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Abstract: We evaluated associations between serum 25-hydroxyvitamin D [25(OH)D] level and
severity of new coronavirus infection (COVID-19) in hospitalized patients. We assessed serum
25(OH)D level in 133 patients aged 21–93 years. Twenty-five (19%) patients had severe disease,
108 patients (81%) had moderate disease, and 18 (14%) patients died. 25(OH)D level ranged from 3.0
to 97.0 ng/mL (median, 13.5 [25%; 75%, 9.6; 23.3] ng/mL). Vitamin D deficiency was diagnosed in
90 patients, including 37 with severe deficiency. In patients with severe course of disease, 25(OH)D
level was lower (median, 9.7 [25%; 75%, 6.0; 14.9] ng/mL), and vitamin D deficiency was more
common than in patients with moderate course (median, 14.6 [25%; 75%, 10.6; 24.4] ng/mL, p = 0.003).
In patients who died, 25(OH)D was 9.6 [25%; 75%, 6.0; 11.5] ng/mL, compared with 14.8 [25%; 75%,
10.1; 24.3] ng/mL in discharged patients (p = 0.001). Severe vitamin D deficiency was associated
with increased risk of COVID-19 severity and fatal outcome. The threshold for 25(OH)D level
associated with increased risk of severe course was 11.7 ng/mL. Approximately the same 25(OH)D
level, 10.9 ng/mL, was associated with increased risk of mortality. Thus, most COVID-19 patients
have vitamin D deficiency; severe vitamin D deficiency is associated with increased risk of COVID-19
severity and fatal outcome.
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1. Introduction

Several studies conducted since the onset of the COVID-19 pandemic have shown
that vitamin D deficiency can increase the incidence and worsen the course of acute res-
piratory viral infection caused by SARS-CoV-2 [1,2]. The immunomodulatory effects of
vitamin D are well studied and are associated largely with the expression of the CYP27B1
enzyme and the presence of the vitamin D receptor in immune system cells [3–5]. Through
several mechanisms, vitamin D may reduce the risk of bacterial and viral infection by
creating a barrier, involving adaptive and humoral immunity [6]. Vitamin D is a potent
stimulator of the monocyte/macrophage responses to bacterial infection, and thus it is an
important participant in the innate immune response [7]. By contrast, inducing antimi-
crobial peptides, cathelicidin LL-37 [8,9] and defensins [10], vitamin D enhances cellular
immunity, increases the synthesis of the NF-κB inhibitor IκBα, and decreases expression
of proinflammatory genes [11]. Vitamin D also modulates humoral immunity [6,12,13] by
suppressing interleukin 2 (IL-2) and interferon production and stimulating type 2 T-helper
cytokine’s production [12–14]. The optimal vitamin D status can promote immunoregu-
latory functions in conditions of viral respiratory infection and overall can influence the
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altered immune-inflammatory COVID-19 reactivity at least by down-regulating overly
exuberant cytokine responses that comprise pathological cytokine storm [15].

At the same time, considering the role of vitamin D in the activity of the renin–
angiotensin–aldosterone system, researchers believe that it controls the amount of mRNA
and the expression of angiotensin-converting enzyme 2, which determines the protective
function against various respiratory infections. Moreover, vitamin D can suppress DPP-
4/CD26, the putative adhesion molecule for SARS-CoV-2 to enter the cell [16,17].

Analyzing data on risk factors for COVID-19, we note their similarity to factors
contributing to vitamin D deficiency. Those factors include age, sex, and race [18–21];
seasonality of incidence of acute respiratory viral infection, which accounts for the lowest
concentration of 25-hydroxyvitamin D [25(OH)D] [22,23]; presence of obesity and type
2 diabetes mellitus [24,25]; and smoking [26].

The vitamin D level in patients with COVID-19 can be judged based on the results of
single studies. Positive PCR tests for COVID-19 were more common in individuals with
lower 25(OH)D levels [27]. Previously, we published data concerning the high incidence of
vitamin D deficiency in residents of the northwest region of the Russian Federation [28].
That analysis was a prerequisite for this study to assess serum 25(OH)D level in hospitalized
COVID-19 patients.

