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Abstract: Lutein is a dietary carotenoid preferentially accumulated in the eye and the brain in early
life and throughout the life span. Lutein accumulation in areas of high metabolism and oxidative
stress such as the eye and the brain suggest a unique role of this ingredient during the development
and maturation of these organs of common embryological origin. Lutein is naturally provided
to the developing baby via the cord blood, breast milk and then infant diet. The presence of this
carotenoid depends on fruit and vegetable intakes and its bioavailability is higher in breastmilk. This
paper aims to review the anatomical development of the eye and the brain, explore the presence
and selective deposition of lutein in these organs during pregnancy and infancy and, based on
its functional characteristics, present the latest available research on the beneficial role of lutein in
the pediatric population. The potential effects of lutein in ameliorating conditions associated with
increase oxidative stress such as in prematurity will be also addressed. Since consumption of lutein
rich foods falls short of government guidelines and in most region of the world infant formulas lack
this bioactive, dietary recommendations for pregnant and breastfeeding women and their child can
help to bridge the gap.

Keywords: lutein; zeaxanthin; macular pigment; oxidative stress; blue-light; eye development; brain
development; visual function; cognitive function; carotenoids; nutrition

1. Introduction

Nutrition during pregnancy is important for maternal health, pregnancy outcomes,
fetus development child health, and potentially later in life [1].

Perinatal development and infancy are life stages characterized by multiorgan devel-
opment. Poor maternal/fetal/neonatal nutrition can influence developmental “program-
ming” and organ growth resulting in short-term and longer-term effects linked particularly
to the increased risk of noncommunicable diseases [2].

The WHO recommends nutrition education and counselling during pregnancy about
healthy diet which contains macronutrients, vitamins and minerals, obtained through the
consumption of a variety of foods, including green and orange vegetables, meat, fish, beans,
nuts, pasteurized dairy products and fruits [3].
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Development, infancy, and early childhood are a particular critical window for eye
and brain development. Preterm birth contributes to neonatal morbidity, physical and
neurodevelopmental disabilities.

Traditional evidence generated from clinical studies and the related guidelines mainly
address the prevention of deficiencies of essential macro and micro-nutrients. Researchers
have recently started to explore the role of non-essential bio-actives on the promotion of
optimal health.

One of the bio-actives considered important for eye and brain development is lutein.

1.1. Retina and Brain Development

The retina and the brain share the same embryological origin from the neural tube
formed from the neural plate around the 4th week of gestation (WG) [4]. In particular, in
the embryonic period the formation of three brain vesicles constitutes the primary regions
of the brain as follows: the prosencephalon (future forebrain), mesencephalon (future
midbrain) and the rhombencephalon (future hindbrain).

The prosencephalon develops further into the telencephalon, the diencephalon, and
a pair of optic vesicles. These structures give rise to the cerebral hemispheres, the thala-
mus/hypothalamus and the optic nerve, retina, and iris. The rudimentary structures of the
eye are distinguishable by −5 WG (Figures 1 and 2).

The visual system develops rapidly during the first years of life. Retinal development
begins centrally before extending peripherally. The ganglion cell layer, inner plexiform
layer, inner and outer nuclear layer can be observed in the center of the fetus retina at
20–22 WG. At 25 WG, the foveal pit begins to form and then it continues to deepen during
the subsequent weeks up to the end of pregnancy concomitantly with the displacement
of the ganglion cell layer, inner plexiform layer, inner nuclear layer to the periphery [5].
The retina matures in a centripetal direction, the peripheral retina is fully developed, and
the fovea is immature at birth and matures over several years. A steep increase in cone
density in the fovea with displacement of rod photoreceptors is observed from 22 WG
(18,000 cells/mm2) to 4 years of age (108,000 cells/mm2). Maturation of foveal cones and
elongation of their outer segments occur postnatally and is responsible, together with the
maturation/plasticity of the visual circuits, for response to the visual stimulus and for
increase of visual function in the postnatal period.

The retinal vasculature starts to develop at approximately 16 WG and continues up to
the end of pregnancy with the vascularization of the peripheral retina. The formation of
these vessels is regulated by physiological hypoxia. The eye reaches approximately half the
adult size at six fetal months and two thirds of the adult size by term. After birth, the axial
length continue to increase at a progressive slow pace up to the age of 14–15 years [6,7].

The developing human brain also experiences a period of rapid growth, beginning
approximately mid-pregnancy and continuing through the first few years after birth, lead-
ing to a large increase in brain volume including a large expansion in lipid content. Brain
development is composed of different stages overlapping in time and characterized by
proliferation of undifferentiated brain cells, migration of the cells to predefined locations,
contextual differentiation in specific cell types and aggregation into distinct regions, forma-
tion of intra/inter region connections, remodeling and stabilization of these connections [8].

At six months, the cerebral cortex covers most of the other brain structures and starts
to separate into lobes, the fetus brain waves can be detected by the seventh month of preg-
nancy. Concerning the visual cortex, the ocular dominance columns which then develop
into the directional columns, begin to form during the last 8–10 WG. Further development
occurs after birth in response to the visual stimulation and experience. Further reorganiza-
tion of the visual system presumably occurs also in association with the development of
the ability to learn, to read words and recognize them occurring after 5 years of age [8,9].

Most of the brain rapid growth is postnatal. The cut-off point of weight accumulation
is between 18 postnatal months and 2 years for whole brain and forebrain while the phase
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of rapid myelination ends at about the age of four years [10]. The pruning of excess
connection continues for years.
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The eye and the brain are complex and unique organs that develop and change
throughout life. In the early years—ranging from conception throughout the first years of
life—both go through the biggest transformation. The complexity and the length of the eye
and the brain development make them particularly vulnerable to the effects of environment
insults so it is important to ensure the best environmental/nutritional conditions to promote
human eye and brain growth and development in this period.

http://webvision.med.utah.edu/


Nutrients 2021, 13, 3239 4 of 26

1.2. Oxidative Stress in the Term and Preterm Newborn

Birth exposes the infant to increased risk for oxidative insult due to an oxygen concen-
tration gradient between intra (oxygen saturation of fetal blood of about 65%) extrauterine
life (90% saturation at 5 min of age) and the presence of non-protein bound iron (par-
ticularly in preterm infants) [11–13]. Therapeutic strategies performed in the delivery
room or in neonatal intensive care unit (NICU) can also increase free radical’s produc-
tion. The negative effects of oxidative and nitrogen stress may also start early during
pregnancy. The retina and the brain are particularly susceptible to oxidative stress (OS).
The high metabolic activity, oxygen consumption and presence of polyunsaturated fatty
acids, constituent lipids of neuronal membranes, favor the generation of free radicals and
the propagation of the insult. The immaturity of the antioxidant (AO) endogenous system
in terms of concentration of AO enzymes and their activity also contributes to the OS
propensity [14,15]. Perinatal hypoxic/ischemic events may lead to increased organ/tissues
damage and reperfusion maneuvers can exacerbate the damage further [11,15].

