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Abstract: Increased triglyceride, cholesterol, and low-density lipoprotein (LDL) levels cause hyper-
lipidemia. Despite the availability of statin-based drugs to reduce LDL levels, additional effective
treatments for reducing blood lipid concentrations are required. Herein, soybean hydrolysate pre-
pared via peptic and tryptic hydrolysis promoted trans-intestinal cholesterol excretion (TICE) by
increasing ATP-binding cassette subfamily G member 5 (ABCG5) and ABCG8 expression. The pep-
tide sequence capable of promoting TICE was determined via HPLC and LC-MS/MS. Based on this,
pure artificial peptides were synthesized, and the efficacy of the selected peptides was verified using
cellular and hyperlipidemic mouse models. Soybean hydrolysates, including two bioactive peptides
(ALEPDHRVESEGGL and SLVNNDDRDSYRLQSGDAL), promoted TICE via the expression of
ABCG5 and ABCG8 in enterocytes. They downregulated expression of hepatic cytochrome P450
family 7 subfamily A member 1 (CYP7A1) and CYP8B1 via expression of fibroblast growth factor 19
(FGF19) in a liver X receptor α (LXRa)-dependent pathway. Administration of bioactive peptides to
hyperlipidemic mouse models by oral gavage reduced cholesterol levels in serum via upregulation
of ABCG5 and ABCG8 expression in the proximal intestine and through fecal cholesterol excretion,
upregulated FGF 15/19 expression, and suppressed hepatic bile acid synthesis. Oral administration of
soybean-derived bioactive peptides elicited hypolipidemic effects by increasing TICE and decreasing
hepatic cholesterol synthesis.

Keywords: transintestinal cholesterol excretion; soybean; hyperlipidemia; bioactive peptide

1. Introduction

Hyperlipidemia is characterized by the elevated circulation of very low-density and
low-density lipoprotein cholesterol (VLDL-C and LDL-C) and decreased circulation of high-
density lipoprotein cholesterol (HDL-C) in the blood. It is closely correlated with obesity
and a sequence of cardiometabolic syndrome which includes hypertension and heart
disease [1]. In the case of atherosclerosis, inordinate circulation of LDL-C is associated with
atherosclerotic lesions, whereas decreased circulation of LDL-C delays the development of
atherosclerosis [2]. Under other conditions, HDL particles play an essential role in the anti-
atherosclerotic effect through acceptance of cholesterol and its transfer to the liver. HDL has
an anti-oxidative role through the oxidation of LDL particles, and prevents the formation
of atheroma in the sub-endothelial region [3]. Although HDL has a prophylactic role in
LDL progression, it plays a minor role in the progression of hyperlipidemia. Therefore,
hyperlipidemia has become an urgent health issue.

There are therapeutic strategies for hyperlipidemia. For instance, statins, and in-
hibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) are commonly used to
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inhibit cholesterol synthesis and to decrease triglyceride (TG) and cholesterol levels in the
blood. On the other hand, omega-3-fatty acids, fibrates, and niacin are commonly used as
treatment options in statin-tolerant patients [4]. In previous studies, HMG-CoA has been
shown to be an important enzyme in the cholesterol-related pathway, and its enzymatic
products, including mevalonate, have shown physiological roles in other pathways [5].
Additionally, inappropriate statin prescriptions can result in diabetes mellitus, central
nervous system disorders, and statin-associated muscle symptoms [6]. To ameliorate these
adverse effects of statin therapies, combination therapy with ezetimibe is widely used and
has shown enhanced LDL-C-lowering effects and improvement of LDL-C levels [7]. In
addition, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors (evolocumab
and alirocumab), benzoic acid, and a combination of bempedoic acid and ezetimibe, ev-
inacumab, and other TG-lowering agents (e.g., icosapent ethyl) have emerged [8]. Although
therapeutic strategies involving statin and non-statin therapies have improved, they are
still insufficient for ameliorating the effects of hyperlipidemia.

The liver is a critical organ for cholesterol synthesis and excretion to the intestinal
lumen; however, around 95% of cholesterol excretion via hepatobiliary cholesterol excretion
is absorbed by the intestine [9]. Previous studies have shown that routes for cholesterol
secretion via hepatobiliary transport and trans-intestinal cholesterol secretion or excretion
(TICE), which are direct transport pathways through intestinal enterocytes [10]. The previ-
ous studies show that TICE-mediated cholesterol transport accounts for approximately 40%
of cholesterol excretion to feces; thus, TICE is a suitable therapeutic target for cardiovascular
diseases [11,12]. Based on molecular mechanisms, cholesterol of lipoprotein particles is
accepted at basolateral enterocytes. Next, the ATP-binding cassette transporter G5 (ABCG5)
and ABCG8 (heterodimers) facilitate cholesterol excretion into the intestinal lumen [13].
Because TICE could be a therapeutic target for hyperlipidemia, more effective and less
adverse regulators of TICE are needed for the treatment of hyperlipidemia [14,15].