Objective of study: To assess vitamin D status in patients with community-acquired
viral pneumonia with a confirmed diagnosis of COVID-19 and to match 25(OH)D value
with disease severity.

2. Materials and Methods

We analyzed records of 161 patients with a new COVID-19 infection, hospitalized
between April and December 2020 at Botkin Clinical Infectious Hospital (St. Petersburg,
Russia; latitude, 59◦ N). Demographic data, information on the clinical course and infection
severity, presence of concomitant diseases and drug therapy, and results of computed
tomography (CT) and laboratory examinations were collected. Alcohol abuse was an
exclusion criterion.

Pneumonia was established by means of chest CT without intravenous contrast
enhancement. Volume of lung tissue lesions was described as follows: CT-1, lesion volume
<25%; CT-2, lesion volume 25–50%; CT-3, lesion volume 50–75%; CT-4, lesion volume >75%.

Serum 25(OH)D level was detected by chemiluminescence immunoassay on micro par-
ticles (Abbott Architect c8000, Chicago, IL, USA, intra-assay CV of 1.60–5.92%, inter-assay
CV ranged from 2.15 to 2.63%). According to Russian and international guidelines [29,30],
normal vitamin D status was considered to be 25(OH)D ≥30 ng/mL (≥75 nmol/L); for
insufficiency, ≥20 and <30 ng/mL (≥50 and <75 nmol/L); for deficiency, <20 ng/mL
(<50 nmol/L), and for severe vitamin D deficiency, less than 10 ng/mL (<25 nmol/L). The
25(OH)D level between 10 to 20 ng/mL was assessed as mild deficiency in this work. The
reference interval for serum 25(OH)D level determination was 3.4–155.9 ng/mL.

We also checked plasma glucose level and inflammatory reaction markers: C-reactive
protein (CRP), IL-6, and ferritin. All parameters were measured at the time of admission
(baseline), and their maximal values (max) were fixed.

Blood glucose level was measured using an automatic biochemistry analyzer (Cobas
Integra c311 [Roche Diagnostics GmbH, Mannheim, Germany]) and diagnostic kits. Serum
IL-6 concentration was determined by enzyme-linked immunosorbent assay on Bio-Rad
680 Microplate Reader equipment (Hercules, CA, USA), using appropriate reagent kits
(Vector-Best; Novosibirsk, Russia). Results were processed using Zemfira 4 software for
ELISA Bio-Rad analyzer (reference range, 0–7 pg/mL). An automatic biochemistry analyzer
(Cobas Integra 400 [Roche Diagnostics GmbH, Mannheim, Germany]) and corresponding
diagnostic kits from that manufacturer were used to determine level of CRP by means
of turbidimetric method (reference range, 0–5 mg/L). Ferritin level was measured on an
Abbott Architect c8000 analyzer (Chicago, IL, USA; reference range, 64–111 µmol/L).



Nutrients 2021, 13, 3021 3 of 11

Statistical processing of research results was carried out using the Statistica v. 10
package (StatSoft; Tulsa, OK, USA), with the help of standard methods of variation statistics.
Between-group comparison was carried out using the Mann–Whitney criteria for incorrect
distribution; results are presented as median (Me) and interquartile range [25%; 75%], as
well as mean (M) and standard deviation (SD) for Student criterion in correct distributed
parameters. Associations between quantitative parameters were assessed using Spearman’s
correlation coefficient. To describe relative risk, we calculated the odds ratio (OR), with
95% confidence interval (95% CI) calculated with Fisher’s exact method. We explored
the association between 25(OH)D level and both COVID-19 severity and fatal outcome
using logistic regression (adjusting for age and comorbidities), with results expressed as β
coefficients and 95% CI. The criterion for the statistical reliability of the obtained results
was p < 0.05.

3. Results

As mentioned, vitamin D status was detected in 161 patients. We excluded data from
10 pregnant women, 5 patients with confirmed human immunodeficiency virus infection,
and 13 patients taking replacement renal therapy for stage 5 chronic kidney disease. Thus,
the final analysis included data from 133 COVID-19 patients (76 men [57%] and 57 women
[43%]), aged 21–93 years (mean, 52 ± 14 years).