Premature birth increases the risk for OS. Preterm babies are more likely to die and to
have short and long-term morbidities. Common complications includes high rates of respi-
ratory distress syndrome, bronchopulmonary dysplasia (BPD), necrotizing enterocolitis
(NEC), sepsis, periventricular leukomalacia, seizures, intraventricular hemorrhage, cerebral
palsy, infections, feeding difficulties, hypoxic ischemic encephalopathy, and hearing and
visual problems than those born at term [16]. OS and inflammation have been implicated
in the pathogenesis of most of these complications [11].

Protecting the newborn infant against perinatal OS is a healthcare priority, and there-
fore the search for new, safe, and efficacious AO has been a major focus of research during
the last decade. Among the diverse approaches to attenuate OS and optimize development,
research has explored the role of lutein. Lutein is a dietary compound with well know AO
characteristics, decades of investigation in age-related eye diseases and emerging evidence
on the beneficial effect in cognitive health and function.

1.3. Light and the Eye

The electromagnetic (EM) energy in the solar spectrum that reaches earth surface
is broken down into about 7% ultraviolet (UV) radiation (wavelength 290–400 nm), 44%
visible “white” light (VL) (400–700 nm spanning the entire rainbow color range from violet
to red), and 49% infrared (IR) radiation (200–2500 nm) [17]. For what concerns UV and
infrared radiation, while the sun emits optical radiation over the full wavelength range,
the earth’s atmosphere absorbs UVC (100–280 nm), the majority of the UV irradiation
between 290 and 320 nm and IRC of wavelengths over 30 µm [17,18]. The penetration of
the different wavelengths of the optical radiation into the eye depends on the interaction
with the diverse eye structures.

The human cornea absorbs over 90% of the wavelengths between 300–320 nm (UVB
range), about 30–40% between 320–360 nm (UVA range) and almost all the IR radiation
above 800 nm (i.e., IRA, IRB and IRC ranges). UVB and 45–50% of the UVA transmitted
by the cornea are then absorbed by the lens and part of the UVA transmitted by the
lens is absorbed by the vitreous resulting in only 1–2% of UVA radiation and all the VL
wavelengths reaching the retina. This filtering system is less functional in young subjects
of school age or younger (approximately less than 9 years old) resulting in a transmission
of up to 5% UVA to the retina [18,19]. As depicted in Figure 3, age-related differences
in the transmission optic radiation to the retina are also observed for the most energetic
wavelengths of VL radiation—blue light (400–500 nm). In infant, children and young
adults around 15% of 400 nm and about 60–65% of 460–480 nm wavelengths reach the
retina while, due to the progressive yellowing of the lens, only about 1% of blue light at
400 nm and 40% at 460–480 nm reaches the retina of a senior person. A person over the age
of 60 has a blue-light filtration rate around twice that of a 20-year-old [20]. Thus, the retina
of children is particularly exposed to shorter wavelengths of optical radiation (UVA and
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blue light) which have the greater potential for generation of reactive oxygen species (ROS)
and biological damage.
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Ocular damage from light can occur through either an inflammatory response or a
photooxidation reaction often mediated by eye chromophores (rhodopsin, opsin, melanin
or A2E found in lipofuscin granules) that absorb light visible range and generate Reactive
Oxygen Species (ROS). Phototoxic damage can occur in the retinal pigment epithelium
(RPE), the choroid and the photoreceptors [21]. Significantly, the observations of Wing
et al. [22] suggest that the greatest rate of increase in lipofuscin formation in the RPE is
found during infancy in the first 5–6 years of post-natal life. Moreover, lipofuscin is a
biomarker of ageing and its accumulation increases in an age-dependent manner.

Evidence from epidemiological and experimental studies suggest that cumulative
exposure to blue light may result in short and long term effects for the eye such as blurred
vision, eye strain, eye fatigue, retinal damage, reduced visual performance and age-related
eye conditions [23,24]. Aside from the potential damage to the structures of the eye,
blue light can impact visual discrimination and range in the outdoors, is associated with
glare (viewing conditions in which a person experiences discomfort or is less capable of
perceiving details or objects, due to an unfavorable luminance distribution or an extreme
contrast), and disruption of circadian rhythm (when people are exposed at night) [20,25,26].

The augmented susceptibility of the young population to blue light discussed above
is considerably important due to the increased exposure to blue light from LED artificial
illumination and digital devices. LED lighting systems increase the imbalance in wave-
lengths in favor of blue light. An Italian observational, cross-sectional study examining a
possible relationship between exposure to videogames/electronic screens and visual issues
in healthy children 3 to 10 years of age found that prolonged use of videogames in children
can impact the development of their visual pathways. Children who played video games
for 30 min or more every day presented more symptom of eyestrain, nervous tics, lower
percentage of stereopsis and higher prevalence of refractive errors (mainly in the dominant
eye) when compared to children who played video games for less than 30 min per day
and not every day. The effects were generally more pronounced with concomitant use
of other electronic screens (TV, computer tablets and smartphones) for 3 h or more per
day [27]. Data from Kim et al. and, more recently confirmed by the expert committee of the
French Agency for Food, Environmental and Occupational Health and Safety, show higher
prevalence rates for ocular symptoms (blurring, redness, visual disturbance, secretion,
inflammation, lacrimation and dryness) related to eye fatigue and strain in adolescents
with greater exposure (>2 h/day) to smartphones [20,28].
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2. Lutein
2.1. Physico-Chemical Characteristics

Lutein [(3R, 3′R, 6′R)-β, ε-carotene-3,3′-diol], commonly found in nature together with
its isomer zeaxanthin [(3R, 3′R)-β,β-carotene-3,3′-diol], is a lipophilic pigment member
of the xanthophyll family of dietary carotenoids. Lutein has no provitamin A activity
and represent one of the six major carotenoids circulating in human blood [29]. Similar
to other carotenoids it is a tetra-terpenoid composed of a central carbon linear chain of
conjugated double bonds and possess one hydroxylated ionone ring at each end of the
polyene chain [30,31]. The conjugated polyene chromophore is the most characteristic
feature of carotenoids and, together with the end groups, determines the shape, chemical
reactivity and consequent role as antioxidants, light-absorbing properties and related
color [31,32]. The specific end groups type in the lutein molecular structure (one β ring
conjugated with the polyene chain and one non-conjugated ε ring) result in the presence
of 10 conjugated double bonds and characterize the molecule ability to absorb light in
the blue-band of the visible spectrum (maximum absorption at 445 nm in methanol and
452 nm in olive oil) defining its yellow color [33,34].

Lutein isomer zeaxanthin presents two β rings in the molecule. The presence of these
end groups increase the number of conjugated double bonds to eleven and results in a
shift of maximum light absorption to a slightly higher wavelength within the blue light
band (maximum absorption at 450 nm in methanol and 463 nm in olive oil) and a more
intense yellow-orange color [33,34]. Because of the C=C isomerism, multiple cis/trans
configurations are theoretical possible for lutein and zeaxanthin. Furthermore, the hydroxyl
groups in the 3 and 3 carbon of the end group generates chiral centers resulting in R and
S stereoisomer. Only a few of these isomers are present in nature and in the typical diet
lutein and zeaxanthin are predominantly found in the thermodynamically more stable
trans-form and exclusively as R stereoisomers [31,32,34].