In the digestive process, proteins are digested through peptic and tryptic hydrolysis in
the stomach and small intestine. The digested proteins yield individual amino acids. These
protein hydrolysates have various bioactivities. The bioactivity of protein hydrolysates
was investigated via analysis of their sequences. In addition, the bioactivity showed
longevity effects despite ingestion of polypeptides [16]. Bioactive polypeptides have
diverse functions, including anti-cancer [17], hypertensive [18], and immunoregulatory
effects [19]. In addition, our previous study showed that casein-derived bioactive peptides
affect TICE and bile acid metabolism [20].

Soy is a representative functional food, and its hydrolysate has been reported to
be able to affect lipolysis in adipocytes [21] and the gut microbiome [22], and to have
antihypertensive effects [23]. However, there are only a few studies on the bioactive
peptides of soy hydrolysate and the mechanisms underlying their effect on hyperlipidemia.
In the present study, we investigated the biological function and mechanisms of soy
hydrolysates. Peptides from soy hydrolysates affect blood cholesterol levels by regulating
TICE and bile acid metabolism, as observed in cellular and mouse models. Therefore, we
elucidated that bioactive peptides from soy hydrolysates have a promising therapeutic role
in hyperlipidemia.

2. Materials and Methods
2.1. Chemicals, Antibodies, and Reagents

Soybean powder, trypsin, and pepsin for soy hydrolysis were purchased from Sigma
Aldrich (St. Louis, MO, USA). Monoolein and sodium taurocholate for TICE assay were
purchased from Sigma Aldrich (St. Louis, MO, USA). siRNA for control and human FGF19
were purchased from Bioneer (Daejeon, Korea). Antibodies specific for ABCG5 and ABCG8
were purchased from Abcam (Cambridge, MA, USA). FGF15, FGF19, GAPDH, and alpha-
tubulin were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Dulbecco’s
modified Eagle’s medium (DMEM), Eagle’s minimum essential medium (MEM), fetal
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bovine serum (FBS), streptomycin, penicillin, and TRIzol were obtained from Thermo
Fisher Scientific (Cleveland, OH, USA).

2.2. Cell Culture and Treatment

As previously described, the human colorectal cancer cell line Caco-2 and the human
normal hepatocyte cell line MIHA were cultured [24]. Briefly, MEM (for Caco-2) and
DMEM (for MIHA) were utilized supplemented with 10% FBS and penicillin (100 U/mL),
and streptomycin (100 mg/mL), respectively. The cell incubator setting was 37 ◦C, with
5% CO2 and humidity. Before treatment, the cells were incubated in serum-free media for
24 h [25].

2.3. Soy Hydrolysis

For soybean hydrolysis, pepsin and trypsin treatments were performed as previously
described [20]. Briefly, the soy solution was prepared at 5 mg/mL in distilled water. The
pH of the soy solution was adjusted to approximately 2 by adding a 40% HCl solution
and incubated with pepsin (0.4% weight per volume) at 37 ◦C for 2 h. Next, the pH of
the solution was adjusted to 7.6 by adding a NaOH solution and incubated with trypsin
(0.4% weight per volume) at 37 ◦C for 2 h. The hydrolysates were added with SDS buffer,
loaded with sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE),
and stained with Coomassie Blue.

2.4. Total RNA Isolation and qRT-PCR

For mRNA expression assessment, qRT-PCR was performed as described in a previous
study [26]. Briefly, RNA was isolated using TRIzol, following the manufacturer’s instruc-
tions, and qRT-PCR was performed using an Applied Biosystems StepOne Real-Time PCR
System (Applied Biosystems, Foster City, CA, USA) for 40 cycles at 95 ◦C for 15 s and at
60 ◦C for 1 min, followed by thermal denaturation. The primer sequences used are listed
below (Table 1). Each sample was assessed in triplicate.

Table 1. Primers used for qRT-PCR.

