as sirtuin-1
(SIRT1) deacetylase [90]. The anti-adipogenic effects of another stilbene, i.e., piceatannol,
seem to be mainly targeted to early phases of development of adipose tissue. The anti-
adipogenic properties of piceatannol involved reduction in the mitotic clonal expansion,
decrease in C/EBPβ, PPARγ, and C/EBPα mRNA levels and inhibition of the insulin
receptor-dependent signalling (the insulin receptor/insulin receptor substrate-1/Akt ki-
nase pathway) in 3T3-L1 preadipocytes. Piceatannol was an inhibitor of the insulin receptor
kinase and phosphatidylinositol 3-kinase (PI3K) activity [91]. Its ability to suppress the
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macrophage interactions with adipocytes may be an important mechanism of alleviation
of inflammatory processes in the adipose tissue [92]. Moreover, recent data suggest that
piceatannol may be a more effective inhibitor of adipogenesis in human visceral adipose-
derived stem cells than resveratrol [93].

Among rhubarb hydroxyanthraquinones, rhein is currently considered as the most
promising anti-adipogenic and lipolysis-stimulating factor. The anti-obesity action of
rhein is through different mechanisms, including activity on the transcriptional level,
as an inhibitor of adipogenesis, including adipocyte differentiation. It rhein is able to
downregulate the expression of adipogenesis-specific transcription factors such as PPARγ
and CCAAT-enhancer-binding protein-α (C/EBPα) and their upstream regulator, i.e.,
CCAAT-enhancer-binding protein-β (C/EBPβ) [94]. The inhibition of PPARγ signalling
was indicated as a potential mechanism of the reduction in obesity, fat mass and the
size of white and brown adipocyte tissue in animals treated with rhein [95]. Another
proposed mechanism of the anti-obesity action of rhein is a regulatory effect on cholesterol
homeostasis, through the liver X receptors (LXRs) antagonism [96]. Recent studies on five
rhubarb-derived compounds: chrysophanol, aloe emodin, emodin, physcion, and rhein
suggested stronger inhibitory effects of emodin and rhein on lipid accumulation in 3T3-L1
adipocytes, compared to the remaining three hydroxyanthraquinones. Both emodin and
rhein acted through mitogen-activated protein kinase (MAPK) signalling; however, their
influence on adipogenesis and lipid metabolism were diverse. While rhein reduced lipid
deposition by modulation of the adipogenic transcriptional factors and lipolytic enzymes,
the lipid-lowering activity of emodin involved the reduction in lipogenic enzymes. The
aforementioned diversity in molecular actions may result in divergent activity of both
compounds in vivo. Experiments on animals demonstrated that rhein was a stronger anti-
obesity agent than emodin, and reduced plasma cholesterol by 29% (versus a 14%-decrease
caused by emodin) [97].

Danthron, a natural anthraquinone derivative synthesized by rhubarb, has been shown
to reduce the obesity and associated metabolic fatty liver diseases (MAFLD) in animals. It
has been established that this compound is able to stimulate the binding of the retinoid X
receptor alpha (RXRα)/PPARα heterodimer to the promoter of the adiponectin receptor 2
(AdipoR2), resulting in the AMPKα and PPARα pathway activation [98]. The stimulation
of the AMPK/SIRT1 pathway has been also suggested as the most likely mechanism of the
anti-obesity activity of chrysophanol. In rats receiving a high-fat diet, this anthraquinone
was found to stimulate the expression of lipolytic genes and suppress the lipogenic genes
as well as to diminish the inflammatory response [99]. Anti-diabetic and anti-obesity
effects in vitro and in vivo were also found for emodin. As a selective inhibitor of the
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), emodin regulated adipogenesis
and energy metabolism in 3T3-L1 adipocytes as well as ameliorated metabolic disorders in
ob/ob (B6.V-Lepob/Lepob) mice [100]. In other animal study, the inhibition of proprotein
convertase subtilisin/kexin type 9 was indicated as a key mechanism of the cholesterol-
lowering effect of aloe-emodin [56].