The chemical structure of lutein and zeaxanthin and their absorption spectra is pre-
sented in Figures 4 and 5, respectively.
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2.2. Dietary Sources, Absorption and Bioavailability

Animals do not synthesize carotenoids de novo, and so the carotenoids found in the
body are either directly obtained from food or partly modified from ingested foods through
metabolic reactions [30]. The main dietary sources of carotenoids are usually fruits and
vegetables.

Lutein is among the most abundant carotenoids in the human diet [31] often found
combined with zeaxanthin. Lutein and zeaxanthin combined represent approximately
20% of the total carotenoids [35,36]. Richest food sources of lutein are all dark green leafy
vegetables in particular kale and spinach which contain 40 mg and 12 mg lutein in 100 g
serving, respectively [37].

Zeaxanthin is generally found in much lower amounts in vegetables and is the domi-
nant xanthophyll in only a few food products, such as the goji berry and orange pepper.
Lutein and zeaxanthin are also present in foods of animal origin such as egg yolk. They
can additionally be used as colorants in diverse beverages and are found commercially
in dietary supplements. In fruits, xanthophylls with a hydroxyl group such as lutein and
zeaxanthin may occur as fatty acid esters. Due to the fact that their concentration in fruit is
generally low, compared to vegetables, the human diet is predominantly constituted by
lutein and zeaxanthin in the free form, which is also the only form directly absorbed by the
body [35–38].

Lutein consumed from dietary sources exceeds the amounts of zeaxanthin being con-
sumed typically at a dietary ratio of 5:1. This lutein:zeaxanthin ratio has been extensively
explored in clinical trials. Studies conducted in patients suffering from age-related macular
degeneration (AMD) have shown the benefits of supplementation with 10 mg lutein in
combination with 2 mg zeaxanthin or with other amounts in improving visual function
and delaying the progression of AMD to more advanced disease stages [39–42]. Additional
studies conducted in a healthy young or more senior adult population have shown that
10 mg lutein + 2 mg zeaxanthin supplementation increases MPOD and provide benefits on
visual and cognitive health and function [43–49]. Although possible (10 mg of lutein are
found in 80 g of spinach), getting these nutrients in the adequate amount through the diet
alone can be difficult on a regular daily basis especially in childhood.

Estimates of lutein and zeaxanthin intake from the US National Health and Examina-
tion Survey (NHANES) by individuals 2 years old and older consuming the 3 to 5 serving
of diverse fruit and vegetable recommended by the dietary guidelines for Americans
indicate that the mean consumption of lutein and zeaxanthin is 3.83 mg/day reaching
7.29 mg/day in the 90th percentile of intake [50]. Toddlers, in this well-nourished popula-
tion, ingest 3.2 mg of lutein and zeaxanthin per day (90th percentile). However, intake data
from the general population indicate that lutein consumption by adults is 0.8–1.1 mg/day,
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0.5–4.0 mg/day, 0.6–1.1 mg/day, 1.51 mg/day, and 2.9 mg/day in United States, Europe,
Brazil, Japan and China respectively [51–56]. In 2017 more than one third of the European
population did not eat fruit and vegetables on a daily basis [57]. The European Food Safety
Agency (EFSA) database on fruit and vegetables (F&V) intake in children 36 months to
9 years of age indicates that in all the member states the consumption is substantially below
the WHO recommendations of eating a minimum of 400 g of F&V per day [58]. Data from
the NHANES 2003–2004 showed that the intake of lutein + zeaxanthin was less than
0.6 mg/day in children and adolescents (1–18 years of age) and less that 2 mg/day
in women of childbearing age [52]. More recent data from pregnant women between
19–43 years old showed that maternal lutein and zeaxanthin intakes averaged 2.48 mg/day [59].

In a cross-sectional study conducted in Italian women aged 20–25 years the mean
intake of lutein and zeaxanthin were approximately 1 mg/day [60]. Slightly higher intakes
(1.2 mg/day) were observed in middle-class and well-educated women aged 24–42 years
at day 3 postpartum [61] (see Table 1).

Table 1. Estimates of L and Z intakes by individuals consuming the number of serving of F&V recommended by dietary
guidelines versus actual levels of intakes reported in observational studies (mg/day).

Population Age
L + Z Estimated Intake Based on

Recommended 3–5 Servings
F&V/day

Average Daily L + Z
Intakes

General population, USA [50] 2 years and older Mean 3.83 90th percentile 7.29 -

General population, USA [52] 1–18 years - Mean < 0.6

Females of childbearing potential,
USA [52] 19–50 years - Mean < 2

Pregnant women, USA [59] 19–43 years - 2.48

Pregnant women, Italy [60] 20–25 years - 1

Breastfeeding women, Italy [61] 24–42 years - 1.2

Abbreviations: L, Lutein; Z, zeaxanthin; F&V, fruit and vegetables.

Dietary Carotenoids are absorbed in the small intestine. As lipophilic molecule, their
absorption follows the same processes of other fat-soluble dietary compounds such as
dietary lipids or vitamin E. The concomitant ingestion of some fat is necessary for optimal
absorption. Lutein and zeaxanthin absorption varies considerably among individuals and is
influenced by external and host factors that may interfere with the different steps involved
in its absorption: source (free or esterified), amount and presence of other carotenoids,
duration of intake, amount of fat in the diet (substantially higher amount of fat is required
for the absorption of lutein and zeaxanthin esters compared to the most common dietary
free forms), concomitant ingestion of fibers, nutritional status, genetic factors and the age
of the individual [62]. Lutein and zeaxanthin in the free forms are directly absorbed by
the body. The esterified forms must be hydrolyzed before absorption and this additional
step seems to be not 100% efficient requiring the concomitant ingestion of atypically higher
fat [38,63–65]. In brief, after release from the food matrix, the molecules are incorporated
into mixed micelles formed from dietary fats and bile acids. Lutein and zeaxanthin are
then absorbed by the mucosa of the small intestine via passive or facilitated diffusion,
incorporated into chylomicrons, and transported via the lymphatic system to the liver.
Finally, in the hepatocytes, lutein is incorporated into lipoproteins (maily low and high
density lipoproteins (LDL and HDL) and transported to target tissues. Lutein is able to
cross the blood-retina barrier, blood-brain barrier and the placenta [11]. The distribution
of carotenoids in human organs shows specificity [30]. Xanthophylls form a bit less than
20% of the total carotenoids in the human diet. Already in the blood plasma, the amount
of xanthophylls increases to about 40% [35]. This preferential selection of lutein and
zeaxanthin, and particularly lutein, is further enhanced at the level of the developing
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neural tissues as they are preferentially accumulated from circulation into the brain [66,67]
and retina [68,69].

Specific accumulation of these xanthophylls also occur in breast milk [70]. The differ-
ences in lutein and zeaxanthin dietary intake and the potential nutritional gaps discussed
above reflect the carotenoids concentration in breast milk which can vary up to 10 times
within the same population [71,72].