Gene Name Forward Primer Reverse Primer

Human ABCG5 5′-AGCAAGGAACGGGAAATAGA-3′ 5′-CAGGAGAACACCCAGTTTAGAG-3′

Human ABCG8 5′-GATACAGCCGCCCTCTTTT-3′ 5′-GCCCGTCTTCCAGTTCATAG-3′

Human FGF19 5′-AGATCAAGGCAGTCGCTCTG-3′ 5′-AAAGCACAGTCTTCCTCCGA-3′

Human FXR 5′-AAAGTTGTGTAAGATTCACCAGCCT-3′ 5′-GGTCGTTTACTCTCCATGACATCA-3′

Human CYP7A1 5′-GACCACATCTTTGATTTGG-3′ 5′-CCGTTTGCCTTCTCCTAA-3′

Human CYP8B1 5′-GCCTGTCCTTTGTAATGCTGA-3′ 5′-GAAGCGAAAGAGGCTGTCC-3′

Human GAPDH 5′-ATGACATCAAGAAGGTGGTG-3′ 5′-CATACCAGGAAATGAGCTTG-3′

Mouse Abcg5 5′-CTTCGACAAAATTGCCATCC-3′ 5′-GAAAGGAACCGTGGGTAAGG-3′

Mouse Abcg8 5′-TGGTCAGTCCAACACTCTGG-3′ 5′-ACTGGGTTGCCCATTTATCC-3′

Mouse Fgf15 5′-GAGGACCAAAACGAACGAAATT-3′ 5′-ACGTCCTTGATGGCAATCG-3′

Mouse Fxr 5′-AAATGAGGGCTGCAAAGGTTTCT-3′ 5′-TGCCCCCGTTCTTACACTTG-3′

Mouse Cyp7a1 5′-TACAGAGTGCTGGCCAAGAG-3′ 5′-GCTGTCCGGATATTCAAGGA-3′

Mouse Cyp8b1 5′-CCTCTGGACAAGGGTTTTGTG-3′ 5′-GCACCGTGAAGACATCCCC-3′

Mouse Gapdh 5′-CGACTTCAACAGCAACTCCCACTCTTCC-3′ 5′-TGGGTGGTCCAGGGTTTCTTACTCCTT-3′

2.5. Western Blotting

For protein expression assessment, western blotting was utilized as described previ-
ously [27]. Briefly, whole cell lysates were prepared using radioimmunoprecipitation assay
lysis buffer (50 mM Tris (pH 7.4), 1% Triton X-100, 150 mM NaCl, 1 mM dithiothreitol,
25 mM NaF, and 20 mM EGTA supplemented with protease inhibitors), and a Bio-Rad
protein assay kit (Bio-Rad Laboratories, Hercules, CA, USA) was used to determine protein
concentrations. Protein samples were subjected to SDS-PAGE, transferred to an NC (ni-
trocellulose) membrane, and then blocked with 5% BSA (bovine serum albumin) in TBST
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(100 mM NaCl, 10 mM Tris, and 0.1% Tween 20). The membranes were probed with specific
primary antibodies overnight at 4 ◦C. Next, the membranes were washed in TBST and
probed with peroxidase-conjugated secondary antibodies (Santa Cruz Biotechnology, Santa
Cruz, CA, USA). The membranes were analyzed using an ECL detection system (Roche
Applied Science, Indianapolis, IN, USA) with iBright chemi-doc fl000 from Thermo Fisher
Scientific. The images of western blot data were quantified using ImageJ and validated by
statistical analyses.

2.6. Cholesterol Assay

To measure the total cholesterol levels in cells, media, serum, and feces, a total choles-
terol assay kit (Cell Biolabs, San Diego, CA, USA) was used. Following the manufacturer’s
instructions, cells and feces were homogenized in an extraction solution with a mixture
of chloroform: isopropanol:NP-40 of 7:11:0.1, centrifuged at 15,000× g for 10 min, and
the supernatant was obtained. The solution was dried at 50 ◦C, and the dried lipids were
dissolved in assay buffer. The media and serum were diluted in the assay buffer. The
samples were then subjected to cholesterol assay and detected at 560 nm using a GloMax
fluorescence detection system. Each sample was measured in triplicate.

2.7. In Vitro TICE Assay

Following a previous study, Caco-2 cells were incubated on the insert of the transwell
and differentiated for 7 days [20,28]. To prepare a media containing cholesterol, MEM
media was supplemented with monoolein (30 µM), sodium taurocholate (500 µM) and/or
cholesterol (100 µM) and subsequently sonicated for 15 min to form micelles. To assess the
in vitro TICE, the upper chamber was filled with media without cholesterol, and the lower
chamber was filled with media containing cholesterol. The media in the upper chamber
were harvested 24 h after peptide and GSK2033 treatment and applied to the cholesterol
assay.

2.8. High-Performance Liquid Chromatography (HPLC) Analysis of Soy Hydrolysates

HPLC was used to separate peptides contained in the protein hydrolysates. A Waters
1525 Binary HPLC pump (Wasters, Milford, MA, USA), Sunfire C18 column (4.6 × 250 mm),
and Waters 2489 UV/Visible detector (Waters) were used. The mobile phase was an isocratic
combination of acetonitrile:H2O (50:50) at a 1 mL/min flow rate. The eluates were collected
following the real-time UV detection results (214 nm).

