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Abstract: Intrauterine growth restriction (IUGR) is associated with reduced placental amino acid
transport (AAT). However, it remains to be established if changes in AAT contribute to restricted fetal
growth. We hypothesized that reduced in vivo placental AAT precedes the development of IUGR in
baboons with maternal nutrient restriction (MNR). Baboons were fed either a control (ad libitum)
or MNR diet (70% of control diet) from gestational day (GD) 30. At GD 140, in vivo transplacental
AA transport was measured by infusing nine (13)C- or (2)H-labeled essential amino acids (EAAs)
as a bolus into the maternal circulation at cesarean section. A fetal vein-to-maternal artery mole
percent excess ratio for each EAA was measured. Microvillous plasma membrane (MVM) system A
and system L transport activity were determined. Fetal and placental weights were not significantly
different between MNR and control. In vivo, the fetal vein-to-maternal artery mole percent excess
ratio was significantly decreased for tryptophan in MNR. MVM system A and system L activity
was markedly reduced in MNR. Reduction of in vivo placental amino acid transport precedes fetal
growth restriction in the non-human primate, suggesting that reduced placental amino acid transfer
may contribute to IUGR.

Keywords: maternal-fetal exchange; amino acids; neutral; trophoblast; fetal growth restriction

1. Introduction

Intrauterine growth restriction (IUGR) affects about 30 million babies each year world-
wide and is a significant cause of perinatal morbidity and mortality [1–3]. In addition,
IUGR is also linked to an increased risk of developing cardiovascular dysfunction, insulin
resistance, and other metabolic disorders in adulthood [4–6]. In the developed world,
the failure of the normal increase in uteroplacental blood flow is believed to be the most
common etiology of IUGR. In contrast, maternal undernutrition remains the leading cause
of in utero restricted growth [7] in developing regions. Furthermore, more than 50 million
Americans live in households experiencing food insecurity or hunger sometime during the
year [8]. Therefore, exploring the effects of maternal undernutrition on placental function
is highly relevant not only to many parts of the world where inadequate food intake in
pregnant women is still a significant concern. Moreover, different etiologies of IUGR are
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associated with strikingly similar changes in placental signaling and function, including
downregulation of insulin/IGF-1 and mTOR signaling and decreased amino acid transport
capacity [7,9–12]. Thus, it is possible that studies of IUGR due to nutrient restriction to
mother may also increase our understanding of IUGR due to compromised uteroplacental
blood flow.

The syncytiotrophoblast, the transporting epithelium of the human placenta, medi-
ates the transport of nutrients from the maternal to the fetal circulation. The System L
amino acid transporter is a sodium-independent exchanger. It mediates cellular uptake of
essential amino acids, consists of branched-chain (such as L-leucine) and neutral aromatic
amino acids (including L-phenylalanine) [13]. The functional System L transporter is a het-
erodimer, consisting of a light chain (typically LAT1, SLC7A5 or LAT2, SLC7A8) covalently
attached to a heavy chain (4F2hc/CD98; 4F2 cell-surface antigen heavy chain/cluster of dif-
ferentiation 98, SLC3A2) [14]. Both LAT1 and LAT2 transporters contribute to trophoblast
system L transport capacity [15].

System A catalyzes the sodium-dependent net uptake of non-essential neutral amino
acids into the cell [16]. All three isoforms of System A (SNAT1, SLC38A1; SNAT2, SLC38A2
and SNAT4, SLC38A4) are expressed in the human placenta. Trophoblast-specific SNAT2
or SNAT4 gene knockout studies indicate that placental system A amino acid transport
activity is critical to placental and fetal growth in mice [17]. Furthermore, placental
system A and L amino acid transport activity is decreased in human IUGR, suggesting
that changes in placental amino acid transport activity may directly contribute to fetal
growth restriction [18–23]. However, the mechanistic link between changes in placental
amino acid transport capacity and the development of IUGR in women is unknown. This
information is needed to better understand the pathophysiology of IUGR and future efforts
to develop interventions to improve placental function and alleviate restricted fetal growth.
Importantly, this question cannot be easily addressed in human pregnancy.

In rats, we demonstrated that maternal protein restriction causes down-regulation of
placental amino acid transport several days before fetal size reductions were observed [9,12].
However, the rodent placenta is very different from the human placenta, and it is not en-
tirely clear if this information can be extrapolated to women. Given the striking similarities
in placental structure and the close evolutionary relationship to humans, studies using
non-human primate models are likely more informative. We have developed a baboon
model of 30% global caloric maternal nutrient restriction (MNR), which results in IUGR,
reduced fetal circulating levels of essential amino acids, and structural and functional
changes in a range of fetal organs [24–33] and long term increased risk for poor health.