5.3. Metabolism and Glucose Level Regulation

The ability to regulate glucose homeostasis has been demonstrated for various types
of rhubarb-derived substances, i.e., mixtures extracted with the use of water or organic
solvents, low-molecular isolates and the soluble fibre. Regarding the latter, it has been
demonstrated that a high fibre diet might upregulate the proglucagon mRNA and secretion
of both the glucagon-like peptide-1 [GLP-1(7–37)] and insulin [101]. In other work on
animals, consumption of rhubarb fibre (50 g/kg of diet) influenced the ileal synthesis
of proglucagon mRNA and reduced passive permeability, without affecting the glucose
transport of the small intestine [102]. Furthermore, in patients with type 2 diabetes, an
administration of essential oil preparation (400 mg capsules, 3 times daily, 90 capsules in
total) isolated from rhubarb stem reduced the glycosylated haemoglobin and fasting blood
glucose levels [103].
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Another possible molecular target for rhubarb-derived substances is the protein ty-
rosine phosphatase 1B (PTP1B), a negative regulator of the leptin and insulin-dependent
signalling pathways. Currently available works devoted to search for effective inhibitors of
this enzyme reported examinations of over few hundreds of synthetic and natural com-
pounds, including plant extracts [104,105]. Among them, one of the available medicinal
plant screenings revealed that a hot water extract from R. rhabarbarum roots might reduce
the PTP1B activity in vitro. Moreover, studies on high-fat diet-fed C57BL/6 mice and
in vitro experiments demonstrated the metabolism-regulatory activity of R. rhabarbarum
extracts and its anthraquinone compounds—chrysophanol and physcion [106]. Other
authors reported the hypoglycaemic effects of Rheum tanguticum Maxim. ex Balf., based
on the sucrase and maltase inhibitory activities of this plant metabolites such as flavan
((-)-epicatechin 3-O-gallate) and phenylbutanone (lindleyin) [107].

In animals, the glucose homeostasis regulatory ability was evidenced for both individ-
ual compounds and extracts isolated from different rhubarb species (Table 5). Beneficial
effects of rhubarb-derived phytochemicals included the insulin-sensitizing activity reduc-
tion in the blood triglyceride and glucose [108–112] levels. Interestingly, some caution has
been recommended in the case of Rheum turkestanicum, whose rhizomes are a traditional
anti-diabetic medicine in Iran. An animal study revealed that this plant rhizome extract had
anti-hypertriglyceridemic activity, but no hypoglycemic or hepatoprotective effects were
found [113]. The combination of metformin and the anthraquinone glycoside preparation
from R. palmatum rhizomes administered to rats (100 or 400 mg/kg b/w., for 6 weeks)
ameliorated type 2 diabetes mellitus through the regulation of the gut microbiota and
activation of the GLP-1/cAMP pathway, resulting in a decrease in insulin resistance [114].
A clinical trial on patients with type 2 diabetes mellitus demonstrated the reduction in
fasting blood glucose level and glycosylated haemoglobin in the intervention group, treated
with capsules containing rhubarb stem extract (90 capsules in total; 400 mg/capsule, three
times a day) [103].

Table 5. The ability of rhubarb-derived substances to regulate the glucose homeostasis demonstrated
in animal studies.

The Examined Rhubarb
Compounds or Extracts Experimental Model/Doses Main Findings References

desoxyrhapontigenin, emodin and
chrysophanol, from roots of

R. rhabarbarum
mice ↓ postprandial hyperglycaemia by

35.8, 29.5, 42.3%, respectively [109]

70% ethanol Rhei Rhizoma extract
streptozotocin-induced diabetes

in mice/5 mg/kg b.w. (body
weight), 8 weeks

↑ insulin-stimulated glucose uptake,
↓ carbohydrate digestion via

inhibiting alpha-glucoamylase
[109]

decoction from
R. turkestanicum rhizome

diabetic rats/200–600 mg/kg b.w,
3 weeks

no effects on serum glucose,
↓ serum triglyceride level [113]

standardized extract from
R. turkestanicum roots

streptozotocin-induced diabetes
in rats/100, 200 and 300 mg/kg

b.w., 4 weeks

↓ blood glucose,
↓ diabetic changes in kidneys, liver

and heart
[110]

R. emodi extract

rats treated with
glucocorticoids/10, 20 and 30 g of

rhubarb powder/kg of diet,
8 weeks

↓ blood glucose and
immunity markers [111]

anthraquinone-glycoside
preparation from R. palmatum

high-fat diet-induced type
2 diabetes mellitus in rats/100,

200, and 400 mg/kg b.w., 6 weeks

↓ fasting blood glucose, ↓ total
cholesterol and triglyceride levels,

improvement in pathological changes
in the liver, kidney and

pancreatic tissues

[112]
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5.4. Anti-Obesity Action of Rhubarb Extracts in Animal Studies