2.9. Peptide Sequencing and Synthesis

To analyze the bioactive peptides contained in the HPLC eluates of soy hydrolysates,
the bioactive fraction was applied to peptide identification liquid Chromatography with
tandem mass spectrometry (LC-MS/MS) performed by Life Science Laboratory. Co. (http:
//www.emass.co.kr, 25 June 2021), Seoul, Korea. Depending on the peptide identification
results, artificial peptides were synthesized and prepared by Peptron Co. (http://peptron.
co.kr, 25 June 2021), Daejeon, Korea.

2.10. Cellular Viability Assay

To measure the cellular toxicity of peptides, CellTiter-Glo® Luminescent Cell Via-
bility Assay kit (Promega, Madison, WI, USA) was used. Following the manufacturer’s
instructions, cells were seeded and incubated in a 96-well plate. Cells were treated with
the bioactive peptides 24 h prior to detection. The samples were detected using a GloMax
luminescence detection system. Each sample was measured in triplicate.

2.11. Animal Care Protocol

Six-week-old male C57BL/6 mice (Orient Bio, Seongnam, Korea) were used for the
in vivo experiments, based on protocols specified in a previous study [29]. The protocols
used were approved by the Institutional Animal Care and Use Committee of Pusan National

http://www.emass.co.kr
http://www.emass.co.kr
http://peptron.co.kr
http://peptron.co.kr
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University (Busan, Korea) and performed in accordance following the National Institutes
of Health Guide for the Care and Use of Laboratory Animals. The mice were housed
individually or in groups of up to five mice in sterile cages. They were maintained in animal
care facilities at room temperature (23 ◦C ± 1 ◦C) with a 12-h light-dark cycle. The animals
were fed water and a standard mouse chow diet or a high cholesterol diet (HCD) ad libitum.
The animal protocol used in this study was approved by the Pusan National University
Institutional Animal Care and Use Committee (PNU-IACUC) for ethical procedures and
scientific care (Approval Number PNU-2020-2809) on 2 December 2020.

Before the experiment, the mice were randomly divided into experimental groups
(n = 10). To establish hyperlipidemia and assess peptide effects, the mice were fed with
HCD (21% milkfat, 0.5% cholic acid, and 1.25% cholesterol), and peptides were orally
administered at 200 µg/day for 7 weeks. At the end of the administration, the mice were
anesthetized with isoflurane for inhalational anesthesia and perfused. The blood, liver, and
small intestine (divided into three parts: the proximal part of the small intestine, which
attaches to stomach; the middle, between the proximal and distal parts; and the distal, the
part of the small intestine which attaches to colon) as well as the feces were harvested.

2.12. Enzyme-Linked Immunosorbent Assay (ELISA)

To assess secretory FGF15/19 levels in serum and media samples, an indirect ELISA
was performed. The samples were attached to 96-well immunoplates (SPL, Seoul, Korea),
blocked with 1% BSA in PBS, and probed with primary antibodies and HRP-conjugated
secondary antibodies. TMB (3,3’,5,5’-Tetramethylbenzidine) was utilized and detected at
450 nm. Each sample was assessed in triplicate.

2.13. Statistical Analysis

All numerical data are presented as the mean ± standard error from at least three
independent experiments. For quantification, data were analyzed using t-test, One-way
ANOVA and multiple comparison (Dunnett’s T3 test and Tukey test). Prism 9 software
(GraphPad Software, San Diego, CA, USA) was used for all statistical analyses. Statistical
significance was set at p < 0.05.

