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Abstract: Dietary protein restriction and dietary methionine restriction (MR) produce a comparable
series of behavioral, physiological, biochemical, and transcriptional responses. Both dietary regimens
produce a similar reduction in intake of sulfur amino acids (e.g., methionine and cystine), and both
diets increase expression and release of hepatic FGF21. Given that FGF21 is an essential mediator
of the metabolic phenotype produced by both diets, an important unresolved question is whether
dietary protein restriction represents de facto methionine restriction. Using diets formulated from
either casein or soy protein with matched reductions in sulfur amino acids, we compared the ability
of the respective diets to recapitulate the metabolic phenotype produced by methionine restriction
using elemental diets. Although the soy-based control diets supported faster growth compared to
casein-based control diets, casein-based protein restriction and soy-based protein restriction produced
comparable reductions in body weight and fat deposition, and similar increases in energy intake,
energy expenditure, and water intake. In addition, the prototypical effects of dietary MR on hepatic
and adipose tissue target genes were similarly regulated by casein- and soy-based protein restriction.
The present findings support the feasibility of using restricted intake of diets from various protein
sources to produce therapeutically effective implementation of dietary methionine restriction.

Keywords: essential amino acid; nutrient sensing; gene set enrichment; protein restriction; FGF21

1. Introduction

Studies of the short-term metabolic effects of dietary protein restriction and methionine
restriction (MR) have been pursued in parallel in recent years, with studies conducted in
the last decade identifying significant similarities among the responses to the two dietary
regimens (reviewed in [1–5]). Depending on the severity of dietary protein restriction,
the responses can range from modest slowing of growth and improvements in metabolic
health to significant growth stunting, delayed wound healing, and decline in health [6,7].
The responses to dietary MR are also concentration-dependent, where severe restriction
causes rapid weight loss [8], whereas a slightly less severe restriction modestly reduces
growth and produces beneficial metabolic effects [8]. In contrast, an even less severe
restriction involving a 2- to 3-fold reduction in dietary methionine was without effect on
growth, energy balance, or body composition [8]. Collectively, these studies illustrate that
restricting dietary methionine to a specific range is highly beneficial, while a more severe
restriction can be detrimental, and a less severe restriction is without effect [8].
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Since the early work of Rothwell and Stock showing that dietary protein restriction
reduced weight gain by increasing energy expenditure (EE) [9,10], significant effort has
been devoted to identifying the underlying mechanisms for this response. Recent work has
shown that the increase in EE produced by protein restriction is linked to increased release
of hepatic FGF21 [11–13]. However, the identity of the amino acid(s) being sensed after
protein restriction remains an open question. Yap et al. [5] used several approaches to iden-
tify the key amino acid(s) being limited by protein dilution, and they make a compelling
case that the reductions in threonine and tryptophan are essential to several adaptive
responses. A case can also be made that dietary casein restriction limits methionine to a
concentration range previously shown to activate FGF21 and increase EE [8]. Additionally,
although restriction of several essential amino acids also increases FGF21 and EE [14–16],
only methionine restriction downregulates hepatic lipogenic genes and reduces hepatic
lipids [17]. The goal of the present work was to test whether the well-established metabolic
phenotype produced by elemental methionine restriction could be recapitulated using
different protein sources to produce a comparable degree of sulfur amino acid restriction.
The overall aim of this work is to develop protein-restricted therapeutically effective diets
that reproduce the beneficial metabolic effects of dietary methionine restriction. Using mice
fed protein-restricted diets formulated with different protein sources but with matched
restrictions of sulfur amino acids, it is shown that casein protein restriction and soy protein
restriction produce comparable metabolic effects on energy balance, hepatic gene expres-
sion, and adipose tissue gene expression that are consistent with the biological responses
to dietary MR.

2. Materials and Methods
2.1. Diets and Animals

All experiments were approved by the Pennington Biomedical Research Center In-
stitutional Animal Care and Use Committee on the basis of guidelines established by the
National Research Council, the Animal Welfare Act, and Public Health Service Policy
on the humane care and use of laboratory animals. Pelleted diets (Research Diets Inc.,
New Brunswick, NJ, USA) were formulated using either casein or soy isolates as the sole
protein source. The respective amino acid content of the two protein sources used for
diet formulation is provided in Supplemental Table S1. A control, casein-based diet (e.g.,
Cas-20%) was formulated containing 20% casein, and cystine was added to match the
cystine content of the soy-based control diet (Table 1). A casein-based low protein diet
(e.g., Cas-5%) was formulated containing 5% casein, and cystine was added to match the
cystine content of the soy-based low protein diet (Table 1). The control, soy-based diet
(e.g., Soy-20% + SAA) was formulated containing 20% soy, with additions of methionine
and cystine to match the final concentrations of sulfur amino acids in the casein-based
control diet (Table 1). The soy-based low protein diet (e.g., Soy-10%) was formulated
to contain 10% soy as this amount of soy protein contained amounts of methionine and
cystine that matched the content of these amino acids in the casein-based low protein diet
(Table 1). Lastly, a soy-based diet containing 20% soy and no added sulfur amino acids was
formulated as a negative control diet (e.g., Soy-20%). Diets were formulated as extruded
pellets containing 22% fat, with a final energy content of 17.12 kJ/g (Table 1).
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Table 1. Composition of Control and Protein-restricted diets formulated from casein or soy protein isolates to produce
matching concentrations of methionine and cystine in both casein-based and soy-based control and protein-restricted diets.

