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Abstract: Vitamin D deficiency and elevated high sensitivity C-reactive protein (hs-CRP) have been
associated with several health outcomes, but knowledge on early life trajectories and association
between 25 hydroxyvitamin D (25(OH)D) and hs-CRP is lacking. We investigated the association be-
tween longitudinal measurements of 25(OH)D and hs-CRP, respectively, from pregnancy to childhood
and throughout childhood in two Danish mother–child cohorts—the COPSAC2010 and COPSAC2000.
In COPSAC2010, there was an association between 25(OH)D concentrations at week 24 in pregnancy
and at age 6 months in childhood (n = 633): estimate (95% CI); 0.114 (0.041;0.187), p = 0.002, and
between 25(OH)D at age 6 months and 6 years (n = 475): 0.155 (0.083;0.228), p < 0.001. This was
also demonstrated in the COPSAC2000 cohort between 25(OH)D concentrations in cord blood and
at age 4 years (n = 188): 0.294 (0.127;0.461), p < 0.001 and at age 6 months and 4 years (n = 264):
0.260 (0.133;0.388), p < 0.001. In COPSAC2000, we also found an association between hs-CRP at
age 6 months and 12 years in childhood (n = 232): 0.183 (0.076;0.289), p < 0.001. Finally, we found
a negative association between the cross-sectional measurements of 25(OH)D and hs-CRP at age
6 months (n = 613) in COPSAC2010: −0.004 (−0.008;−0.0004), p = 0.030, but this was not replicated in
COPSAC2000. In this study, we found evidence of associations across timepoints of 25(OH)D concen-
trations from mid-pregnancy to infancy and through childhood and associations between hs-CRP
levels during childhood, although with weak correlations. We also found a negative cross-sectional
association between 25(OH)D and hs-CRP concentrations in COPSAC2010 proposing a role of vitamin
D in systemic low-grade inflammation, though this association was not present in COPSAC2000.

Keywords: vitamin D; hs-CRP; low-grade inflammation; COPSAC; 25(OH)D; pregnancy; children

1. Introduction

High-sensitivity C-reactive protein (hs-CRP) is a known marker of systemic low-grade
inflammation in many chronic disorders, including inflammatory bowel disease (IBD) [1],
cardiovascular disease [2,3], depression [4] and chronic obstructive pulmonary disease
(COPD) [5]. Further, increased concentrations of hs-CRP have been linked to decreased
lung function in childhood [6,7], allergic sensitization at school age [8], early life airway
microbiota [9] and childhood asthma [10,11], which has led to suggestions of using hs-CRP
as a clinical biomarker of low-grade inflammation for grading, diagnosing and preventing
disease [11]. We have previously shown an association between hs-CRP levels in pregnant
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mothers and their offspring at age 6 months [12]; however, knowledge on the development
of low-grade inflammation throughout childhood is lacking.

Vitamin D sufficiency in early life has also been shown to be associated with several
health outcomes during childhood, including greater bone mineralization [13], decreased
risk of enamel defects [14], asthma [15] and various skin conditions. Experimental studies
have suggested reduced replication of virus in bronchial epithelial cells [16], induced an-
timicrobial production [17] and upregulation in the early life airway immune profile [18]
as possible mechanisms for preventing asthma. Since the cutaneous conversion of 7-
dehydrocholesterol to pre-vitamin D3 and then vitamin D3 occurs only when exposed
to sunlight by ultraviolet B radiation [19], human blood concentrations depend on many
factors such as pigmentation, lifestyle, skin protection, etc. It is unclear whether vitamin D
status remains stable from early to later in life, but it has previously been demonstrated
in the Western Australian Pregnancy Cohort (Raine) longitudinal study that 25 hydrox-
yvitamin D (25(OH)D) concentrations tracked from school age until age 20 years [20].
However, the Raine study did not investigate the relationship between maternal vitamin D
concentrations during pregnancy and vitamin D concentrations through early childhood.