3. Results
3.1. Soy Hydrolysates Upregulate TICE and Downregulate Cholesterol Levels

As shown in a previous study, hydrolysis through the digestive system contributes to
the bioactivity of soybean [30]. To elucidate the effects of hydrolyzed soybean, we produced
soy hydrolysates using highly purified isolated soybean powder (minimum protein content
of 90%) in distilled water. Then, we incubated soy solution with pepsin and trypsin at body
temperature and a pH range of pH 2–3 and pH 7–8, respectively. After incubation, the
digested solution was validated using SDS-PAGE and Coomassie blue staining (Figure 1A).
There was no detection for negative control (soy solution), but small peptides from soy
hydrolysate were detected. To confirm that soy hydrolysates regulate TICE, we utilized
an in vitro small intestine model through the Caco-2 cell line as previously described [28].
Soy protein or hydrolysates were applied to Caco-2 cells at 2 mg/mL for 24 h, and we
assessed ABCG5 and ABCG8 mRNA expression [31]. Soy protein and soy hydrolysate
upregulated ABCG5 and ABCG8 mRNA levels (Figure 1B). Additionally, ABCG5/8 protein
levels are increased via soy solution treatment (not hydrolysis), and soy hydrolysate
increased their expression to a greater degree than soy treatment (Figure 1C). Next, we
assessed the effect of soy hydrolysates on cholesterol regulation. Soy protein and soy
hydrolysate increased the TICE amount via topical cholesterol transport by approximately
30% and 80%, respectively (Figure 1D). Next, to elucidate the effect of soy hydrolysate
in vivo, we used a high-cholesterol diet (HCD) to generate a hyperlipidemic mouse model.
We orally administrated soy hydrolysates to the HCD mice for three weeks. As a result,
administration of soy hydrolysate decreased serum cholesterol level by approximately
15% compared with mice fed only on an HCD (Figure 1E). Consequently, the results show
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that the digestive product of soybean induced cholesterol excretion in vitro and decreased
cholesterol levels in serum.
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Figure 1. Soy hydrolysates attenuate hyperlipidemia and induce TICE. (A) Coomassie blue staining
of the soy protein hydrolysis by digestive enzymes pepsin and trypsin. (B,C) The mRNA and protein
level of ABCG5/8 in soy protein or soy hydrolysates (2 mg/mL) treated Caco-2 cells. (D) The
relative TICE amount in soy protein or soy hydrolysate treated Caco-2 cell via cholesterol assay.
(E) Using cholesterol assay, serum cholesterol levels in mice feeding a high-cholesterol diet (HCD) or
high-cholesterol diet + soy hydrolysate (HCD + S. H) (5 mg/day). *, p < 0.05. **, p < 0.01. ***, p < 0.001.
****, p < 0.0001. ABCG5/8, ATP-binding cassette subfamily G member 5/8; GAPDH, glyceraldehyde
3-phosphate dehydrogenase; N.D., normal diet; HCD, high-cholesterol diet; S.H., soy hydrolysates.

3.2. Soy Hydrolysate-Derived Bioactive Peptides Induce TICE

In previous studies, ingestion of bioactive peptides was noted to have biological
effects [32]. Although the mechanism of bioactive peptides for effects on biological pro-
cesses have not been clarified, a previous study on bioactive peptide has suggested that
amino acid sequences are important for the effects of these peptides [33]. Based on the
importance of amino acid sequences, we hypothesized that soy and soy hydrolysates exert
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hypolipidemic effects through specific bioactive peptides arising from soybean digestion.
Using HPLC, 2 mg of soy hydrolysates was divided into three fractions based on their
hydrophobicity (water:acetonitrile ratio, Figure 2A). To elucidate the important fraction
for the hypolipidemic effects, we treated the fraction and assessed the level of ABCG5 and
ABCG8 in Caco-2 cells. We observed that only fraction #2 upregulated levels of ABCG5
and ABCG8 (Figure 2B,C). Next, we further analyzed fraction #2 using LC-MS/MS-based
peptide identification. Consequently, we discovered 11 peptide sequences in fraction #2
(Table 2). To prove the effects of these 11 synthetic peptides for ABCG5 and ABCG8 reg-
ulation, we performed analysis by using 1 µg/mL in distilled water of each peptide to
treat Caco-2 cells [20,33]. We confirmed that peptides 1 and 8 significantly upregulated
ABCG5 and ABCG8 expression by 1.5-fold (Figure 2D). We further examined cell viability
via the peptide treatment utilizing cellular luminescence assay. As a result, treatment of
the peptides could not impair cell viability in Caco-2 cells (Figure 2E). These results show
that soy hydrolysates have bioactivity and exert hypolipidemic effects through specific
bioactive peptides.

Table 2. Peptide sequence contained in fraction #2.

No. Sequence Original Protein

1 ALEPDHRVESEGGL Glycinin
2 NALEPDHRVESEGGL Glycinin
3 FVDAQPQQKEEGN Beta-conglycinin alpha’-subunit
4 VDAQPQQKEEGN Beta-conglycinin alpha’-subunit
5 VVNPDNDENLRM Beta-conglycinin alpha’-subunit
6 YVVNPDNDENLRM Beta-conglycinin alpha’-subunit
7 SLVNNDDRDSY Beta-conglycinin alpha-subunit
8 SLVNNDDRDSYRLQSGDAL Beta-conglycinin alpha-subunit
9 VGLKEQQQEQQQEEQPLEVR Beta-conglycinin alpha-subunit
10 TISSEDEPFNLRS Beta-conglycinin beta-subunit
11 FPFELPSEERG Sucrose binding protein homolog S-64