Based on disease severity, patients were grouped into moderate and severe course.
Most hospitalized patients (81%) had a moderate course of disease with CT-confirmed
lung damage as CT-2 and CT-3. At the same time, among patients with severe course, 56%
had lung damage as CT-4. Severe patients were older and more often had obesity, diabetes
mellitus, and cardiovascular diseases, especially coronary artery disease (CAD; Table 1).

Table 1. Patients’ characteristics in relation to COVID-19 severity.

Parameter Severe Course
n = 25

Moderate Course
n = 108 p

Age, y, M ± SD 57 ± 3 51 ± 1 0.02

Sex, m/f, n (%) 15(60)/10(40) 61(57)/47(44) 0.75

Obesity, n (%) 16 (64) 23 (21) 0.00

AH, n (%) 15 (60) 46 (43) 0.12

CAD, n (%) 11 (44) 25 (23) 0.04

DM, n (%) 8 (32) 18 (17) 0.00

Death, n (%) 15 (60) 3 (3) 0.00

Volume of lung tissue lesions (CT), n (%)

0.00

0 0 7 (7)
1 1 (4) 19 (18)
2 5 (20) 41 (38)
3 5 (20) 32 (30)
4 14 (56) 9 (8)

25(OH)D, ng/mL, Me [25; 75] 9.7 [6.0; 14.9] 14.6 [10.6; 24.4] 0.00

Vitamin D status, n (%)

0.003
Normal 1 (4) 11 (10)

Insufficiency 3 (12) 28 (26)
Mild deficiency 8 (32) 45 (42)

Severe deficiency 13 (52) 24 (22)

Bed days, M ± SD 21.0 ± 2.5 17.0 ± 0.9 0.16

Glucose max, mmol/L,
Me [25%; 75%] 10.3 [8.4; 18.4] 6.15, 0; 9.7 0.00

CRP baseline, mg/L,
Me [25%; 75%] 64.7 [36.4; 200.0] 34.7 [15.9; 89.6] 0.01
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Table 1. Cont.

Parameter Severe Course
n = 25

Moderate Course
n = 108 p

CRP max, mg/L,
Me [25%; 75%] 265.1 [182.2; 322.0] 60.0 [21.4; 137.3] 0.00

IL-6 baseline, pg/mL,
Me [25%; 75%] 22.0 [10.8; 75.0] 7.8 [2.4; 20.7] 0.001

IL-6 max, pg/mL, Me [25%; 75%] 36.4 [20.1; 282.0] 10.4 [2.8; 25.1] 0.00

Ferritin baseline, µg/L,
Me [25%; 75%] 895.4 [317.1; 1581.7] 357.3 [172.2; 811.3] 0.01

Ferritin max, µg/L, Me [25%; 75%] 1347.6 [835.6; 2197.1] 496.1 [257.4; 1057.4] 0.00

M, mean; SD, standard deviation; m, men; f, women; AH, arterial hypertension; CAD, coronary artery disease; DM, diabetes mellitus; CT,
computed tomography; CRP, C-reactive protein; IL-6, interleukin 6; p < 0.05 values are bolded.

Both baseline and maximal serum CRP, IL-6, and ferritin levels, as well as maximal
glucose level in patients with a severe course, were expectedly higher than in patients with
a moderate course, characterizing a prominent immune-inflammatory response.

Only 12 patients (9%) had a normal vitamin D status, whereas 91% were insufficient
(23%) or deficient (mild deficiency in 40% and severe in 28%). Serum 25(OH)D level in
severe-course patients was significantly lower than in moderate-course patients. Moreover,
the number of patients with severe vitamin D deficiency [serum 25(OH)D level less than
10 ng/mL] in the severe-course group was larger than that in the moderate-course group
(Table 1).