2.3. Mechanism of Action

Diets with adequate intakes of carotenoid-rich foods have been linked to possible
protection against non-communicable diseases [73–75]. Lutein and zeaxanthin research has
focused on the beneficial effects for eye and brain aging [39,40,46,48,66,76,77] and more
recently researchers have started to explore their effect for vision and cognition in young
adults and early life [44,45,49,78–83].

The molecular structure of lutein and zeaxanthin described previously determines the
natural function and the mode of action in living organisms. The molecule size, shape and
the presence of the hydroxyl groups are important for the antioxidant effect, interaction and
orientation in cellular membrane [32]. Lutein and zeaxanthin’s inherent structure allows for
integration into cellular membranes in a way non-polar carotenoid such as β-carotene or
lycopene cannot. Specifically, Sujak et al. showed that lutein and zeaxanthin have different
orientations within the membrane: lutein can be oriented either perpendicularly or parallel
in the bipolar cell membrane, while zeaxanthin has only the perpendicular orientation in
the membrane [84]. The Authors suggested that lutein’s ability to have two orientations in
the bipolar membrane may make it ideally suited to provide protective abilities.

Carotenoids are among the most effective quenchers of the singlet oxygen, can also
quench peroxyl and tocopheryl radicals, and inhibit lipid peroxidation; the presence of
electrons localized over the polyene chain allows for neutralization of free radicals [32,85].
Associated with their location within the cell membrane lutein and zeaxanthin may protect
the cell from oxidative damage via its AO and light absorption properties. This may
be particularly important for the eye and brain tissues (especially in early life and in
prematurity) which are more susceptible to oxidative damage due to the abundance of
polyunsaturated fatty acids such a docosahexaenoic acid (DHA) in cellular membranes,
high oxygen consumption, high metabolic and functional properties and (in the case of the
eye) direct exposure to light.

Preclinical studies have shown that lutein can protect the neural tissues from chemical-
induced hypoxia and cell apoptosis, hydrogen peroxide and streptozotocin-induced OS,
ischemia-reperfusion injury [86–88]. OS and inflammation are closely related pathophysio-
logical events that are tightly linked with one another.

Several reactive oxygen/nitrogen species can initiate intracellular signaling cascades
that enhance proinflammatory gene expression. Conversely, inflammatory cells liberate
ROS at the site of inflammation leading to exaggerated OS [89]. Lutein has been also shown
to modulate the inflammatory response in retina, brain, skin and immune cells [90–93].
Furthermore, by preventing lipid peroxidation lutein can protect and preserve DHA and
make it available for conversion to anti-inflammatory molecules [94].

The specific ability of lutein and zeaxanthin to absorb high-energy short wavelengths
of visible light (blue light) have an impact on vision beyond the protection of photoreceptor
from blue-light induced production of ROS. Blue light absorption can positively influence
visual function by attenuating chromatic aberration, light scatter in the eye associated with
disability glare, blue haze and improve contrast sensitivity [25,33,44,95,96].

Finally, carotenoids, influence gap junctional communication [97,98]. This characteris-
tic can be an important complement to the mechanism of action of lutein and zeaxanthin.
Gap junctions are transport channels between cells, particularly neuronal cells like those
found in the human eye. The channels are important because they permit electrical and
metabolic coupling of cells joined maintaining homeostasis within coupled cells in times of
stress such as might occur in the maturing infant eye and brain [99].
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2.4. Safety

Lutein is a very safe molecule with an extensive history of consumption from the diet
at varying levels of intake. In several toxicity studies, including developmental toxicity
and dermal irritation, no adverse effects were documented in animals, including monkeys
or humans [100–103].

There have been hundreds of peer-reviewed published human studies involving lutein
supplementation alone or in combination with zeaxanthin, other carotenoids, and AO. The
highest lutein dosage administered (40 mg/day for nine weeks) and the longest duration
of supplementation (10 years supplementation with 10 mg lutein + 2 mg zeaxanthin) have
been assessed in clinical trial on eye-related diseases [39,42,104].

All these data were considered by different authorities around the world. The initial
safety review conducted by the Joint Food and Agricultural Organization (FAO)/World
Health Organization (WHO) Expert Committee on Food Additives (JECFA) established
an Acceptable Daily Intake (ADI) for lutein and zeaxanthin from tagetes erecta of 2 mg/kg
body weight/day (140 mg/day for a 70 kg person) and has been recently updated to reflect
the established safety of lutein and zeaxanthin providing a “non-specified” ADI [100]. In
Europe, lutein and zeaxanthin are considered traditional ingredients used in food, bever-
ages, and food supplements. The European Food Safety Agency (EFSA) established an ADI
of 1 mg lutein /kg body weight for adults and children. Furthermore, it was determined to
be Generally Recognized as Safe (GRAS) in the USA for inclusion in food products and
infant formulas and additionally, EFSA has established the safety and bioavailability of
lutein in infant formulas [101,103].

3. Lutein in Pregnancy and Breastfeeding

Research conducted in diverse populations around the world have shown that lutein
and zeaxanthin are present in maternal plasma throughout the course of pregnancy, persist
during the postpartum period and are transferred to the developing fetus via the cord
blood [70,105–108]. Recently, Thoene et al. [59] indicates that lutein and zeaxanthin com-
bined are the most prevalent carotenoids in placenta (49.1% of the tested carotenoids) and
umbilical cord blood (37.0%), although they are less prevalent in maternal serum (18.6%)
or diet (19.4%), with a rate of transfer of 16.0%, the highest of all carotenoids. The presence
of lutein and zeaxanthin in placenta can improve its strength, stability, permeability and
decrease lipid peroxidation offering protection and nourishment of the developing fetus.

Oostenburg et al. [109] by looking at the concentration of several antioxidants and
carotenoids during all trimester of pregnancy found that among the carotenoids analyzed
only lutein level increased by 41% from the first to the third trimester and remained
elevated after delivery. Lutein and zeaxanthin concentration in cord blood were found
to be correlated with maternal plasma concentration although their levels were much
lower [109,110].

Nature continues to provide lutein and zeaxanthin to the developing baby after birth.
The colostrum, the first mother’s milk, is rich in carotenoids which provide its characteristic
yellow color. Lutein and zeaxanthin have been found in breast milk throughout the entire
nursing period and like other carotenoids their concentration is lower in mature milk than
in colostrum and early milk [61,111,112]. As for plasma levels, their concentration in breast
milk are significant correlated with dietary intakes and correlated to each other [61,70].

In 1990 Patton and colleagues analyzed the colostrum of 11 women within 6 days after
delivery and discovered that colostrum contains lutein, zeaxanthin, β-carotene, lycopene,
and β-cryptoxanthin [113]. Levels of these carotenoids in milk were later quantified by
Khachik et al. in 1997 [29] who analyzed serum and breast milk carotenoid concentration
of three women one month postpartum. Of the carotenoids found, lutein had the third
highest concentration in the serum while it was the most abundant carotenoid in breast
milk together with zeaxanthin. Lutein was 2–3 times more concentrated than ß-carotene in
breast milk, whereas the concentration was approximately the same in maternal plasma.
This finding led to the hypothesis that lutein may be actively secreted into milk. Preferred
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deposition of lutein and zeaxanthin in breast milk has been additionally confirmed by
Sherry et al. [70]. The study was conducted to determine the impact of lutein supplemen-
tation in the breast milk and plasma of lactating women and in the plasma of breast-fed
infants 2–3 months postpartum. Baseline observations on maternal samples indicated that
while total lutein + zeaxanthin ranked third in maternal plasma (following total lycopene
and β-carotene) they were the most abundant carotenoid in breast milk. Interestingly, the
carotenoid distribution in the plasma of infant at baseline closely matched that of breast
milk. Recent observations from a Chinese cohort provided additional indication that lutein
is the predominant carotenoid in transitional and mature milk [114].