3.3. Soybean-Derived Peptides Upregulate TICE via LXRα Signaling

To elucidate how TICE is regulated by peptides, we confirmed the TICE amount
in vitro through the treatment of each peptide. Consequently, peptide 1 and peptide 8
induced in vitro TICEs (Figure 3A). In addition, peptides 1 and 8 upregulated ABCG5 and
ABCG8 protein levels (Figure 3B). Next, to validate the signaling pathways induced via the
peptide treatment to increase intestinal ABCG5 and ABCG8 levels, we analyzed the liver
X receptor α (LXRα) signaling. As previous studies have reported, ABCG5 and ABCG8
are transcriptional targets of LXRα [34]. As LXRα is the primary inducer of ABCG5 and
ABCG8, we utilized GSK2033, a specific LXRα antagonist, to modulate ABCG5 and ABCG8
expression. Treatment of Caco-2 cells with GSK2033 resulted in a 30% reduction in ABCG5
and ABCG8 levels and was not rescued by peptide treatment (Figure 3C). Additionally,
GSK2033 treatment downregulated ABCG5 and ABCG8 protein expression (Figure 3D).
Similarly, GSK2033 treatment reduced the in vitro TICE amount and decreased the effects
of peptide treatment (Figure 3E). These results show that soybean-derived peptides 1 and 8
upregulate cholesterol excretion via LXRα-mediated ABCG5 and ABCG8 levels.
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Figure 3. Soybean-derived peptide upregulates TICE via LXRα-dependent manner. (A) The relative
TICE amount in peptide 1 or 8-treated Caco-2 cells via cholesterol assay. (B) The protein expression
of ABCG5/8 in peptide 1 or 8-treated Caco-2 cells. (C,D) The mRNA and protein expression of
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**, p < 0.01. ***, p < 0.001. ****, p < 0.0001. GSK, LXR antagonist. ns, no significant.

3.4. Bioactive Peptides Regulate Bile Acid Synthesis via Regulation of Enterocyte-Derived FGF19

In fecal cholesterol excretion, TICE has a one-third proportion; hepatobiliary choles-
terol transport is also critical for cholesterol excretion to feces and hypolipidemic strat-
egy [35]. As previously described, in vivo TICE regulated intestinal bile acid profiles
modulated via metabolic change of hepatic bile acid [12]. Intestine-derived secretary fac-
tors regulate bile acid metabolism in the liver. In addition, secretary factors are important
for the regulation cycle of bile acid in the liver and intestine. Fibroblast growth factor



Nutrients 2022, 14, 95 10 of 17

19 (FGF19) is a typical intestine-derived secretory protein and has modulating effects on
the metabolic pathway of bile acid in the liver. Therefore, we assessed whether FGF19
expression is altered by peptide treatment and farnesoid X receptor (FXR) level. In previous
studies, FXR was found to play a role in FGF19 expression and TICE [12]. We observed that
FGF19 expression was upregulated by peptide treatment, while FXR expression remained
unchanged (Figure 4A). Increased FGF19 secretion was observed in the culture medium
(Figure 4B). We confirmed that the LXRα signaling pathway is mediated by peptides 1 and
8 (Figure 3) and that the LXRα ligand increased the expression of intestinal FGF19 [36].
Therefore, we assessed whether GSK2033 and peptide treatment could alter FGF19 and
FXR expression. As a result, the expression of FGF19 was significantly downregulated,
while GSK2033 treatment barely rescued that of FXR with or without peptide treatment
(Figure 4C). In addition, we confirmed that GSK2033 suppressed the secretion of FGF19 and
that peptide treatment could not rescue the secretion (Figure 4D). To validate regulation
of FGF19 via peptide for the metabolic pathway of bile acid in liver, conditioned media
(CM) from the peptide-treated Caco-2 cells was added to MIHA cells. We confirmed the
level of cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and CYP8B1, which
are major cholesterol synthesis-related genes. The expression of CYP7A1 and CYP8B1
was reported to be downregulated by ileal FGF19 secretion [12]. We observed that CM
suppressed CYP7A1 and CYP8B1 expression (Figure 4F). To validate the effect of FGF19
on CYP7A1 and CYP8B1 levels in the liver, CM from FGF19 siRNA-treated was added to
Caco-2 cells (Figure 4E). We showed that it rescued the downregulation of CYP7A1 and
CYP8B1 levels (Figure 4F). Moreover, peptides obtained via soybean digestion modulated
the hepatic bile acid synthetic pathway via FGF19 secretion.