Using this model, we reported that at gestational day (GD) 165, which is approximately
90% of gestation (term~GD 184), MNR was linked to decreased placental amino acid
transport and IUGR [11]. Similarly, we demonstrated that System A amino acid transporters
activity decreased in isolated syncytiotrophoblast microvillous plasma membranes at GD
120 (~65% of gestation) [34]; at this point in gestation, there was no reduction in fetal
size [34]. Here, using control and MNR baboons at GD 140, we tested the hypothesis that
decreased in vivo placental amino acid transport precedes the development of IUGR in
baboons with MNR (maternal nutrient restriction).

2. Materials and Methods
2.1. Animal Maintenance

All experimental animal protocols were subject to ethical review and approved by the
TBRI (Texas Biomedical Research Institute) Institutional Animal Care and Use of Laboratory
Animals at San Antonio, Texas. In addition, all the experiments utilizing Baboons (Pepion
species) were carried out in TBRI primate research facilities authorized by the AAALAC
(Association for the Assessment and Accreditation of Laboratory Animal Care).
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2.2. Feeding

Morphometric assessments were done before pregnancy to guarantee all the baboons
used in the current experiment were homogenous in bodyweight and general morphomet-
rics. We used an individual feeding system. Briefly, each baboon was fed individually. The
feeding times were 07.00 a.m.–09.00 a.m. or 11.00 a.m.–1.00 p.m., allowing careful monitor-
ing and control of individual diets in each feeding cage. Both control and experimental
group baboons had access to water ad libitum in each feeding cage. During feeding time,
each baboon’s weight was measured with the help of a digital weighing system (GSE 665;
GSE Scale Systems, Allen Park, MI, USA).

2.3. Composition of Diet

Purina Monkey biscuits (Cat # 5038) were purchased from Purina (St. Louis, MO,
USA). Each biscuit’s dietary composition was ≤6% crude fiber, ≥15% crude protein, ≥5%
crude fat, 5% ash,≤3% added minerals, solubilized vitamin C, and other essential vitamins.

2.4. Experimental Design

Until 30 days of gestation (GD), all the pregnant baboons had ad libitum access to diet.
From GD 30 onwards, MNR group baboons were fed 70% of the feed consumed by the
control group, based on a weight adjustment throughout the study period. However, the
control group (CTR) baboons continued to feed ad libitum throughout the study period.
As previously described, each animal’s daily food intake, mean body weight, and health
status were recorded [11].

2.5. Blood and Tissue Collection

As described elsewhere [11], at GD 140, baboons were administered ketamine hy-
drochloride (Dosage: 10 mg/kg), intubated, and anesthetized with the use of isoflurane
(starting rate 2% with oxygen, 2 L/min). After that, a cesarean section was performed
using standard sterile techniques. Blood samples were collected from the maternal uterine
vein and fetal umbilical vein at the cesarean section [34]. Fetuses and placentas were
weighed. As described in detail below, villous trophoblast tissue was collected from the
placenta, and collected villus tissue was used to isolate syncytiotrophoblast plasma mem-
branes. Adequate postoperative analgesia was administered to baboons (buprenorphine
0.015 mg·kg−1·day−1 as two doses for three days) following the cesarean section.

2.6. Stable Isotope-Labeled Essential Amino Acids

At GD 140, during the time of the cesarean section, a bolus mixture consisting of nine
stable isotope-labeled (13C or 2H) essential amino acids (EAAs) was infused into a maternal
peripheral vein over 2 min as described for pregnant women [35], with slight modifications
(discussed detail in supplemental methods). The infusate was diluted to 10 mL with sterile
saline solution (isotonic), and its composition is listed in Table 1.



Nutrients 2021, 13, 2892 4 of 19

Table 1. Composition of the infusate.

Amino Acid Isotopic Labelling Concentration of Amino
Acid (mg/mL) Molar Concentration

Valine (1-13C) 1.25 0.01

Leucine (1-13C) 1.25 0.009

Isoleucine (1-13C) 1.25 0.009

Methionine [Methyl-2H3] 1.25 0.008

Threonine [U-13C4] 2.5 0.02

Phenylalanine [1-13C] 1.25 0.007

Lysine [4,4,5,5-2H4] 2.5 0.011

Histidine [Ring 2-13C] 2.5 0.012

Tryptophan [Indole-2H5] 2.5 0.012

All nine stable isotope-labeled (13C or 2H) essential amino acids were dissolved in PBS (physiological saline
solution) [35].