The rhubarb extract (100 mg/kg b.w., administered for 8 weeks) modulated lipid
metabolism (including a stimulation of adiponectin synthesis) and significantly reduced
the body weight gain in the examined mice. In parallel experiments, the anthraquinones
(30 µM) inhibited PTP1B activity and enhanced the insulin sensitivity in the serum-starved
3T3L1 cells [115]. In rats treated with a 690 mg/kg b.w. dose (for 6 weeks) of the R. palmatum
extract (a concentrated decoction), established based on recommended clinical doses for
humans (according to the Pharmacopoeia of the People’s Republic of China), a high-fat-diet-
induced hepatosteatosis was significantly alleviated. The treatment significantly lowered
the liver triglyceride levels, liver weight and improved glucose tolerance; however, a high
dose of the extract, i.e., 1300 mg/kg b.w., was less efficient. The stimulating AMPK activity
of the examined extract has been suggested as the most probable molecular mechanism of
the observed effects [116].

The treatment with R. undulatum extracts not only reduced the low-density-lipoprotein
cholesterol and increased the high-density-lipoprotein cholesterol in rats, but also mitigated
vascular inflammation as confirmed by measurements of the vascular NF-κB-p65, adhesion
molecules ICAM-1 and VCAM-1 as well as E-selectin levels [117]. In an animal model of
atherosclerosis, the lipid-lowering and plaque-stabilizing properties associated with anti-
inflammatory effects were found for aqueous extract from R. officinale [118]. A four-week
therapy with hydroalcoholic extract from R. ribes L. root (150 mg/kg b.w./day) reduced
the glucose, cholesterol and triglyceride levels in diabetic rats. Moreover, the reduction in
low-density-lipoprotein (LDL) level achieved concentrations comparable to those recorded
in the control group [119]. Likewise, the cholesterol-lowering effects were observed in
rabbits having hypercholesterolemia, after a treatment (4 g/kg b.w./day, for 2 weeks) with
ethanolic and aqueous extracts from R. ribes stalks [120]. Recent animal studies indicate
that rhubarb supplementation may prevent diet-induced obesity. In C57BL6/J mice fed a
high-fat and high-sucrose (HFHS) diet, enriched with 0.3% (g/g) of R. palmatum extract
(for 8 weeks), the accumulated fat mass and weight gain were reduced, when compared to
animals fed an HFHS diet, without the plant extract. Furthermore, in mice supplemented
with the rhubarb extract, fat pads (visceral, epididymal and subcutaneous) were similar to
those found in control animals (mice fed a control diet—D12450H; research diet). Rhubarb
supplementation also resulted in the prevention of diet-induced liver steatosis as well as in
increased hepatic cholesterol and inflammatory markers and beneficial effects on adipose
tissue, including a trend towards a decreased infiltration by macrophages. Immunohis-
tological analyses demonstrated that adipocyte morphology in mice supplemented with
rhubarb extract was similar to adipocytes from control animals. In addition, those effects
were associated with an increased amount of Akkermansia muciniphila in the colon [121],
which is a commensal bacterium of the gut mucus, displaying beneficial effects for basal
metabolism and associated with reduced risk of obesity [122].

5.5. Anti-Obesity Action of Rhubarb Extracts in Clinical Trials

A randomized, double-blind and placebo-controlled trial involving 83 patients with
diagnosed atherosclerosis revealed that treatment with R. officinalis hot water extract
(50 mg/kg b.w.) decreased the serum total cholesterol and the LDL cholesterol [123].
In contrast, administration of the R. emodi stem extract to patients with type 2 diabetes
mellitus (taking a total amount of 90 extract capsules: 3 capsules/day, 400 mg of the ex-
tract/capsule) did not reveal any effect on body weight; however, a decrease in systolic
and diastolic blood pressure was observed [124].

5.6. Laxative Effects of Rhubarb-Based Extracts and Preparations

In Western civilization, laxative abuse as a method supporting the weight loss and
adverse effects of these substances constitutes a serious problem [125]. On the other hand,
the laxative properties of natural compounds are an important element of the treatment
of constipation associated with various diseases. The purgative effects of rhubarb are a
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result of the presence of different substances, mainly anthraquinones. For that reason,
the anthraquinone-rich rhubarb specimens such as R. officinale and R. palmatum are often
used as purgative medicines. The anthraquinone concentration in roots of these two
rhubarb species typically ranges up to about 5% of dry mass [126,127]. Other purgative
rhubarb components are anthrones and dianthrone compounds, including rheinosides A–D;
palmidin A, B and C; rheidin A, B and C; as well as sennosides A–F [128]. In Asian countries,
R. emodi is also traditionally recommended for purgative therapy. Interestingly, while larger
doses of R. emodi are a natural laxative, at small doses, this plant was administered to treat
dysentery and diarrhea [129].