3.5. Bioactive Peptides Attenuate Cholesterol-Derived Obesity and Hyperlipidemia

Owing to our observations of the effects of bioactive peptides on TICE and hepatic
bile acid metabolism in vivo, we established hyperlipidemic mouse models using an HCD.
The mice were administered peptide 1 or 8 five times orally at 10 mg/kg in a week [37]. To
investigate the prophylactic and therapeutic effects of soybean-derived peptides, peptides
were orally injected with HCD. Peptide treatment diminished the weight of mice by approx-
imately 25% after seven weeks of administration (Figure 5A). To confirm the hypolipidemic
effects of peptide treatment, we confirmed the cholesterol levels in serum and feces. We
observed that peptide treatment decreased serum cholesterol levels by approximately
33% and increased fecal cholesterol levels by approximately 50% after seven weeks of
administration (Figure 5B). According to a previous study, TICE occurs in the proximal
intestine [10]. Therefore, we confirmed Abcg5/8 levels in proximal and distal intestines
to validate the effect of peptide administration in the intestine. In the proximal intestine,
peptide treatment increased Abcg5 and Abcg8 expression (Figure 5C). However, levels of
Abcg5 and Abcg8 were unaltered via peptide treatment in the distal intestine (Figure 5C). We
quantified Abcg5/8 protein levels using western blotting. Peptide treatment upregulated
Abcg5/8 protein levels (Figure 5C). We previously assessed the intestinal expression of
FGF19 and FXR in vitro (Figure 4A). Next, we confirmed the level of Fgf15 (FGF19 murine
homolog form) and Fxr. We observed that peptide administration did not alter the level of
Fxr in the proximal intestine. The level of Fgf15 was significantly increased by the peptide
treatment in HCD mice (Figure 5D). These results are consistent with our previous in vitro
results. Next, we found that serum Fgf15 levels were downregulated by 20% in the HCD
group and rescued by the peptide treatment (Figure 5E). The downregulation of serum
Fgf15 levels demonstrated that Fgf15 might have a role in the increase of systemic Fgf15
circulation. Finally, to confirm whether increased Fgf15 expression plays a role in the
metabolic pathway of bile acid, we assessed levels of CYP7A1 and CYP8B1 in the liver. The
HCD group showed reduced Cyp7a1 and Cyp8b1 levels (Figure 5F). The peptide treatment
further diminished these changes. Collectively, soybean-derived bioactive peptides 1 and 8
had weight-reducing effects and hypolipidemic effects in the in vivo model. Specifically,
bioactive peptides upregulated the Abcg5/8 level in the proximal intestine, thereby up-
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regulating cholesterol excretion by TICE. In addition, peptides 1 and 8 upregulated Fgf15
secretion, further decreasing cholesterol synthesis correlated with Cyp7a1 and Cyp8b1
levels (Figure 6).
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(A) The mRNA level of FGF19 and FXR in peptide 1 or 8-treated Caco-2 cells. (B) Using ELISA,
the changes of secretory FGF19 level in conditioned media of peptide 1 or 8-treated Caco-2 cells.
(C) The mRNA expression changes of FGF19 and FXR in GSK2033 and peptide 1 or 8-treated Caco-2
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cells with control or FGF19 siRNAs. (F) The changes of CYP7A1 and CYP8B1 in conditioned media
(treatment of peptide 1 or 8 and FGF19 siRNA Caco-2)-treated MIHA cells. **, p < 0.01. ***, p < 0.001.
****, p < 0.0001. MIHA, human hepatocytes cell lines; FGF, fibroblast growth factor. ns, no significant.
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Figure 5. Soybean-derived peptide attenuates hyperlipidemia (A) The changes in the weight of mice
from HCD diet and/or peptide administration in mice. (B) The cholesterol levels of HCD-diet mice
and/or peptides in serum and feces. (C) The mRNA and protein expression of Abcg5/8 from HCD
diet and/or peptide administration in the proximal or distal intestine. (D) The level of Fgf15 and Fxr
from HCD diet and/or peptide administration in the proximal or distal intestine. (E) Using ELISA, the
serum Fgf15 level from HCD diet and/or peptide administration in serum. (F) The level of Cyp7a1 and
Cyp8b1 from HCD diet and/or peptide administration in the liver. *, p < 0.05. **, p < 0.01. ***, p < 0.001.
****, p < 0.0001. HCD, high-cholesterol diet; N.D., normal diet. ns, no significant.
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4. Discussion

As the severity of hyperlipidemia and its complications are both increasing, therapeutic
strategies for hypolipidemia must be developed. In addition to previous studies and
other therapeutic strategies, the promotion of TICE may increase treatment efficacy [12].
In this study, we demonstrated that two specific soybean-derived peptides (peptide 1,
ALEPDHRVESEGGL, and peptide 8, SLVNNDDRDSYRLQSGDAL) could upregulate TICE
by inducing ABCG5 and ABCG8 expression and LXRα signaling activation. In addition, we
confirmed that secretion of FGF15/19 from enterocytes was increased via peptides 1 and 8,
which reduced hepatic bile acid synthesis to support hepatobiliary cholesterol excretion.
These results indicate that peptides formed during the digestive process have bioactivity
associated with the regulation of systemic cholesterol homeostasis.