The last trimester of pregnancy and lactation are two critical periods for retina and
brain development. The increase in concentration of lutein and zeaxanthin in these periods
coupled with their preferential deposition in both organs suggests an important biological
role.

Exclusive breastfeeding is recommended for feeding infants at least during the first
six months of life. When this is not possible for mothers infant formula can be the primary
source of nutrition for the baby. The presence of lutein in infant formula is limited to some
regions of the world. In Europe, lutein is not added to artificial milk and this is a key
differentiating factor between breastmilk and infant formula composition which may result
in low plasma lutein levels in formula-fed infants. Bettler et al. [115] showed that breastfed
infants had approximately 6 times more the mean serum lutein concentration of infants fed
unfortified milk formula. In the same study, the addition of lutein to artificial milk (in doses
of 25 mcg to 200 mcg per L) increased serum lutein concentration in a dose-dependent
way. However, in order to achieve the same serum concentration observed in breast fed
infants approximately 4 times more lutein is needs in the infant formula. Six weeks of
maternal supplementation with 6 mg or 12 mg lutein during breastfeeding resulted in: (i)
increased total lutein and zeaxanthin in maternal plasma and breast milk, and (ii) increase
of these carotenoids in infant plasma in a dose-dependent manner [70]. Twelve weeks
supplementation of breastfeeding mothers with a multiple micronutrient supplement
containing very low amounts of lutein (250 ug/day) vs. placebo was found to to prevent
the decline in maternal plasma of lutein concentrations. Furthermore, while a decrease in
lutein levels in breast milk during lactation was observed in mothers supplemented with
placebo, no decrease was observed in the group receiving low dose lutein [116].

Emerging data from research in non-human primates indicates that lutein supple-
mentation lead to increased deposition of this carotenoid in the developing eye and brain
tissues [117,118] and mother-infant human observational studies suggest a role of lutein in
visual and cognitive function [80,81].

A prospective randomized controlled trial is currently being conducted to evaluate
the effects of supplementation with 10 mg lutein + 2 mg zeaxanthin administered for 6 to
8 months during pregnancy (from the first trimester of pregnancy to 2 weeks postpartum).
The study aims to assess wheter supplementation will counteract maternal carotenoid
depletion during pregnancy and will improve biomarkers of carotenoid status (serum, MP
and skin carotenoids) and ocular health of both mothers and infants [119].

4. Lutein in Eye and Brain Development and Function
4.1. Search Method

A narrative Literature review was conducted on PubMed through 21 June 2021 to
identify human studies evaluating the effect of lutein and zeaxanthin on visual and/or
cognitive function in a healthy pediatric population.

The search terms were ((lutein OR zeaxanthin OR MPOD) AND (eye OR brain OR
vision OR cognition) AND (children OR infant OR adolescent OR child)). Inclusion criteria
were observational studies or intervention trials conducted in humans and reporting on the
effect of dietary, plasma or retinal lutein and zeaxanthin on visual or cognitive outcomes in
healthy term infants, children or adolescents.
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Among the 152 studies retrieved, 9 publications met the inclusion criteria. Two articles,
discussed in Section 4.2.3, assessed visual outcomes [80,120] and 7 papers, reported in Section 4.3.3
and Table 2, presented findings related to cognitive performance [81–83,121–124]. Three additional
publications explored the effect of lutein supplementation in premature infant with or
without retinopathy of prematurity. These papers weres considered important and were
presented in Section 4.2.4.

Of the additional articles retrieved, the papers presented data on (1) the effect of lutein
and zeaxanthin supplementation in non-human infant primates, (2) their distribution in
the eye and brain, (3) techniques for MPOD measurement in the pediatric population and
(4) intervention studies exploring the effect of lutein and zeaxanthin supplementationm
and cognition conducted in a healthy adult population, were also considered important
for the review and were discussed. Reviews providing repetitive information were gen-
erally not considered. In addition, pre-clinical studies (other than non-human primates),
articles reporting findings from studies conducted in a disease population, or not reporting
cognitive or visual outcomes related to lutein, zeaxanthin or MPOD were not presented.
Further publications were gathered from a manual search of the reference list of articles
and reviews.

4.2. Lutein, Eye Development and Visual Function
4.2.1. Eye Deposition

The human eye accumulates the dietary carotenoids lutein and zeaxanthin. The
maximum concentration of these pigments (about 70% of their total content in the eye
and more than a thousand times their concentration in serum) is observed in the macula
lutea [125]. Among the dietary carotenoids, only lutein and zeaxanthin are selectively
deposited in this pigmented area of the retina responsible for high acuity color vision. A
third non-dietary zeaxanthin isomer meso-zeaxanthin [(3R,3′S)-β, β-carotene-3,3′-diol]
which originates from lutein conversion in the retina contributes to the composition of the
macular pigment (MP) [126]. MP reaches the highest concentration (per mm2 of tissue)
at the center of the fovea decreasing rapidly with distance from the epicenter [68,126].
Specific xanthophylls binding proteins—Steroidogenic acute regulatory domain protein
3 (StARD3) for lutein and Glutathione S-transferase P1 (GSTP1) for zeaxanthin and meso-
zeaxanthin—mediate the selective uptake, distribution, and stabilization of the macular
carotenoids in this tissue [125–127]. BCO1 (β-carotene-15,15-monooxygenase) and CD36
(cluster of differentiation 36) genes were found to be also implicated in plasma and retina
concentrations of lutein in adults and more recently children [128,129].

The term macular pigment optical density (MPOD) refers to a measurement of the
attenuation of blue light by macular pigment (expressed in density units, du) and provides
an indication of the amount of lutein and zeaxanthin isomers in the macula. Typical MPOD
levels vary between 0 and 1 du [33]. The concentration of macular carotenoids can be mea-
sured in the macula of donor eyes with high performance liquid chromatography (HPLC)
while in living eyes MPOD can be assessed non-invasively using subjective psychophysical
techniques, such as heterochromatic flicker photometry, and objective optical methods,
such as fundus autofluorescence and reflectometry [33]. In children up to the age of 7 years,
due to the difficulties in performing psychophysical task reliably, objective measurements
are preferred, and blue light reflectometry offers the opportunity to image the MP of infants
and children [34].