2.7. Placental MVM and BM Vesicles Preparation

Placentas were collected at cesarean section and washed immediately using ice-cold
phosphate-buffered saline (PBS) to clean off excessive blood clots. Chorionic villi were
dissected from the placenta into small pieces (roughly 1 cm3) and homogenized in ice-
cold Buffer D (Composition of Buffer D; 250 mM sucrose, 10 mM HEPES-Tris, and 1 mM
ethylenediaminetetraacetic acid, pH 7.4, at 4 ◦C), containing inhibitors of protease and phos-
phatase. Syncytiotrophoblast maternal facing microvillous plasma membranes (MVM) and
fetal facing basal plasma membranes (BM) were isolated from each placental homogenate,
according to a previously published protocol (described in detail in supplemental methods)
with minor modifications [36,37].

2.8. System A and System L Amino Acid Transport Activity

Briefly, vesicles were preloaded with ice-cold vesicles loading buffer (Biochemical
composition: 300 mmol/L mannitol and 10 mmol/L HEPES-Tris, pH 7.4) and incubated
overnight at 4 ◦C. Next, vesicles were centrifuged, and the resulting pellet was resuspended
in the same ice-cold vesicle buffer to a final protein concentration of approximately 6 mg
of protein/mL of vesicle loading buffer. Finally, vesicles were kept on ice until analysis,
which is described in detail in supplemental methods.

2.9. Western Blot Analysis

Next, western blot analysis was performed to measure the MVM protein expression of
various transporters isoforms [SNAT-2, LAT-1, LAT-2, glucose transporter (GLUT)-1, and
taurine transporter (TAUT)] as reported previously [11] (details provided in supplemental
methods). Finally, blots were re-probed (after stripping) for β-actin as a loading control.

2.10. Statistical Analysis

The number of experiments (n) in each group indicates how many numbers of placenta
were analyzed per group. Data are given as means± S.E.M or Medians± IQR (Interquartile
range). Differences between two independent groups (Control vs. MNR) were tested
statistically using the Mann–Whitney test. Using the Graph Pad Prism 5 software, linear
relationships between variables of the control and experimental group were assessed using
the following analysis (i) bivariate and (ii) Pearson’s correlation coefficients analysis. A p
value less than 0.05 indicates that the results were statistically significant. The Kolmogorov–
Smirnov normality test was performed using the Graph Pad Prism 5 software to determine
whether control and MNR group data were normally distributed or not.
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3. Results
3.1. Fetal and Placental Weights of Control and MNR Group

Fetal (birth weight) and placental weights were recorded at the time of cesarean
section. As shown in Figure 1, there is no statistical difference in fetal weight or placental
weight between the control and MNR groups. Furthermore, fetal: placental ratios were
identical between control (n = 10) and MNR (n = 12) group animals (Figure 1).

Figure 1. Fetal weight, placental weight and fetal: placental ratio of control and MNR group at GD
140. (A) Fetal (Birth) weight (B) placental weight and (C) fetal: placental weight ratio at gestational
day 140 in the control and MNR groups. Medians ± IQR, n = 10 control; n = 12 MNR. KS normality
test p value: Fetal weight (Control, p > 0.10; MNR, p > 0.10; passed normality), Placental weights
(Control, p > 0.10; MNR, p > 0.10; passed normality), Fetal: Placental ratio Control, p > 0.10; MNR,
p > 0.10; passed normality).

3.2. Maternal Enrichment

The maternal plasma enrichment over time was similar between control and MNR
groups (data not shown), and data from the two groups (n = 8/each group) is merged in
Figure 2. In baboons at GD 140, (1-13C) valine, (1-13C) leucine, (1-13C) isoleucine, [Methyl-
2H3] methionine, [U-13C4] threonine, [1-13C] phenylalanine, [4,4,5,5-2H4] lysine, [Ring
2-13C] histidine, and [Indole-2H5] tryptophan were rapidly cleared from the maternal
circulation. There were no statistically significant differences in the clearance rates among
the nine essential amino acids that were analyzed.