In this study, we utilized two Danish mother–child cohorts—the Copenhagen Prospec-
tive Studies on Asthma in Childhood (COPSAC) 2000 and 2010—to investigate potential
association across timepoints of 25(OH)D and hs-CRP concentrations during pregnancy
and childhood and examined the possible relationship between 25(OH)D and hs-CRP,
which are important for childhood health and disease.

2. Materials and Methods
2.1. Ethics

The studies were approved by the local Ethics Committee (HKF 01-289/96; H-B-2008-
093) and the Danish Data Protection Agency (2015-41-3696). Both oral and written informed
consent was obtained from the parents during enrollment.

2.2. Study Populations

The Danish COPSAC2000 and COPSAC2010 clinical, single-center, mother–child co-
horts have previously been described in detail including enrollment procedure, baseline
characteristics and flow of the participants [13,18,21,22].

In summary, the prospective COPSAC2000 cohort is a high-risk asthma cohort of
411 children born to mothers with a history of asthma, which were enrolled during preg-
nancy at week 36. The children were monitored from age 1 month until age 18 years
undergoing a minimum of 18 scheduled and acute care clinical visits [22,23], allowing for
deep phenotyping of the children.

The COPSAC2010 is a population-based cohort including 700 children of pregnant
mothers enrolled at week 24 in pregnancy. The pregnant women participated in two
randomized controlled trials of high-dose (2800 IU/day) vs. standard-dose (400 IU/day)
vitamin D [18] and fish-oil vs. olive-oil [24] from week 24 gestation until 1 week postpartum.
The children were followed longitudinally in the COPSAC research clinic with a minimum
of 14 scheduled and acute care visits from age 1 week until age 10 years.

2.3. Measurements of Hs-CRP and 25(OH)D

In COPSAC2000, blood samples from the cubital vein of the children at age 6 months,
7 and 12 years were centrifuged and stored at −80 ◦C until analysis, where hs-CRP con-
centrations were determined by a high-sensitivity electrochemiluminescence assay from
MesoScale Discovery with a lower limit of detection of 0.007 ng/mL. Total serum 25(OH)D
concentrations were measured at birth in cord blood and at 4 years of age using the isotope
dilution liquid chromatography–tandem mass spectrometry [25]. Total plasma 25(OH)D
concentrations were measured at age 6 months using the same technique as above. The
laboratories participated in the proficiency testing program Vitamin D External Quality
Assessment Scheme (DEQAS).
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In COPSAC2010, blood samples from the children at age 6 months were analyzed for
hs-CRP concentrations using a similar method as in COPSAC2000. Total serum 25(OH)D
concentrations were measured from maternal blood samples in pregnancy week 24 using
the same method as above. Child samples at age 6 months and 6 years were analyzed
using the DiaSorin LIAISON 25-OH Vitamin D Total Assay [26]. The laboratory used US
National Institute of Standards and Technology (NIST) level 1 protocol.

2.4. Covariates

We included environmental determinants previously shown to be related to hs-CRP
and 25(OH)D concentrations in the children from our cohorts [6,23,27], which were sex,
season of samples, older children in home at birth and any infection 14 days prior to hs-CRP
measurement based on daily diary registrations of symptoms of cold, cough, pneumonia,
ear infection, fever or gastric infection [22].

2.5. Statistical Analyses

The analyses of the associations between hs-CRP and 25(OH)D at different timepoints
were performed using linear regression models and illustrated by scatter plots. Additionally,
the models were adjusted for covariates. The hs-CRP values were log-transformed prior
to analyses, given the skewed distribution of data. All analyses were performed using R
(version 4.0.3) with p < 0.05 considered indicative of significance.