Lutein and zeaxanthin have been detected in the eye as early as the second trimester
of gestation. Yakovleva et al. [125] found these xanthophylls the vitreous body of the
developing human eye from week 15 until week 28 WG. Lutein and zeaxanthin disappear
from the vitreous in the last trimester of pregnancy (lutein and zeaxanthin are not present
in the vitreous in post-natal age or in adults) in association with the gradual accumulation
in the retina and the lens and the correspondent tissue development and differentiation.
Lutein and zeaxanthin concentration as well as distribution in the foveal area has been
shown to change as the foveal area matures. MPOD has been first detected at postmenstrual
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age of 33 WG at the time the foveal pit starts to form and continues to increase as the fovea
matures up to the age of 3–4 years when it is essentially equivalent to the amount found in
the adult eye [5,69].

Lutein is the dominant carotenoid in the infant retina during foveal maturation process
with a ratio of lutein to zeaxanthin isomers close to 1.6 at birth, and tends to approaches
adults’ distribution of 0.5 after the age of 3 [69,130]. The changes in the lutein/zeaxanthin
ratio in the macula appear to be closely related to steps in the anatomical and functional
development providing additional support for a biological and functional role [69,126].

4.2.2. Pre-Clinical Research in Non-Human Primates

The importance of lutein and zeaxanthin to the development of the visual system and
the potential synergism with other key nutrients such as DHA, were explored in research
conducted in non-human primates raised on a xanthophyll-free diet otherwise containing
the adequate amounts of calories, vitamins and minerals, from pre-natal development
and after birth. Compared with animal raised on a standard diet containing lutein and
zeaxanthin, xanthophyl-free animals were found to present: (1) undetectable levels of
lutein and zeaxanthin in serum, (2) no yellow macular pigmentation, (3) distinct changes
in the RPE cell profile (foveal dip) and density (increased cell density), (4) increase in
macular hyperfluorescence and mottling of the RPE although in absence of major visual
disturbances, and (5) were more vulnerable to damage in the foveal region induced by
acute blue-light exposure [131–134]. Supplementation with purified lutein or zeaxanthin
resulted in increased serum levels of these xanthophylls, accumulation of MP (constituted
by lutein and meso-zeaxanthin in the animals fed purified lutein and only zeaxanthin in
the animals fed purified zeaxanthin), attenuation of the structural changes in RPE, and
decreased foveal sensitivity to blue-light exposure [132–134] (see Table 2).

Additional studies conducted in infant monkeys breast fed or fed a formula containing
high or low amounts of lutein and zeaxanthin indicate that the bioaccumulation of lutein
and zeaxanthin in the retina is higher when provided in breast milk [117,118].

Table 2. Key finding from studies conducted in non-human primate raised on a diet devoted of xanthophylls (xanthophyll-
free animals) supplemented with lutein and zeaxanthin.

Outcome Xanthophyll-Free Animals L/Z, L or Z Supplemented Animals

Serum levels Undetectable levels of L and Z Increase levels of L and/or Z

Macular pigment No yellow macular pigmentation Accumulation of macular pigment

Retina

Distinct changes in the RPE cell profile (foveal dip)
and density (increased cell density).

Increase in macular hyperfluorescence and
mottling of the RPE although in absence of major

visual disturbances.
Prominent presence of drusen-like bodies at the

level of the pigment epithelium.

Attenuation of the structural changes in RPE
cell profile (central foveal peak), presence of

asymmetry in the RPE profile suggesting that L
and Z could stimulate cell migration.

Blue Light sensitivity Increased vulnerability to acute blue-light induced
damage in the foveal region

Decreased foveal vulnerability to acute
blue-light exposure

Abbreviations: L, Lutein; Z, zeaxanthin; RPE, Retinal Pigment Epithelium.

4.2.3. Lutein, Oxidative Stress and Visual Function in Humans

The AO and anti-inflammatory characteristics of lutein and zeaxanthin coupled with
their blue-light absorption properties can benefit a tissue particularly susceptible to OS
early in life such as the retina. These effects can potentially attenuate the rate of increase in
lipofuscin formation in the RPE, found to be greater in the first decade of post-natal and
later in life [7,22,135].

A retrospective observational study explored the effect of supplementation with
10 mg lutein + 2 mg zeaxanthin or no supplementation in 24 pregnant women with
gestational diabetes. Lutein and zeaxanthin intake was associated with a non-statistical sig-
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nificant decrease in maternal plasma total hydroperoxides (TH) and a significant decrease
in plasma TH in the newborns at 2 h of life [136].

Henriksen et al. showed that correlations exist between mother and infant serum
lutein and zeaxanthin and between maternal and infant serum zeaxanthin and MPOD [137].

The relationship between maternal lutein and zeaxanthin intakes and the off-spring
eye maturation has been recently explored in humans. In the GUSTO study (Growing Up
in Singapore Towards healthy Outcomes), an observational study was conducted to assess
the relationship between maternal lutein and zeaxanthin plasma concentrations during
pregnancy and visual acuity (VA) in the offspring at 3 year of age in 471 mater-child pair.
Authors found that higher maternal lutein and zeaxanthin plasma concentrations during
pregnancy were associated with lower likelihood of poor distance-VA in children. They
concluded that maternal lutein and zeaxanthin status during pregnancy may influence a
baby’s early visual development [80].

In an observational study conducted in 94 healthy Chinese children 6 to 12 years
old, Zheng et al. explored the relationship between MPOD, refractive status and foveal
thickness. No correlation between MPOD spherical equivalent refraction or foveal thickness
was observed in this population. However in children low-to-moderate myopia MPOD
was inversely related to minimum foveal thickness and positively related to central foveal
thickness [120].

Neuringer et al. showed that serum lutein and zeaxanthin levels and MPOD were
higher in infants fed with breast milk than those with infant formula [138]. Other Authors
reported that early exposure (via breast milk) to lutein and zeaxanthin appears to influence
MPOD later in life [139].

Research over the past decades has demonstrated that a thicker MP, or higher MPOD,
is associated with better visual performance. Intervention studies in a young adult popula-
tion have shown that lutein and zeaxanthin supplementation increase MPOD and benefit
visual function in terms of glare sensitivity, contrast sensitivity, photostress recovery, visual
fatigue as well as influencing visual processing at cortical levels [43,78,79,140–143].

The presence of lutein and zeaxanthin in the macula during the early stage of life is
important considering that children are particularly susceptible to the potential damaging
effects of excessive light exposure (solar light or artificial LED light) due to the immature
eye development and the complete transparency to light of the ocular lens leading to
increased risk for OS.

All these observations support the recommendations for an increased supply of lutein
and zeaxanthin during development and early life. Studies conducted in newborns have
shown that the oral administration of lutein (either through lutein fortified infant formula
or separately added to the infant milk) was well tolerated, resulted in increase in plasma
lutein levels and provided benefits in terms of reduction of oxidative stress [144–150]. In
the study by Perrone et al. [149] conducted in 150 healthy term infants, the administration
of a lutein supplement at 6 and 36 h after birth resulted in increased biological AO potential
and lower levels of OS assessed at 48 h of life compared to placebo. Results confirmed
a previous observation from a pilot study conducted on 20 healthy term infants using a
similar study design [150].