3.3. Fv/M MPE Ratios

Fetal vein/maternal artery (Fv/M) mole percent excess (MPE) ratios were measured
for the (1-13C) valine, (1-13C) leucine, (1-13C) isoleucine, [Methyl-2H3] methionine, [U-
13C4] threonine, [1-13C] phenylalanine, [4,4,5,5-2H4] lysine, [Ring 2-13C] histidine, and
[Indole-2H5] tryptophan that were infused in control (n = 8) and MNR (n = 11) group
pregnant baboons at cesarean section. At GD 140, Fv/M MPE ratios for (1-13C) valine,
(1-13C) leucine, (1-13C) isoleucine, [Methyl-2H3] methionine, [U-13C4] threonine, [1-13C]
phenylalanine, [4,4,5,5-2H4] lysine, and [Ring 2-13C] histidine were not statistically different
among control and experimental (MNR) groups. However, the Fv/M MPE level of the
EAAs [Indole-2H5] tryptophan (p = 0.02) was significantly decreased in the MNR group
compared with controls (Figure 3).
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Figure 2. Maternal plasma MPE (mole percent excess) after bolus infusion in control and MNR baboons. (A–I): MPE
of stable isotope-labeled (1-13C) valine, (1-13C) leucine, (1-13C) isoleucine, [Methyl-2H3] methionine, [U-13C4] threonine,
[1-13C] phenylalanine, [4,4,5,5-2H4] lysine, [Ring 2-13C] histidine, and [Indole-2H5] tryptophan in maternal arterial blood
after intravenous infusion of a mixture of labeled essential amino acids to the pregnant baboon at GD 140 (Control, n = 8;
MNR, n = 8). Medians ± IQR, t = 1/2: half-life. Each data point represents combined maternal MPE values of both control
and MNR group (n = 16 each time point, (Control, n = 8; MNR, n = 8)).
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Figure 3. In vivo transplacental transport of (1-13C) valine, (1-13C) leucine, (1-13C) isoleucine, [Methyl-
2H3] methionine, [U-13C4] threonine, [1-13C] phenylalanine, [4,4,5,5-2H4] lysine, [Ring 2-13C] histi-
dine, and [Indole-2H5] tryptophan. Fetal vein/maternal artery (Fv/M) mole percent excess (MPE)
ratios of stable isotope-labeled nine EAAs after intravenous infusion of a mixture of labeled EAAs to
the control and MNR pregnant baboon at cesarean section (GD 140). Umbilical vein blood samples
were obtained 5 min after the completion of EAA infusion. Fv/M MPE ratios of valine, leucine,
isoleucine, methionine, threonine, phenylalanine, lysine, histidine, tryptophan in control (n = 8) and
MNR (n = 11) baboons at GD 140. Medians ± IQR, * p < 0.05. KS normality test p value: (1-13C)
valine (Control, p > 0.10; MNR, p > 0.10; passed normality), (1-13C) leucine (Control, p > 0.10; MNR,
p > 0.10; passed normality), (1-13C) isoleucine (Control, p > 0.10; MNR, p > 0.10; passed normality),
[Methyl-2H3] methionine (Control, p > 0.10; MNR, p > 0.10; passed normality), [U-13C4] threonine
(Control, p = 0.010, did not pass normality; MNR, p > 0.10; passed normality), [1-13C] phenylalanine
(Control, p > 0.10; MNR, p > 0.10; passed normality), [4,4,5,5-2H4] lysine (Control, p > 0.10; MNR,
p > 0.10; passed normality), [Ring 2-13C] histidine (Control, p = 0.04, did not pass normality; MNR,
p > 0.10; passed normality), [Indole-2H5] tryptophan (Control, p = 0.01, did not pass normality; MNR,
p > 0.10; passed normality).
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There were no significant differences in Fv/M MPE ratios for (1-13C) isoleucine,
[Methyl-2H3] methionine, and [Ring 2-13C] histidine between control (AGA) and MNR
(IUGR) fetuses (Figure 3). However, the Fv/MPE enrichment ratio of (1-13C) isoleucine,
[Methyl-2H3] methionine, and [Ring 2-13C] histidine was positively correlated with fetal
weight in the MNR group baboons (Figure 4). Moreover, the Fv/M enrichment ratio of
(1-13C) leucine and [Indole-2H5] tryptophan were significantly associated with fetal weight
in control and MNR pregnancies (Figure 4).

Figure 4. Relationship between Fv/M MPE ratio and fetal weight. (A–I) Correlation between fetal
vein/maternal artery (Fv/M) mole percent excess (MPE) ratio of (1-13C) valine, (1-13C) leucine,
(1-13C) isoleucine, [Methyl-2H3] methionine, [U-13C4] threonine, [1-13C] phenylalanine, [4,4,5,5-2H4]
lysine, [Ring 2-13C] histidine, and [Indole-2H5] tryptophan and fetal weight in control (n = 8) and
MNR (n = 11) baboons at GD140. Pearson correlation coefficient (r).
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3.4. Effect of MNR on System A and System L Amino Acid Transport Activity in MVM

MVM system A-mediated transport activity was reduced by 40% in the MNR group
compared to the controls (n = 9/each group, p = 0.02) (Figure 5). Similarly, mediated uptake
of L-Leucine, previously shown to closely represent System L activity in MVM [34,38], was
significantly decreased by 30% in the MNR group (n = 9/each group, p = 0.04, Figure 5).