In the context of cholesterol regulating strategies, TICE has been studied as an ad-
juvant cholesterol-lowering pathway for hepatobiliary cholesterol excretion. Given that
TICE was noted to induce approximately one-third of cholesterol excretion, it has been
considered to have clinical potential for hyperlipidemia treatment [35]. Our study showed
that peptides from dietary soybean can upregulate TICE by increasing ABCG5 and ABCG8
expression. Based on the results of treatment with GSK2033, a specific LXRα antagonist,
it can be concluded that the transcriptional activity of LXRα mediates peptide-induced
ABCG5 and ABCG8 expression. In a previous study, LXRα was associated with ABCG5
and ABCG8 expression and induction of TICE, and we observed that the induction of
signaling pathways by soybean-derived peptides was involved in LXRα activity [38]. In
addition, we observed that peptide treatment upregulated ABCG5 and ABCG8 expression
in only the proximal intestine. Consistent with previous studies, TICE steadily decreased
upon movement toward the distal intestine and peptide-derived TICE increased only in
the proximal intestine. Therefore, peptide-mediated ABCG5 and ABCG8 upregulation
effectively increased fecal cholesterol excretion [10,20]. Our in vivo results showed that
peptide 1 and 8 downregulated the serum cholesterol levels while increasing the fecal
cholesterol levels. To clarify whether the hypolipidemic effect of the peptides is caused by
ABCG5/8-mediated TICE, further study is needed to show that cholesterol levels remain
unchanged by peptide treatment in ABCG5/8 knock-out mice. Our results showed that the
bioactive peptides generated upon soybean digestion increase TICE in an LXRα-dependent
manner.

Proteins are divided into amino acids via digestion processes, including digestive
enzymatic functions. Moreover, the amino acids are absorbed in the small intestine and
affect biological processes [16–20]. In this current study, we discovered two bioactive
peptides, peptides 1 and 8, which are approximately 1.5 kDa and 2.1 kDa in size, respectively.
Peptides 1 and 8 have not been reported to date. The original protein of peptide 1 is glycinin,
while peptide 8 is a beta-conglycinin alpha subunit. Glycinin and beta-conglycinin alpha
subunits are known storage proteins [39]. Although glycinin and beta-conglycinin are
allergenic proteins in humans, only their acidic and macro polypeptides are known to
induce allergenic symptoms [40,41]. In a previous study, soybean glycinin improved HDL-C
level and atherogenic index when used in a hypercholesterolemic chow diet [42]. Similarly, a
soybean beta-conglycinin diet suppressed serum TG levels by decreasing fatty acid synthase
expression and suppressing TG absorption and beta-oxidation in mice [43]. As shown
in previous studies, the effects of soybean-derived glycinin and beta-conglycinin on the
attenuation of lipid levels need to be investigated with respect to the underlying molecular
mechanisms. In addition, further understanding of bioactive peptide characteristics is
needed in order to evaluate the effects of other biological processes. Therefore, the current
study provides a reasonable framework for understanding hyperlipidemic symptoms.

In our in vitro and in vivo experiments, treatment with peptides 1 and 8 induced
inhibition of CYP7A1 and CYP8B1 hepatic expression by upregulating FGF15/19 levels and
secretion. In the bile acid synthesis, CYP7A1 is a rate-limiting enzyme and CYP8B1 has an
important role in the homeostasis of cholic acid (CA) and chenodeoxycholic acid (CDCA) in
the liver; moreover, CYP7A1 and CYP8B1 regulate the levels of synthetic cholesterol [44,45].
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This study elucidated that hepatic expression of CYP7A1 and CYP8B1 is downregulated
in hyperlipidemic mouse models and that suppression of FGF15/19 induces a decrease
in CYP7A1 and CYP8B1. Recently, it was reported that the modulation of the FGF15/19
pathway affects proliferation and metabolic function in hepatocytes, intestinal FGF15/19
physiologically inhibits hepatic lipogenesis, and FGF15/19 controls hepatic cholesterol and
bile acid homeostasis [46–48]. Furthermore, regulating FGF15/19 affects carbohydrate and
lipid metabolism, including TG concentrations, insulin sensitivity, weight loss, and obesity-
associated hyperlipidemia [49]. The results of these studies are consistent with those of the
current study, given that Fgf15 expression changed in hyperlipidemic mouse models. In
conclusion, soybean-derived peptides 1 and 8, via modulation of FGF15/19 expression,
induce TICE and regulate systemic lipid metabolism. Collectively, these results suggest
that peptides 1 and 8 are potential therapeutic targets for obesity and hyperlipidemia.

5. Conclusions

We discovered two efficient bioactive peptides from soybean and illuminated the
mechanisms involved in hypolipidemic effects. As soybean is a widely consumed food, the
bioactivities of peptides generated by its digestion were analyzed using artificial synthetic
peptides; moreover, soybean-derived peptide sequences can be used in further studies to
enhance the effectiveness of peptides and investigate other cholesterol-related molecular
mechanisms. Lastly, further exploration of safe food ingredients in biological processes can
help identify alternative therapeutic strategies to prevent adverse effects.
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