4.2.4. Lutein in Premature Infants

In 2014 the estimated global preterm (<37 weeks of gestation) birth rate from
184 countries was 10.6% (range 8.7–11.9%). Regional estimates indicate a 6.3–13.3% pre-
mature births in Europe and 9.5–13.2% in North America [16]. Preterm infants (PI) are
generally at higher risk of visual impairment due to exposure in the delivery room or in
NICU to potentially damaging concentrations of oxygen and high light intensity which
may favor OS and free radical production [11,151–153]. OS is the main consequence of
retinal ischemia and may have a role in pathologic angiogenesis of the retina and thus
in the pathogenesis of retinopathy of prematurity (ROP) [151], the second cause of child-
hood blindness after impaired cortical vision [152]. OS associated with the unbalance
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between the production of free radicals and the detoxifying capability of the AO system
is also involved in the damage observed in other areas of the central nervous system
(CNS) [151,152]. One of the goals in the management of PI is to reduce the production
of free radicals and promote concomitantly the development of the AO system [153] and
its role in the management of ROP [151] Because of lutein AO, anti-inflammatory, blue
light absorption properties and the well know role in eye health, its beneficial role in this
condition has been hypothesized.

Preterm delivery exposes infants to a disadvantage in terms of lutein and zeaxanthin
supply because they miss the period of maximal placental delivery of these antioxidant
nutrients. Initial assessments of carotenoids status conducted in PI found very low or
almost undetectable macular pigment and low serum and skin carotenoids levels [154].
Sasano et al. [5] by exploring the MP levels and changes over time in 40 premature infants
detected MP in 39 out of 40 infants (MPOD values ranged from 0 to 0.18). MPOD value
greater than 0 was first detectable at 33 WG; MPOD levels increased linearly as a function
of infant growth and retina maturation (starting most probably around 26 WG when the
foveal pit starts to form) and the growth patterns for both eyes were similar.

Lutein supplementation in PI has been shown to increase serum lutein levels [144,148]
and decrease plasma C-reactive protein [144]. Plasma lutein concentrations were found
to correlate with total AOs status and saturated response amplitude in rod photorecep-
tors [144,155]. Furthermore, in PI with no ROP lutein supplementation resulted in greater
photoreceptor sensitivity [144]. Preliminary indications for a lower threshold for ROP,
NEC and BPD were observed in infants receiving lutein and zeaxanthin supplementa-
tion [156,157]. However, despite of these encouraging results none of the clinical trials
conducted to date showed any statistical significant reduction in ROP incidence nor the
risk of BPD, sepsis, NEC and mortality [158].

4.3. Lutein, Brain Develeopment and Cognitive Function
4.3.1. Brain Deposition

Lutein and zeaxanthin cross the blood-brain barrier and are deposited in the brain.
In 2004, Craft et al. identified and measured a broad range of AOs in the adult brain
and showed that the xanthophylls lutein, zeaxanthin and cryptoxanthin accounted for
66–77% of the carotenoids in the brain regions studied. Since these carotenoids are less
predominant in human diet or blood, Craft first suggested a preferential accumulation
of oxygenated carotenoids in the brain [159]. More recently, it has been shown that:
(1) xanthophylls make up 72% of total carotenoids in the adults brain, (2) lutein alone ac-
counts for over one third (34%), significantly greater than other carotenoids [66], and
(3) lutein is the predominant carotenoid in the infant brain representing 59% of the
carotenoids and reaching 74% of the total carotenoids when combined with zeaxanthin [67].

The analysis conducted on brain tissues (hippocampus, prefrontal, frontal, auditory,
and occipital cortices) from 30 infants who died during the first 18 months of life [67] found
that lutein, zeaxanthin, cryptoxanthin and β-carotene were the major carotenoids. Lutein
was significantly more concentrated than all the other carotenoids in all the brain regions
analyzed and its concentration was higher than that of all the other carotenoids combined.
Moreover, lower concentrations of lutein, zeaxanthin, and cryptoxanthin in most brain
region analyzed have been found in PI than in term infants. These findings, were consistent
with the limited in utero accretion of lutein and zeaxanthin (higher in the last trimester of
pregnancy) associated with prematurity.

An exploratory metabolomics analysis was conducted on postmortem human infant
brain tissues to elucidate potential mechanisms through which lutein may influence neu-
rodevelopment. Lieblein-Boff et al. [160] observed that: (i) lutein and its isomer zeaxanthin
were the only carotenoids present in all infant brain regions studied, (ii) lutein concentra-
tions in frontal cortex, hippocampus, and occipital cortex are correlated with a number
of metabolites in a brain region specific manner, (iii) lutein correlated with lipid pathway
metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters,
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and the AO homocarnosine in brain-specific regions, and (iv) lutein is concentrated in neu-
ral tissues important for learning and memory. Results indicate that lutein may be related to
brain volume regulation during growth and development, myelination, neurotransmission,
development or remodeling of neurons and AO neuroprotection.

Recently Tanprasertsuk et al. [161] reported, in infants, the highly significant cross-
sectional relationship between brain concentrations of lutein and the levels of the binding
protein StARD3 (previously identified as the specific binding protein for lutein in retinal
tissues). Authors suggested a possible mechanism for the selective accumulation of lutein
in the brain and further supportive role for lutein in early neural development.

The eye-brain link in terms of lutein accumulation is strengthen further by observa-
tional human studies. Results showed associations between lutein concentration in the
retinal region and its concentrations in the occipital cortex, the primary visual processing
area of the brain. Moreover, correlations between serum and brain levels of the carotenoids
lutein, zeaxanthin cryptoxanthin and ß-carotene have been also found [162]. Notably,
in primates, macular–brain associations were found for lutein and zeaxanthin and the
cerebellum, lutein and pons, as well as for zeaxanthin and the frontal cortex [163].

4.3.2. Pre-Clinical Research in Non-Human Primates

In infant rhesus monkeys breast fed or fed a formula containing added lutein (in a con-
centration comparable to breast milk) or not enriched, lutein was differentially distributed
across all the brain region evaluated (prefrontal cortex, occipital cortex, superior temporal
cortex, striatum, cerebellum, motor cortex, gray matter, white matter, and hippocampus).
The highest amount of lutein was found in the occipital cortex regardless of the diet, sug-
gesting lutein’s role in visual processing in early life. Breast feeding resulted in higher
brain deposition of lutein compared to formula feeding indicating that maternal milk is
the preferred dietary vehicle for the delivery of lutein. This observations reinforce the
importance of ensuring an adequate maternal lutein intake. In infant monkeys fed with the
lutein-enriched formula brain lutein levels were significantly higher than unsupplemented
animals [117,118].

Lutein was also found to be the predominant carotenoid in subcellular membranes in
cerebellum, hippocampus striatum and prefrontal cortex tissues of adult rhesus monkey
fed stock diet or lutein/zeaxanthin supplemented diets. Lutein was the only carotenoid
detected in all the membranes analyzed (nuclear, myelin, mitochondrial and neuronal
plasma membranes). Accumulation was especially evident in the mitochondrial mem-
branes, particularly in the prefrontal cortex where its levels were inversely associated with
DHA oxidation products suggesting an important antioxidant role associated with DHA
protection in the brain [164].