Figure 5. MVM System A and L transport activity. (A,B) Microvillous plasma membrane vesicles
(MVM) system A and system L activity in the MNR and control group. (A) System A mediated
MeAIB uptake in MVM isolated from control and MNR placentas of baboons at GD 140. (B) System L
mediated L-leucine uptake in MVM isolated from control and MNR placentas of baboons at GD 140.
MVM system A and L uptake in Control and MNR groups were compared using the Mann–Whitney
test (n = 9/each group, * p < 0.05, mean ± S.E.M.). Medians ± IQR, n = 10 control; n = 12 MNR. KS
normality test p-value: MVM system A activity (Control, p > 0.10; MNR, p > 0.10; passed normality),
MVM system L activity (Control, p > 0.10; MNR, p > 0.10; passed normality).

We determined the relation between System A and System L amino acid transport
activity between control and MNR groups. As shown in Supplemental Figure S1, MVM
system A activity was positively correlated to system L amino acid transporter activity in
the control and MNR groups (Supplemental Figure S1).

Next, we observed that fetal weight was positively correlated with MVM system A
(Figure 6) and System L activity (Figure 6) in the control and MNR groups. However, we
did not find a correlation between placental weight and MVM system A or System L amino
acid transport activity in the control and MNR groups (data not shown).
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Figure 6. Relationship between MVM System A /system L activity and fetal weight at GD 140 (A,B).
MVM system A/System L activity was positively correlated to fetal weight in both control and MNR
groups (System A activity: control, r = 0.88, p = 0.0016; MNR, r = 0.75, p = 0.01, n = 9 in each group;
System L activity: control, r = 0.75, p = 0.01; MNR, r = 0.72, p = 0.03, n = 9 in each group, r = Pearson
correlation coefficient).

3.5. Leucine Transport in BM

BM mediated L-leucine uptake was significantly decreased by 40% in baboons sub-
jected to MNR compared to the control group (n = 9/each group, p = 0.04; Figure 7) at GD
140.

Figure 7. Basal plasma membrane (BM) leucine transport in control and MNR group at GD 140.
System L involved L-leucine uptake into BM vesicles isolated from placentas of control and MNR
group. BM leucine transport in Control and MNR groups was compared using the Mann–Whitney
test (n = 9/each group, * p < 0.05, Medians ± IQR). KS normality test p-value: BM system L activity
(Control, p > 0.10; MNR, p > 0.10; passed normality).
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3.6. Protein Expression of System L Acid Transporter Isoforms in MVM

Using Western Blot, LAT1 and 2 (system L amino acid transporter isoforms) protein
expressions were determined in MVM vesicles isolated from placentas of controls and
MNR baboons at GD 140. MVM LAT1 protein expression was significantly lowered by
53% in MNR compared to control group baboons (n = 9/each group, p = 0.04, Figure 8A,C).
However, MVM LAT2 protein expression was comparable between the controls and MNR
(n = 9/each group, p = 0.54, Figure 8B,D).

Figure 8. (C,D) MVM LAT1 and 2 protein expression. Western blot analysis of (A) LAT1 and (B) LAT2
(system L amino acid transporter isoforms) in MVM isolated from control (C) and MNR baboons
at GD 140. The histogram shows protein expression data of MVM LAT1 and LAT2. Equal sample
loading was performed. After normalization of MVM LAT1 or LAT2 expression to loading control
(β-actin), the average density of the control sample band was designated an arbitrary value of 1.
Values are given as Medians ± IQR. * p < 0.05, Mann–Whitney test (n = 9/each group). KS normality
test p-value: MVM LAT1 (Control, p > 0.10; MNR, p > 0.10; passed normality), MVM LAT2 (Control,
p > 0.10; MNR, p > 0.10; passed normality).

MVM LAT1 expression positively correlated with MVM LAT2 expression in the control
group. However, there was no association between MVM LAT1 expression and MVM
LAT2 expression in the MNR group (Supplemental Figure S2).