3. Results
3.1. Associations of 25(OH)D from Pregnancy to Childhood and in Childhood

Of the 700 children in the COPSAC2010 cohort, 633 (90%) had available serum 25(OH)D
measurements at age 6 months (mean (SD): 84.8 (23.8) nmol/L) with mothers with available
25(OH)D measurements at pregnancy week 24. We found an association between concen-
trations at week 24 in pregnancy and at age 6 months in childhood: crude estimate (95% CI);
0.114 (0.041;0.187), p = 0.002, although the correlation was weak (R2 = 0.015). At age 6 years,
475 (75%) of the children with 6 months measurements had available serum 25(OH)D mea-
surements (mean (SD): 64.3 (20.0) nmol/L), which demonstrated an association between
these two time points: 0.155 (0.083;0.228), p < 0.001, R2 = 0.036 (Figure 1).
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Figure 1. The associations between 25(OH)D at pregnancy week 24, age 6 months and 6 years in
COPSAC2010 and cord blood, age 6 months and 4 years in childhood in COPSAC2000. All values are
in nmol/L.
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Of the 411 children in the COPSAC2000 cohort, 257 (63%) had available cord blood
measurements (mean (SD): 43.1 (20.8) nmol/L), 347 (84%) had available measurements at
age 6 months (mean (SD): 85.9 (22.7) nmol/L) and 298 (73%) had available measurements
at age 4 years of serum 25(OH)D (mean (SD): 76.0 (25.4) nmol/L). Among the 215 children
with both cord blood and 6 months 25(OH)D measurements, we did not find a significant
association between these time points: estimate (95% CI); 0.101 (−0.034;0.236), p = 0.143,
R2 = 0.010; however, we found a significant association between 25(OH)D from cord blood
and at 4 years during childhood (n = 188): 0.294 (0.127;0.461), p < 0.001, R2 = 0.061, and
a significant association between 25(OH)D at age 6 months and 4 years (n = 264): 0.260
(0.133;0.388), p < 0.001, R2 = 0.058 (Figure 1).

3.2. Associations of hs-CRP in Childhood

Of the 411 children in COPSAC2000, 300 (73%), 276 (67%) and 313 (76%) had available
hs-CRP measurements (ng/mL) at age 6 months, 7 and 12 years in childhood, respectively.
Among the 211 children with hs-CRP measurements at both 6 months and 7 years, a
trend towards an association was observed: crude estimate (95% CI); 0.097 (−0.005;0.200),
p = 0.063, R2 = 0.016. In children (n = 232) with both 6 months and 12 years hs-CRP
measurements, we found an association between these two time points: 0.183 (0.076;0.289),
p < 0.001, R2 = 0.047, which was also significant in the analysis of children (n = 247) with
hs-CRP at age 7 vs. 12 years: 0.373 (0.246;0.501), p < 0.001, R2 = 0.120 (Figure 2).
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Figure 2. The associations between hs-CRP at age 6 months, 7 and 12 years in childhood in the
COPSAC2000 cohort. All values are in ng/mL and log transformed.

3.3. Association between Hs-CRP and 25(OH)D in Both Cohorts

Cross-sectional measurements of hs-CRP and serum 25(OH)D at age 6 months were
available in 613 (88%) children in COPSAC2010. There was a negative association between
hs-CRP and 25(OH)D from a linear regression model: crude estimate (95% CI); −0.004
(−0.008;−0.0004), p = 0.030. Among the 613 children with both hs-CRP and 25(OH)D
measurements at age 6 months, 208 children with any diary registered infection 14 days
prior to hs-CRP measurement were excluded in a stratified model, leaving 405 children
available for analysis, which still showed a negative association between hs-CRP and
25(OH)D: −0.005 (−0.009;−0.0006), p = 0.027. However, in a fully adjusted analysis for sex,
sample season, older children in home and any infections 14 days prior to measurement,
we did not find an association (Table 1).
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Table 1. The association between log hs-CRP and vitamin D at age 6 months in COPSAC2010 from
uni- and multivariable linear regression models.

hs-CRP Estimate * 95% CI p Value

Crude (n = 613) −0.004 −0.008; −0.0004 0.030

Adjusted for environmental and
demographic factors (n = 613) 1 −0.002 −0.006; 0.001 0.230

Children with no infection (n = 405) 2 −0.005 −0.009; −0.001 0.027
1 Environmental and demographic factors: Sex, sample season, older children in home and any infection 14 days
prior to measurement. 2 Including children with no infections 14 days prior only. * CRP values are in ng/mL and
log-transformed.