4.3.3. Lutein Status and Cognitive Function in Humans

MPOD, considered a stable measure of lutein and zeaxanthin in neural tissues, has
been associated with better global cognition, verbal learning and fluency, and processing
and perceptual speed in healthy young and old people [78,79,94,165–169]. Lutein and zeax-
anthin plasma or retinal levels have been associated with enhanced neural efficiency, brain
activation, white matter integrity [170–172]. Interventional studies also provide support
that supplementation with lutein and/or zeaxanthin may enhance cognitive function and
help maintain cognitive health. A total of 13 randomized, double-blind, controlled interven-
tional studies have been conducted to date investigating the role of lutein and zeaxanthin
intake (supplementation or dietary intervention) on cognitive functions in healthy young
and more mature adults [46,47,49,77–79,171,173–178]. Of them, four were conducted in a
young student population (adults) [49,78,79,174]. These studies have shown the effect of
supplementation in improving critical flicker fusion thresholds and missed coincidence
anticipation time—two measures of neural processing speed and visual processing speed—
visual memory, complex and sustained attention, reasoning abilities and other parameters
of cognitive performance. A systematic review of randomized controlled trials [179] and a
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meta-analysis [180] suggest that daily supplementation with lutein (mainly administered
in a 10 mg daily dose as food supplement) and its isomers can improve cognitive functions.

The encouraging findings of a positive impact of lutein and zeaxanthin on brain
function in the adult population coupled with their preferential deposition in the infant
brain has suggested the putative role early in life and has prompted research to elucidate
the implications of lutein and zeaxanthin status and children’s cognitive function.

A cross-sectional study assessed the distribution of lutein and activin A, a well-
established neurobiomarker of CNS development and damage, in arterial cord blood of
healthy PI and term infants. A significant and positive correlation between the two groups
was observed in male and female suggesting a neurotrophic role of lutein [108]. High levels
of activin A and lutein were detected in early weeks of the third trimester of gestation
when CNS development starts to be at its highest level in terms of brain volume, weight
and structure and progressively decrease with the end of pregnancy.

Higher gestational lutein intakes were associated with better child behavior regulation
in a prospective study on 1580 mother-child pairs [81]. High lutein and choline concentra-
tions in maternal breast milk have been found to be associated to better recognition memory
in 6-month old infant [82]. The Authors suggest that this cognitive advantage observed
in infants ingesting more lutein could be associated with a more rapid development of
the visual system. Furthermore, similar to adults, high MPOD levels were associated with
different measures of cognition including global intelligence and executive processing,
memory and academic achievement in school children [83,122–124]. An overview of the
major findings from the studies exploring the relationship between lutein and zeaxanthin
status and cognitive performance are reported in Table 3.

Intervention trials to confirm the cause-effect relationship between lutein intake and
cognitive outcomes in the pediatric population are awaited.

Table 3. Observational studies addressing the relationship between lutein and zeaxanthin status and cognitive function in a
pediatric population.

Author Year Age n Key Findings

Mahmassani
[81] 2021

Pregnancy I trimester (median 9.9 WG)
Pregnancy II trimester (median 27.9 WG)

Infancy (5.2–10.0 months)
Early-Childhood (2.8–6.2 years)
Mid-Childhood (6.6–10.9 years)

1580 mother-child
pairs

Greater maternal L/Z intakes in the I-II trimester were
associated with better verbal intelligence (main analysis)

and better behavior regulation ability (secondary
analyses) in mid-childhood. Higher maternal I trimester

intake of L/Z-rich foods was associated with better
social-emotional development and behavioral regulation

ability in this same age group. No benefits of greater
maternal L/Z intakes were observed in infancy and early

childhood

Saint [124] 2018 7–13 years 51

Link between higher carotenoid status and improved
cognitive functioning. MPOD was significantly correlated

to global Intelligence (Brief Intellectual Ability) and
executive processes composite scores. Exploratory

analysis also showed positive associations with spatial
relations subtest.

Barnett [83] 2018 8–9 years old 56
MPOD is positively related to academic achievement,

mathematics, and written language composite standard
scores in school children.

Walk [123] 2017 8–10 years 49

MPOD is correlated (p < 0.05) with cognitive control
performance. Children with higher MPOD present higher

accuracy in performing tasks which require cognitive
control processing (modified flanker task) and require the
allocation of less attentional resources to perform the task

(smaller P3 amplitudes in the EEG recordings).
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Table 3. Cont.

Author Year Age n Key Findings

Hassevoort
[122] 2017 7–10 years 40

MPOD is positively associated with a spatial
reconstruction task designed to assess relational memory
performance, a hippocampal-dependent function, even

after accounting for IQ and aerobic fitness.

Cheatham
[82] 2015 6 month-old 55

High L & High Choline in maternal breast milk are
associated with better infant recognition memory

(difference in latency to peak amplitude scores at frontal
and central areas in EEG recordings (p < 0.05 and

p < 0.001; respectively)

Mulder [121] 2014 5.6–5.9 years 160 L intake and L serum levels showed no association with
child cognitive tests.

Abbreviations: L, Lutein; Z, zeaxanthin; MPOD, Macular Pigment Optical Density; EEG, electroencephalography; IQ, Intelligence Quotient.

5. Conclusions

Lutein and zeaxanthin are unable to be synthesized in humans, so blood and tissue
levels rely solely on dietary intake. However, these carotenoids are not considered essential
so, there is no dietary reference intake established for lutein to date. There is growing sup-
port for setting intake recommendations for non-essential dietary bioactives, such as lutein,
which promote optimal health and/or prevent occurrence of chronic diseases [181,182].
Studies on eye and brain health and function conducted in a young adult population show
the benefits of 10 mg of lutein and 2 mg of zeaxanthin daily. Maternal supplementation
with the same doses during the third trimester of pregnancy resulted in reduced OS in the
newborn that is at high risk since AO defense is deficient in newborns. Furthermore, ma-
ternal lutein supplementation during breastfeeding results in increased serum lutein and
zeaxanthin level in the mother and in the breastfed infant. Breastfeeding is recommended
for feeding infant at least during the first six months of life and appears to be far superior
for lutein absorption and bioavailability than infant formulas. Furthermore in Europe, milk
formulas are not enriched with lutein, a key difference to breastmilk composition, which
may result in low plasma lutein levels in exclusively formula-fed infants.

The mother should have an adequate intake of lutein and zeaxanthin to supply her
own needs and that of her baby. Higher maternal lutein and zeaxanthin intake or serum
level have been associated with potential beneficial effects for visual acuity and cognitive
behavior during childhood.

Children with higher lutein and zeaxanthin status reflected by higher MPOD were
found to have better cognitive performance then their low MPOD peers. Data from food
intake studies indicates that women of childbearing potential, breast feeding women and
children do not ingest the amount of fruit and vegetable required to ensure an adequate
intake of lutein and zeaxanthin. Recommendations to add dark green leafy vegetables to
the diet of pregnant and breastfeeding women and their child or complement the diet with
prenatal and pediatric supplement can help bridge the gap.
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