3.7. Protein Expression of SNAT2 Transporter Isoform in MVM

Next, we measured the SNAT2 protein expression in MVMs of the control and MNR
group. Western blot analysis of SNAT2 expression in MVMs showed that SNAT2 expression
was reduced by 41% (p = 0.04) in the MNR compared to controls at GD140 (Figure 9).
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Figure 9. MVM SNAT2 protein expression at GD 140. (A) Western blot analysis of SNAT2 (system
A amino acid transporter isoforms) expression in MVM isolated from control (C) and MNR (M)
baboons. (B) The histogram shows protein expression data of MVM SNAT2. An equal amount of
protein loading was performed. After normalization of MVM SNAT2 expression to loading control
(β-actin), the average density of the control sample band was designated an arbitrary value of 1.
Values are represented as Medians ± IQR. * p < 0.05, Mann–Whitney test (n = 8/each group). KS
normality test p-value: MVM SNAT2 (Control, p > 0.10; MNR, p > 0.10; passed normality).

3.8. Protein Expression of TAUT and GLUT1 Transporter Isoforms in MVM at GD 140

The MVM protein expression of the taurine transporter (TAUT) and glucose trans-
porter (GLUT1) were determined in control and MNR baboons (Figure 10). The TAUT and
GLUT1 protein expression in the MVM was not different between the control and MNR
groups (TAUT, n = 9/each group, p = 0.78; GLUT1, n = 8/each group).

Significant changes in the fetal and placental weights, MVM and BM system A/L
amino acid transport activity and isoform expression, maternal, fetal amino acid concentra-
tion, and in vivo transplacental amnio acid transport activity in MNR baboons as compared
to control at GD 120 [34], GD 140 (current study) and GD 165 [11,38] are summarized in
Table 2.
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Figure 10. MVM TAUT and GLUT1 protein expression. (A) Western blot analysis of amino acid
transporter isoforms TAUT and glucose transporter (GLUT1) in MVM isolated from control (C) and
MNR (M) baboons at GD 140. (B) The histogram shows protein expression data of MVM TAUT and
GLUT1. An equal amount of protein loading was performed. After the normalization of MVM TAUT
and GLUT1 expression to loading control (β-actin), the average density of the control sample band
was designated an arbitrary value of 1. Values are represented as Medians ± IQR. n = 9/each group.
KS normality test p-value: MVM TAUT (Control, p > 0.10; MNR, p > 0.10; passed normality); MVM
GLUT1 (Control, p = 0.04, not passed normality; MNR, p > 0.10; passed normality).

Table 2. Comparison of significant changes in the fetal and placental weights, MVM and BM system A/L amino acid
transport activity and isoform expression, maternal, fetal amino acid concentration, and in vivo transplacental amnio acid
transport activity in MNR baboons as compared to control at different gestation ages.

Parameters Gestation Day 120 Gestation Day 140 Gestation Day 165

Reference [34] Current study [11,38]

Fetal weight ↔ ↔ ↓
Placental weight ↔ ↔ ↓

MVM System A activity ↓ ↓ ↓
MVM System A amino acid

transporter isoforms (SNAT1,2
and 4) expression

↔ ↓SNAT2 ↓SNAT2;↔ SNAT1, SNAT4

MVM System L activity ↔ ↓ ↓
MVM System L amino acid

transporter isoforms expression
(LAT1 and 2)

↔ ↓LAT1 ↓LAT1 and LAT2

MVM Taurine transporter
expression ↔ ↔ ↓
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Table 2. Cont.

Parameters Gestation Day 120 Gestation Day 140 Gestation Day 165

BM System L activity ↔ ↓ ↓
BM System L amino acid
transporter LAT1 isoform

expression
↔ Not studied Not studied

Maternal plasma concentration
of amino acids ↔ Not studied

↓Aspartic acid, glutamic acid,
tyrosine, tryptophan,

phenylalanine, leucine, and
ornithine; ↑Glycine

Fetal plasma concentration of
amino acids

↓ Leucine and isoleucine.
↑Citrulline Not studied

↓Taurine, tyrosine,
phenylalanine, leucine, and

ornithine

In vivo transplacental amino
acid transport Not studied ↓Tryptophan

↓Leucine, isoleucine,
methionine, phenylalanine,
threonine, and tryptophan

4. Discussion

Because of the inaccessibility of the human placenta for detailed functional studies
before delivery, we used a well-characterized IUGR model in the baboon involving maternal
nutrient restriction to induce fetal growth restriction to test the hypothesis that a reduction
in the capacity of the placenta to transport amino acids precedes the development of fetal
growth restriction. At GD 140, despite normal fetal growth, we found a robust reduction in
the in vitro activity of two critical placental amino acid transporters, system A and L, and
a reduction of tryptophan transfer in vivo in the MNR baboon. Studies on sonographic
biometric measurements demonstrate that fetal and placental growth in baboons and
humans is similar during mid and late gestation [39].