In COPSAC2000, 299 (73%) children had cross-sectional measurements of hs-CRP and
plasma 25(OH)D at age 6 months with no significant association between these: 0.003
(−0.003;0.009), p = 0.401. In the fully adjusted model of sex, sample season, older chil-
dren in home and any infection 14 days prior to measurement, there was still no signif-
icant association (n = 299): 0.004 (−0.002;0.010), p = 0.157. In children with no infection
14 days prior to measurement (n = 208), there was also no association: 0.003 (−0.004;0.009),
p = 0.436 (Table 2).

Table 2. The association between log hs-CRP and vitamin D at age 6 months in COPSAC2000 from
uni- and multivariable linear regression models.

hs-CRP Estimate * 95% CI p Value

Crude (n = 299) 0.003 −0.003; 0.009 0.401

Adjusted for environmental and
demographic factors (n = 299) 1 0.004 −0.002; −0.010 0.157

Children with no infection (n = 208) 2 0.003 −0.004; −0.009 0.436
1 Environmental and demographic factors: Sex, sample season, older children in home and any infection
14 days prior to measurement. 2 Including children with no infections 14 days prior only. * CRP values are
log-transformed.

4. Discussion
4.1. Primary Findings

In two Danish mother–child cohorts with close longitudinal follow-up, we found
evidence of association across timepoints of serum 25(OH)D concentrations from mid-
pregnancy to childhood and throughout childhood. Further, we found association between
hs-CRP concentrations measured from early childhood at age 6 months through to age
12 years, suggesting an early trajectory of both 25(OH)D and hs-CRP. We demonstrated
a negative association between hs-CRP and serum 25(OH)D concentrations using cross-
sectional measurements at age 6 months in the COPSAC2010 cohort, proposing a role of
vitamin D in systemic low-grade inflammation. However, the inverse association between
hs-CRP and 25(OH)D was not apparent in the high-risk COPSAC2000 cohort.

4.2. Strengths and Limitations

The main strength of our study is the close longitudinal clinical follow-up of the
children from two large-scale cohorts with several blood samples performed both in
pregnancy and during childhood, which allows for analyses of correlation of measurements
over a long period. Another strength is the thorough, deep phenotyping of the children
with daily diary cards filled out by the parents in COPSAC2010 with registration of any
signs of infections, which is crucial when assessing hs-CRP given its well-established role
as a marker of inflammation and infection. Additionally, there is information on a wide
range of environmental and demographic exposures, which previously have been used
for identification of determinants of hs-CRP and 25(OH)D concentrations [6,23,27]. A
limitation of the study is the lack of information on other important factors for 25(OH)D
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concentrations such as sunscreen protection, hours spent in the sun and diet in both cohorts
and although we adjusted for important covariates based on our previous studies, our
findings could be influenced by residual lifestyle confounders given the observational
study design. Another limitation is the lack of ethnic diversity in our cohorts consisting
primarily of Caucasians, which only allows for generalization of our findings among this
ethnic group and, therefore, may not be applicable to other populations. Finally, it was
a limitation that our cohorts were not similar in terms of population characteristics and
sample sizes, where the COPSAC2010 is a larger population-based cohort [21] and the
COPSAC2000 is a smaller high-risk cohort [22], which may explain why we did not find
an association between hs-CRP and 25(OH)D at age 6 months in COPSAC2000, despite
adjusting for relevant covariates. The difference in measurement methods of 25(OH)D
in the two cohorts could possibly also explain why the results differ when analyzing the
relationship with hs-CRP; however, it should not influence the 25(OH)D correlations within
the cohorts as the same method is used within each cohort.