The number of obese patients in the vitamin D deficiency and severe deficiency
groups tendered to be larger than in the vitamin D insufficiency group and in the group
with normal 25(OH)D level, though the finding had no statistical significance (Table 2).
Moreover, prevalence of CAD and DM was significantly higher in patients with vitamin
D deficiency and severe deficiency. As noted, vitamin D mild and severe deficiency was
associated with severe course of COVID-19. Thus, 35% of severe vitamin D-deficient
patients and 15% of mild vitamin D-deficient ones had a severe course of COVID-19.

Table 2. Vitamin D status in 133 COVID-19 patients.

Parameter

Deficiency
n =90 Insufficiency

n = 31
Normal
n = 12

p
Severe Deficiency

n =37
Mild Deficiency

n = 53

Age, y, M ± SD 52 ± 3 53 ± 2 49 ± 2 51 ± 3 0.39
* 0.74

Sex, m/f, n (%) 27 (73)/
10 (27)

26 (49)/
27 (51)

14 (45)/
17 (55)

9 (75)/
3 (25)

0.17
* 0.02

Obesity, n (%) 13 (35) 19 (36) 6 (19) 1 (8) 0.06
* 0.36

AH, n (%) 19 (51) 28 (53) 11 (36) 3 (25) 0.09
* 0.43

CAD, n (%) 15 (41) 14 (26) 6 (19) 1 (8) 0.12
* 0.03

DM, n (%) 7 (19) 14 (26) 5 (16) 0 0.00
* 0.00

Severe course, n (%) 13 (35) 8 (15) 3 (10) 1 (8) 0.15
* 0.003

*, compared with severe deficiency. M, mean; SD, standard deviation; m, men; f, women; AH, arterial hypertension; CAD, coronary artery
disease; DM, diabetes mellitus; p < 0.05 values are bolded.
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Analyzing factors possibly predisposing to death in COVID-19 infection, we found that
patients who died were older and significantly more often had obesity, arterial hypertension,
or CAD. Moreover, patients who died expectedly had higher blood glucose, CRP, IL-6, and
ferritin levels. Vitamin D mild and severe deficiency was strongly associated with death
incidence (Table 3).

Table 3. COVID-19 patient characteristics in relation to disease outcome.

Parameter Death
n = 18

Discharged
n = 115 p

Age, y, M ± SD 62 ± 3 50 ± 1 0.00

Sex, m/f, n (%) 10 (56)/
8 (44)

66 (57)/
49 (43) 0.88

Obesity, n (%) 12 (67) 27 (24) 0.00

AH, n (%) 14 (78) 47 (41) 0.004

CAD, n (%) 11 (61) 25 (22) 0.00

DM, n (%) 6 (33) 20 (17) 0.00

Severe course, n (%) 15 (83) 10 (9) 0.00

Volume of lung tissue lesions (CT), n (%)

0.00

0 0 7 (6)
1 0 20 (17)
2 4 (22) 42 (37)
3 3 (17) 34 (30)
4 11 (61) 12 (10)

25(OH)D, ng/mL, Me [25%; 75%] 9.6 [6.0; 11.5] 14.8 [10.1; 24.3] 0.001
Vitamin D status, n (%)

Normal, n (%) 1 (6) 11 (10) 0.02
Insufficiency, n (%) 0 31 (27)

Mild deficiency, n (%) 7 (39) 46 (40)
Severe deficiency, n (%) 10 (55) 27 (24) 0.005

Bed days, M ± SD 16 ± 3 18 ± 1 0.27

Glucose baseline, mmol/L 7.0 [6.1; 10.0] 5.9 [5.0; 7.5] 0.03

Glucose max, mmol/L 10.8 [7.7; 18.4] 6.3 [5.0; 10.0] 0.00

CRP baseline, mg/L 74.6 [36.4; 168.2] 35.5 [16.3; 90.0] 0.02

CRP max, mg/L 255.5 [182.2; 308.0] 67.4 [22.2; 140.1] 0.00

IL-6 baseline, pg/mL 37.4 [10.8; 87.6] 8.3 [2.4; 20.7] 0.00

IL-6 max, pg/mL 37.7 [12.7; 453.5] 11.8 [2.9; 27.6] 0.001

Ferritin baseline, µg/L, n = 131 965.0 [680.1; 1581.7] 366.5 [172.2; 895.4] 0.005

Ferritin max, µg/L 1699.1 [1119.5; 2197.1] 536.1 [260.0; 1051.0] 0.00

M, mean; SD, standard deviation; m, men; f, women; AH, arterial hypertension; CAD, coronary artery disease; DM, diabetes mellitus; CT,
computed tomography; Me, median, CRP, C-reactive protein; IL-6, interleukin 6; p < 0.05 values are bolded.