According to the literature, the presence of anthraquinone glycosides with 1,8-dihydroxy
groups and without hydroxyl groups in the 2, 3, 6 and 7 positions may be responsible
for the effect of “watery diarrhea”, occurring after using of some rhubarb-based treat-
ment [130]. Rhubarb contains both free anthraquinones (e.g., aloe-emodin, emodin, rhein,
chrysophanol and physcion) and conjugated forms, containing the β-glycoside bonds.
The anthraquinone conjugates are considered to be the exact medicinal components of
the rhubarb-derived material. The presence of the β-type glycoside bonds in conjugates
prevents their hydrolysis by α-glucosidase in the upper gastrointestinal tract and, as a
consequence, they are hydrolysed to free anthraquinones by bacterial β-glucosidases in
the colon. Recently, a Chinese research group designed oral colon-specific drug delivery
granules, containing the total free anthraquinones to improve their purgative effect and to
reduce anthraquinone nephrotoxicity [131,132]. The postprandial hyperlipidemia-lowering
effect and improvement in gastrointestinal transit in diabetic rats was reported for aqueous
extract from the rhizome of R. palmatum, administered at doses of 150 and 300 mg/kg b.w.
The anthrone content in the examined rhubarb extract was not less than 0.5% [133]. A
comparative study of three R. palmatum-containing traditional Chinese purgative medicines
Ta-Cheng-Chi-Tang (TCCT), Xiao-Chen-Chi-Tang (XCCT) and Tiao-Wei-Chen-Chi-Tang
(TWCCT) did not reveal their weight-lowering effects in rats fed on a high-fat diet. How-
ever, the examined extracts improved the blood serum lipid profile. In addition, both XCCT
and TWCCT significantly attenuated hypercholesterolemia and the TWCCT preparation
also reduced hypertriglyceridemia in rats [134].

Rhubarbs with lower content of anthraquinones (e.g., R. rhabarbarum) display mild
laxative effects, but they also are used for production of different dietary supplements and
food products dedicated to improving the intestine physiology and to prevent constipation.
These products are available in a form of herbal mixtures, capsules or even candy-like bars
enriched with the plant-derived fibre and low-molecular phytochemicals.

6. Concluding Remarks

Disrupted balance between an amount of taken calories and energy expenditure
as well as complex physiological activity of both white and brown adipose tissue are
essential pro-obesity factors. Different rhubarb species have been demonstrated to display
a wide range of biological activities that may be relevant for reduction in cardiovascular
risks, including improvement in glucose and lipid metabolism. The original findings on
the health-promoting action of the rhubarb-derived substances were typically focused
on the cholesterol-lowering role of the fibre. Currently, it is known that also other, low-
molecular phytochemicals may be important for the cardioprotective, lipid-lowering and
anti-adipogenic effects of these plants. However, the pharmacological significance of
the rhubarb-based preparations in a context of the anti-obesity action still remains only
partly recognized.

Literature evidence has indicated that the rhubarb-derived compounds and extracts
may act at different molecular and physiological levels. The pathophysiology of obesity
is multifactorial and includes many undesirable changes, such as alterations in blood
lipid profile, enhanced adipogenesis, increased body fat mass, hyperglycemia, chronic
inflammation in adipose tissue, oxidative stress, and others. Results from different types of
examinations have demonstrated that rhubarb-derived substances have some potential to
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reduce cardiovascular risks. On the other hand, it should be noted that many works devoted
to anti-obesity action of rhubarb-derived substances have stuck at a level of in vitro tests;
thus, a reliable evaluation of their physiological and pharmacological effects is not possible
yet. Moreover, findings from studies on individual phytochemicals (e.g., works on the anti-
obesity properties of resveratrol) cannot be directly extrapolated to the effects of rhubarb
preparations containing these phytochemicals. In addition, there is negligible evidence
of using rhubarb extracts combined with other natural or synthetic substances (including
drugs). The synergistic action of different substances seems to be a very promising research
trend, and this approach could give better results. For example, a reduction in body weight
gain was observed in an animal study on different combinations of extracts originating
from other plants (i.e., preparations from leaves from Phyllostachys pubescens J. Houz. and
roots of Scutellaria baicalensis Georgi) [135].

Furthermore, most in vivo studies have been conducted using animal models of
obesity. The available data from clinical studies provide only a fragmentary insight
into the pharmacological potential of these plants. Thus, the above-presented results
point to the need for further and more extensive studies using standardized rhubarb ex-
tracts/preparations aimed at establishing their exact anti-obesity relevance in vivo and
in humans.
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