4.3. Interpretation

Our findings of associations between 25(OH)D concentrations from pregnancy to
childhood and through childhood until age 6 years are in line with previous studies among
older populations [20,28]. In the Australian Raine study, 25(OH)D concentrations at age
6 years were associated with concentrations measured until age 20 years [20]. Further,
25(OH)D status at age 6 years was characterized as a predictor of peak bone mass around
age 20 years in the same cohort, which highlights the clinical importance of early life vitamin
D sufficiency, since our findings demonstrated an association across timepoints already
from pregnancy week 24 to childhood. The association of 25(OH)D concentrations over
time has also been shown in a Norwegian study over a 14-year period in adulthood [28],
but was not found in a mixed South African population investigating correlation from age
11 to 20 years [29]. The latter study was limited by the number of subjects (n = 76) and
could also reflect that the association over time is diverse across ethnic groups. The clinical
importance of vitamin D status has been investigated in relation to several disorders, and
low 25(OH)D concentration has been suggested to be related to increased risk of, e.g., bone,
inflammatory and infectious diseases [30]. Most notably, the risk of osteoporosis seems
dependent on child bone mineralization [31,32], which is suggested to be highly influenced
by early life vitamin D status [13]. Further, supplementation with high doses of vitamin D
in pregnancy has shown to protect against early asthma development, suggesting a role of
vitamin D in asthma prevention.

The association between hs-CRP concentrations at age 6 months and age 12 years is
also in line with previous literature [33,34]. The JUPITER study (n = 8901) demonstrated an
association between hs-CRP concentrations measured over a 4-year period among a mixed
ethnic population of adults [33]. This finding was supported by the Cardiovascular Risk
in Young Finns Study where adulthood CRP was predicted by childhood measurements
(n = 1617) during a 21-year follow-up [34]. The clinical implications of elevated hs-CRP
have been investigated in relation to cardiovascular disease risk in particular and described
as a predictor of coronary heart disease [3]. In addition, increased hs-CRP concentrations
have been linked to a broad range of diseases, including inflammatory bowel disease
(IBD) [1], depression [4], COPD [5], decreased lung function in childhood [6,7], allergic
sensitization at school age [8], early life airway microbiota [9] and childhood asthma [10,11].

It was previously shown in the COPSAC2010 cohort that hs-CRP concentrations in
the pregnant mother at week 24 of gestation were associated with concentrations at age
6 months [12], which adds to the hypothesis of association across timepoints of hs-CRP
concentrations beginning in early life similar to the associations between 25(OH)D con-
centrations from pregnancy through childhood demonstrated in this paper. Interestingly,
we also found that these two measures were negatively correlated at age 6 months in the
COPSAC2010 cohort. A previous meta-analysis (n = 924) showed the beneficial effect of
vitamin D supplementation (400–7143 IU/day) on hs-CRP concentrations across different
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populations and diseases, suggesting a protective effect of vitamin D against systemic
low-grade inflammation, which is linked to the development of disease [35]. Considering
the proposed role of vitamin D in the inflammatory response [36], this effect is biologically
plausible, which indicates a protective role of maintaining sufficient circulating 25(OH)D
concentrations to protect against low-grade inflammation and possibly protect against
associated disorders such as cardiovascular disease.

5. Conclusions

We found significant associations between 25(OH)D concentrations from pregnancy
to childhood and through childhood, and associations between hs-CRP concentrations
through childhood, although with weak correlations. Further, we found a negative cross-
sectional association between hs-CRP and 25(OH)D concentrations in early childhood,
suggesting a role of vitamin D in systemic low-grade inflammation, though this association
was not present in COPSAC2000. These findings could potentially lead to the development
of new preventive strategies due to the established role of low-grade inflammation in
many chronic disorders, which is reflected by concentrations of hs-CRP. As a result of the
known immune modulatory effects of vitamin D and the observation of inverse association
between 25(OH)D and hs-CRP in this study, supplementation with vitamin D may revert
systemic low-grade inflammation and prevent the development of a broad range of health
outcomes.
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