We observed an inverse relationship between serum 25(OH)D level and CRP max
level (R = −0.21; p = 0.02) and ferritin max level (R = −0.24; p = 0.01). Serum 25(OH)D level
also negatively correlated with glucose max level (R = −0.25; p = 0.04).

Moreover, a positive correlation existed between glucose max level and baseline
inflammatory marker levels: CRP (R = 0.26; p = 0.003), ferritin (R = 0.18; p = 0.04), and IL-6
(R = 0.20; p = 0.04). The correlation was also present for their max values: CRP (R = 0.44;
p = 0.001), ferritin (R = 0.22; p = 0.03), and IL-6 (R = 0.26; p = 0.006).

We did not find correlation between 25(OH)D level and CT data in this population.
The threshold for 25(OH)D level associated with increased risk of severe course in this

population was 11.7 ng/mL (AUCarea = 0.69; sensitivity, 71%; and specificity, 68%; p = 0.003)
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(Figure 1a). Approximately the same 25(OH)D level was associated with increased risk of
mortality: 10.9 ng/mL (AUCarea = 0.75; sensitivity, 74%; and specificity, 72%; p = 0.001)
(Figure 1b). That level corresponds to vitamin D deficiency.
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Figure 1. 25-Hydroxyvitamin D level’s association with increased risk of (a) severe course, p = 0.003; (b) mortality, p = 0.001.

We evaluated a possible contribution of vitamin D status and other predictors, such
as age, sex, and comorbidities, to the risk of severe course (Table 4) and death (Table 5) in
COVID-19 using multivariate ordered logistic regression analysis with both the adjusted
and unadjusted models. To adjust for confounding factors, we used two models: model 1
was adjusted for age and sex, whereas model 2 was adjusted for age, sex, and comorbidities.
Serum 25(OH)D level < 10.0 ng/mL increased risk of severe coronavirus infection by
3.79 times (95% CI, 1.53–9.39; p = 0.004) and death by 4.07 times (95% CI, 1.46–11.35;
p = 0.007). In the unadjusted model, obesity appeared to be a significant predictor for
severity (OR = 6.57; 95% CI, 2.57–16.78; p = 0.000) (Table 4) and death (OR = 6.52; 95%
CI, 2.23–19.02; p = 0.001) (Table 5), and it significantly correlated with 25(OH)D level
(r = –0.18; p = 0.04). Therefore, obesity was not included in the adjusted model. Sex
was not a significant risk factor, whereas age and major comorbidities had significant
relationships with severity and mortality in the unadjusted models only. By contrast, age
was an independent predictor only in model 1 for severity (OR = 1.04; 95% CI, 1.01–1.07;
p = 0.04), whereas no significance was evident for model 2. For death, age was a strong
independent predictor in both model 1 (OR = 1.09; 95% CI, 1.03–1.16; p = 0.002) and model
2 (OR = 1.07; 95% CI, 1.01–1.15; p = 0.03). Serum 25(OH)D levels < 10 ng/mL in model
1 (OR = 4.09; 95% CI, 1.58–10.67; p = 0.004) and model 2 (OR = 4.17; 95% CI, 1.54–1.27;
p = 0.005) were strongly associated with COVID-19 severity. The same pattern concerning
severe 25(OH)D deficiency was observed for mortality in model 1 (OR = 5.68; 95% CI,
1.74–18.52; p = 0.004) and in model 2 (OR = 5.79; 95% CI, 1.66–20.22; p = 0.006).
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Table 4. Predictors for COVID-19 severity (logistic regression analysis).