Together with our previous reports on placental amino acid transport in MNR at
GD 120 [34] and 165 [38], this data allows us to construct a time course of nutrient trans-
porter activity changes across the second half of pregnancy in response to MNR (Table 2).
Our data suggest that down-regulation of placental amino acid transport in response to
MNR directly contributes to restricted fetal growth in this maternal nutrition restriction
model. Our findings are not consistent with the theory of compensatory up-regulation of
placental nutrient transfer to maintain fetal development in response to restricted mater-
nal nutrition [40]. These findings have important implications for our understanding of
the pathophysiology of restricted fetal growth and for developing effective intervention
strategies in IUGR.

System A transporter activity [22] and SNAT 2 protein expression are reduced in
human idiopathic IUGR [18], and MVM System A activity has been reported to be associ-
ated with the severity of IUGR [21]. Furthermore, MVM SNAT2 expression is positively
correlated with per gram of fetal and placental weight in human IUGR [18,23]. This data
suggests that reduced amino acid concentrations [18,38] and decreased system A activ-
ity [18,34] in IUGR pregnancy may be due to down-regulated placental SNAT2 expression.
These observations in humans are consistent with an essential role for placental System A
mediated transport in determining fetal growth trajectories. In the current study, System
A activity and SNAT 2 protein expression in MVM was reduced in MNR baboons at GD
140, when fetal growth remained unaffected. A mechanistic link between placental System
A mediated amino acid transport and fetal growth is supported by recent studies in mice
demonstrating that the trophoblast specific knockdown of System A amino acid transporter
isoform is associated with IUGR [17]. Furthermore, MVM and BM system L amino acid
transporter activity was reduced in MNR at GD 140, consistent with our previous reports
that placental System L activity is decreased in human IUGR placentas [41].
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The Fv/M MPE ratio of tryptophan was decreased and positively correlated with birth-
weight in MNR Baboons at GD140. This data suggested reduced capacity for transplacental
transfer of tryptophan in response to MNR. MVM uptake of tryptophan is exclusively
mediated via system L transport [42,43], whereas basal plasma membrane transport of
tryptophan is mediated by system L and system y+L [43]. It is known that fetal tryptophan
depletion impairs fetal cerebral 5-HT synthesis, with negative consequences for brain
development [44]. In addition, tryptophan has a vital role in antioxidant activity [45]. It
is also necessary for the formation of kynurenic acid, a neuroactive metabolite known to
protect from hyperexcitability and anxiety, and an increase in its availability to the fetus
is essential [44]. Therefore, reduced transplacental tryptophan transfer may contribute to
disrupted neurodevelopment and high rates of aggressive behavior reported in 4-year-old
IUGR baboons [46].

The Fv/M MPE enrichment ratio of leucine was positively correlated to the fetal
weight in both control and MNR pregnancies. This finding agrees with previous studies
demonstrating an impaired leucine flux in human IUGR and that the degree of change
in leucine flux was correlated with the clinical severity of IUGR at term [41]. Leucine
supplementation has been shown to activate the intracellular mTOR signaling pathways
and prevent most growth-related deficits in rats exposed to a low protein diet during
pregnancy [47]. Furthermore, the Fv/M MPE ratios for isoleucine, methionine, and his-
tidine were positively correlated to fetal weight in MNR pregnancies, showing that the
reduced MVM system A and system L activity contributes to decreased transplacental
amino acid transport, which may lead to reduced amino acid concentrations in the fetal
circulation. However, we did not find a decrease in Fv/M MPE enrichment ratio of most
essential amino acids (except for tryptophan) in MNR despite significant changes in in vitro
activity of MVM System A and L transport at GD140. The mechanisms underpinning
this discrepancy may include decreased placental utilization of amino acids mediated by
decreased placental protein synthesis and/or amino acid metabolism in MNR at GD 140,
which may maintain in vivo transplacental transport even when transport capacity per
membrane area (as measured in vitro) is reduced.

Maternal and fetal total amino acid concentrations were not measured in the current
study. However, we have previously reported maternal and fetal amino acid concentrations
in this model at GD 120 [34] and GD 165 [11]. These data show that at GD 120, the fetal
and maternal amino acid concentrations are strikingly similar between the control and
MNR groups, with no significant differences in maternal concentrations between groups.
In addition, the levels of only two amino acids (leucine and isoleucine) were lower in the
fetal plasma of MNR animals at GD 120. Similarly, at GD 165, the levels of only a few
amino acids are lower in the maternal and fetal circulations, respectively. Because GD 120
and 140 have unaffected fetal growth in common, we suggest that it is likely that maternal
and fetal amino acid concentrations at GD 140 are also similar between the control and
MNR groups. Under these circumstances, relative differences in Fv/M MPE between the
control and MNR groups provide information on the placental amino acid transfer.

The data presented in the current study, together with our previous reports on pla-
cental amino acid transport in the MNR baboon at GD120 [34] and GD 165 [38], allows
us to construct a time course of changes in nutrient transporter activity across the second
half of pregnancy in response to MNR in non-human primates (Table 2). In addition, this
data addresses the question of cause-and-effect because although fetal weights were not
significantly reduced until GD 165, MVM System A activity was decreased in response
to MNR already at GD120, before decreased fetal weights were apparent. Moreover, at
GD 140, with fetal weight unaffected, both MVM System A and L activity were lower in
MNR placentas. This pattern of change in placental amino acid transport function across
the third trimester in relation to the effect of MNR on fetal weights is consistent with the
model that down-regulation of placental amino acid transport in response to MNR directly
contributes to the restricted fetal growth.
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Establishing the time course of changes in placental amino acid transport across the
last third of gestation will also allow us to identify compensatory changes in placental
acid transport function that may occur in response to MNR. However, at no stage of late
gestation could a compensatory up-regulation of placental System A and L amino acid
transporter activity be observed (Table 2). A timeline graph showing fetal growth curves of
mouse and human pregnancy describes how the current study time point corresponds to
human and mice pregnancy (Figure 11).

Figure 11. A timeline graph showing fetal growth curves for mice, baboons, and humans.

Similarly, the MVM protein expression of GLUT 1, the primary placental glucose
transporter in primates, and the taurine transporter were unaffected by MNR at GD 140
in the current study. Thus, although the effect of maternal undernutrition on placental
function in animal models appears to depend on the species under investigation and the
timing, duration, type, and degree of nutrient restriction [48], these findings are in general
agreement with studies of calorie restriction in rats [49–52]. Similarly, in protein-restricted
pregnant rats, a down-regulation of placental amino acid transport preceded IUGR by
several days without evidence of compensatory up-regulation [9,12].

In some studies in mice, evidence for compensatory up-regulation of placental nutri-
ent transporters in response to maternal undernutrition [53–55] has been reported. The
current study suggests that placental nutrient transport in response to maternal nutrient
deprivation is regulated differently in the non-human primate compared to the mouse. As
discussed elsewhere [48], the distinct placental responses to maternal under-nutrition in the
mouse as compared to the rat and the non-human primate may reflect actual species differ-
ences, differences in feeding paradigms, or methodology to measure placental transporter
activity. These studies in the mouse have led to the proposal that fetal demand signals
promote compensatory placental changes, such as up-regulation of placental amino acid
transporters, in response to maternal undernutrition. However, although compensatory
upregulation prior to GD 120 cannot be excluded, this model is not supported by our data
in the baboon.

The small sample size, typical for non-human primates studies, limits our ability to
perform more sophisticated statistical analyses and precludes detailed analyses of possible
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sex differences. Another limitation of our study is that the total concentrations of individual
amino acids in the maternal and fetal circulations have not been measured.

5. Conclusions

We report that reducing placental amino acid transport precedes the development
of fetal growth restriction in an established baboon model with extensive similarities to
the human IUGR. Therefore, maternal supplementation with amino acids could be an
option to increase fetal growth in IUGR pregnancies. However, it is essential to thoroughly
understand the mechanisms of transplacental transport of amino acids and the impact
of individual amino acids on placental metabolism and fetal growth before designing
treatments for IUGR. This study represents the first step in understanding transplacental
amino acid flux in IUGR in a non-human primate model, which shows extensive similarities
to the human IUGR.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13082892/s1, Figure S1: Relationship between MVM system A and system L activity at GD
140 (A). MVM system A activity was positively correlated to MVM system A activity in both control
and MNR groups (control, r = 0.72, p = 0.02; MNR, r = 0.93, p = 0.0002, n = 9 in each group, Pearson
correlation coefficient (r)). Figure S2: Relationship between MVM LAT1 and LAT2 expression at
GD 140. MVM LAT1 expression was positively correlated to MVM LAT2 expression in the control
group but not the MNR group (control, r = 0.69, p = 0.04; MNR, r = 0.64, p = 0.06, n = 9 in each group,
r = Pearson correlation coefficient). Supplemental Methods.
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