Predictor
Unadjusted Model 1

Adjusted
Model 2

Adjusted

OR (95% CI) p OR (95% CI) p OR (95% CI) p

Age 1.03 (1.01–1.07) 0.04 1.04 (1.01–1.07) 0.04 1.03 (0.99–1.08) 0.17

Male 1.16 (0.48–2.80) 0.75 0.77 (0.20–2.02) 0.59 0.85 (0.32–2.29) 0.75

Obesity 6.57 (2.57–16.78) 0.000

AH 2.02 (0.83–4.91) 0.12 0.98 (0.28–3.43) 0.98

CAD 2.61 (1.05–6.46) 0.04 1.18 (0.34–4.08) 0.79

DM 2.35 (0.88–6.28) 0.08 2.25 (0.77–6.57) 0.14

25(OH)D < 20 ng/mL 2.97 (0.95–9.27) 0.06 2.72 (0.86–8.59] 0.09 2.48 (0.77–7.99) 0.13

25(OH)D < 10 ng/mL 3.79 (1.53–9.39) 0.004 4.09 (1.58–10.67) 0.004 4.17 (1.54–1.27) 0.005

Model 1 is adjusted for age and sex. Model 2 is adjusted for age, sex, and comorbidities. Data are presented as frequencies (%) and OR (95%
CI). OR, odds ratio; CI, confidence interval; AH, arterial hypertension; CAD, coronary artery disease; DM, diabetes mellitus; p < 0.05 values
are bolded.

Table 5. Predictors for COVID-19 fatal outcome (logistic regression analysis).

Predictor
Unadjusted Model 1

Adjusted
Model 2

Adjusted

OR (95% CI) p OR (95% CI) p OR (95% CI) p

Age 1.07 (1.03–1.13) 0.001 1.09 (1.03–1.16) 0.002 1.07 (1.01–1.15) 0.03

Male 0.93 (0.34–2.52) 0.88 0.43 (0.13–1.41) 0.16 0.51 (0.15–1.69) 0.27

Obesity 6.52 (2.23–19.02) 0.001

AH 5.06 (1.57–16.34) 0.07 1.59 (0.35–5.54) 0.56

CAD 5.66 (1.99–16.10) 0.001 1.40 (0.35–5.54) 0.63

DM 2.38 (0.79–7.08) 0.12 1.98 (0.57–6.92) 0.28

25(OH)D < 20 ng/mL 9.78 (1.26–76.14) 0.03 8.60 (1.07–69.12) 0.05 7.87 (0.96–64.43) 0.06

25(OH)D < 10 ng/mL 4.07 (1.46–11.35) 0.007 5.68 (1.74–18.52) 0.004 5.79 (1.66–20.22) 0.006

Model 1 is adjusted for age and sex. Model 2 is adjusted for age, sex, and comorbidities. Data are presented as frequencies (%) and odds
ratio (95% CI). OR, odds ratio; CI, confidence interval; AH, arterial hypertension; CAD, coronary artery disease; DM, diabetes mellitus;
p < 0.05 values are bolded.

4. Discussion

The available data indicate that vitamin D therapy in people with vitamin D insuffi-
ciency and deficiency reduces the likelihood of developing acute respiratory viral infections
by 42% [31] and that patients with vitamin D deficiency have a longer, more severe course
of disease [32]. Analysis of 25(OH)D levels in COVID-19 patients in China showed a
high incidence of vitamin D deficiency in winter and a possible relationship between
low vitamin D supply and severity and outcomes of the disease [33,34]. The results of
a recent study showed that patients with severe coronavirus infection have the lowest
serum 25(OH)D levels [35], in accordance with the data obtained here. Thus, vitamin D
deficiency and obesity were most often reported in fatal COVID-19 patients [36,37] The
results of the present study show that obesity independently worsens disease prognosis by
at least 6 times, requiring an integrated approach in managing such patients. Moreover,
severe vitamin D deficiency appears to be a strong independent negative predictor, even
when adjusted for age, sex, and comorbidities, that worsens disease prognosis even by
4 times. Though in this study DM did not increase the risk of either severity or mortality
of COVID-19 patients, we found associations between serum 25(OH)D level and plasma
glucose concentration on one hand and between inflammatory markers and glucose level
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on the other hand that confirms the relationship between these conditions, and corresponds
with previous data [38].

Our results correspond to the data presented in systematic review and meta-analysis
of 23 studies that summarized all the existing knowledge concerning the role of vitamin D
in COVID-19. According to the presented data, vitamin D deficiency increases the chance
of severe COVID-19 development for about five times (OR = 5.1, 95% CI, 2.6–10.3), while
there was no significant association between vitamin D status and increased mortality rates
(OR = 1.6, 95% CI, 0.5–4.4) [39].

A main factor contributing to COVID-19 severity is believed to be development of
the cytokine storm, the uncontrolled release of various inflammatory markers (such as
CRP, IL-6, ferritin, tumor necrosis factor α or neutrophil-to-lymphocyte ratio (NLR)). For
example, intensive care unit COVID-19 patients have the highest concentrations of IL-1β,
IL-6, and IL-6 to IL-10 ratio [40]. Additionally, increased NLRs and decreased eosinophil
counts are typical for severe COVID-19 patients, while neutrophils and lymphocytes counts
demonstrate respectively positive and negative correlation with COVID-19 severity [41].
Our data confirmed that IL-6, CRP and ferritin levels are higher in severe COVID-19
cases and in patients with fatal outcome and showed negative correlations between these
parameters and 25(OH)D.

The cytokine storm can activate intravascular coagulation, forming the basis for
multiorgan injury, which is mediated mainly by inflammatory cytokines such as IL-6 [42].
By contrast, coronavirus can directly affect endothelial cells, causing cell death, and induces
a cytopathic effect on airway epithelial cells [43]. Additionally, SARS-CoV-2 can affect the
alveolar cells by ACE2 binding and suppress surfactant production. This damage might
be prevented by vitamin D, as in vitro and in vivo studies have shown that 1.25(OH)2-D
induces type II pneumocyte proliferation and surfactant synthesis in the lungs. These data
are confirmed in clinical studies by positive correlation between vitamin D status and lung
tissue lesions volume according to CT evaluation [44,45]. On the other hand, we did not
find similar interlinks in our work.

IL-6 itself can increase the severity of COVID-19 by up-regulating angiotensin-converting
enzyme 2 receptor and inducing cathepsin L production in macrophages, thus mediating
the cleavage of the S1 subunit of the coronavirus surface spike glycoprotein. The latter
is necessary for coronavirus to enter human host cells and to cause all further reactions.
Low vitamin D concentration is associated with high IL-6 production, whereas vitamin D
supplementation has an anti-inflammatory effect [46].

Taking into account vitamin D’s immunomodulatory effects, particularly the inhibition
of NF-κB by increasing synthesis of IκBα [47,48], we can assume that vitamin D intake and
the consequent achievement of a 25(OH)D concentration of 40–50 ng/mL (100–125 nmol/L)
might have a positive effect in patients with coronavirus respiratory infections such as
Middle East respiratory syndrome, SARS-CoV, and SARS-CoV-2 [11,49]. This is supported
by data from a few studies showing that use of large vitamin D doses in critically ill patients
with viral and bacterial pneumonia, under mechanical ventilation, leads to shortening of
intensive care unit treatment duration and prognosis improvement [50]. However, further
research is required to obtain more reliable information on vitamin D’s role in preventing
and treating new coronavirus infection.

There are several limitations in the study. First, it is a single-center study with a
relatively small sample size, while a larger cohort of COVID-19 patients is preferable to
better assess vitamin D status and severity/outcomes of the disease. Secondly, only a part
of the immune markers was included in the analysis; we do not have NLRs data for this
cohort, so the immune response to SARS-CoV-2 should be characterized in more detail
in the future. There were no anthropometric data in patients’ medical histories for us
to calculate BMI, despite higher BMI being known as a strong predictor for vitamin D
deficiency as well as COVID-19 severity. Moreover, this study is not a prospective one
and does not provide the information regarding the relationship between vitamin D status
dynamic and immune response, as well as the outcomes of COVID-19.
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