Cas-20% Cas-5% Soy-20% 1 Soy-20% + SAA Soy-10%

Casein or soy protein, g 200 50 200 200 115
Grams of added Met 0 0 0 3.53 2 0

Final [Met], gm per 100 g diet 0.57 0.14 0.22 0.57 0.13
Grams of added Cys 3.00 3 0.75 4 0 1.91 5 0

Final [Cys], gm per 100 g diet 0.41 0.10 0.22 0.40 0.13
Corn Starch, g 376 485 376 370 426

Maltodextrin 10, g 125 150 125 125 150
Sucrose, g 107 107 107 107 107

Cellulose, g 50 50 50 50 50
Soybean Oil, g 25 25 25 25 25

Lard, g 75 75 69.6 69.6 72.3
Mineral Mix S10022C, g 3.5 3.5 3.5 3.5 3.5
Calcium Carbonate, g 12.5 8.7 10.6 10.6 9.3
Calcium Phosphate, g 0 5.3 0 0 3.0

Potassium Citrate, 1 H2O, g 2.5 2.5 2.5 2.5 2.5
Potassium Phosphate, g 6.9 6.9 6.9 6.9 6.9

Sodium Chloride, g 2.6 2.6 2.6 2.6 2.6
Vitamin Mix V10037, g 10 10 10 10 10

Choline Bitartrate, g 2.5 2.5 2.5 2.5 2.5
Total 1001 985 991 991 986

1 The Soy-20% diet served as a negative control group with no added sulfur amino acids and only naturally occurring amounts of
methionine and cystine in the diet. 2 3.5 g of Methionine was added to each kg of the Soy-20% + SAA diet to bring the final methionine
concentration to 0.57% to match the amount of methionine in the Cas-20% diet. 3 3.0 g of Cystine was added to each kg of the Cas-20% diet
to bring the final cystine concentration to 0.4% to match the amount of cystine in the Soy-20% + SAA diet. 4 0.75 g of Cystine was added
to each kg of the Cas-5% diet to bring the final cystine concentration to 0.1% to closely match the amount of cystine in the Soy-10% diet.
5 1.91 g of Cystine was added to each kg of the Soy-20% + SAA diet to bring the final cystine concentration to 0.4% to match the amount of
cystine in the Cas-20% diet.

Fifty male C57BL/6J mice were purchased from Jackson Laboratory (Bar Harbor,
ME, USA) at 9 weeks of age and quarantined for one week upon arrival. Thereafter, the
mice were singly housed and 20 were put on Cas-20% control diet and 30 were put on
the Soy-20% control diet. Mice were acclimated to the diets for two weeks, and at twelve
weeks of age, half the mice on the Cas-20% diet were switched to the Cas-5% diet, while
the other half remained on Cas-20% diet. Mice on Soy-20% diet were evenly divided into
three groups, with 10 switched to the Soy-20% + SAA diet, 10 continued on the Soy-20%
diet, and the remaining 10 switched to the Soy-10% diet. Food and water were provided
ad libitum, and animals were housed at 23 ◦C and maintained on a 12-hour light/dark
cycle. Food consumption, water intake, body weight, and carcass composition were
measured at weekly intervals. Body composition was determined using nuclear magnetic
resonance (NMR) spectroscopy (Bruker Minispec, Billerica, MA, USA). After eight weeks
on their respective diets, animals were transferred to the Metabolic Phenotyping Core
at Pennington Biomedical Research Center for measurement of energy expenditure (EE)
using a Promethion indirect calorimetry system (Sable Systems, Las Vegas, NV, USA). Mice
were acclimated to the metabolic chambers for one week prior to data collection over four
consecutive days. VCO2, VO2, and activity measurements were collected at five-minute
intervals over the 96 h period. Animals were then returned to their home cages to continue
on their assigned diets for a two-week re-equilibration period. Thereafter, animals were
fasted for four hours prior to euthanasia via CO2-induced narcosis and decapitation. Trunk
blood was collected for serum analyses, and livers and inguinal white adipose tissue (IWAT)
were harvested and snap frozen in liquid nitrogen and stored at −80 ◦C until analyzed.



Nutrients 2021, 13, 2609 4 of 19

2.2. Analysis of Energy Expenditure

VO2 is expressed as liters (L) of O2 consumed per h, while Respiratory Exchange
Ratio (RER) is the ratio of VCO2 produced to VO2 consumed. EE was calculated as
(VO2 × (3.815 + (1.232 × RER)) × 0.96 kCal/h) × 4.019 kJ/kCal, and expressed as
kJ/h/mouse as described by the manufacturer (Promethion, Sable Systems, N Las Ve-
gas, NV, USA). Group differences in 24 h EE (kJ/h/mouse) at study′s end were compared
using Analysis of Covariance (ANCOVA) (JMP Software, Version 15; SAS Institute Inc.,
Cary, NC, USA) to calculate least squares means that accounted for variation in EE at-
tributable to differences in lean mass, fat mass, food intake, and activity among the mice as
before [18].

2.3. Serum Metabolite Analyses

Fasting serum FGF21 (R&D Systems; Minneapolis, MN, USA) was determined via
enzyme-linked immunosorbent assays (ELISA) according to the manufacturer′s protocol.

2.4. RNA Isolation and qPCR of MR Target Genes

Total RNA was isolated from livers and IWAT from each mouse using a RNeasy Mini
kit (Qiagen, Valencia, CA, USA). RNA concentration in each sample was measured using a
Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA).
Total RNA was analyzed using the Agilent Bioanalyzer RNA 1000 chip (Agilent Technolo-
gies, Santa Clara, CA, USA) to confirm integrity of the RNA as indicated by RIN values > 7.
Two µg total RNA was used for reverse transcription to produce cDNA. mRNA expression
for previously identified MR target genes in liver [19,20] and IWAT [21,22] was measured
using 10 ng cDNA via quantitative PCR using SYBR Green (Bio-Rad, Valencia, CA, USA),
and mRNA concentrations of each target gene were standardized to cyclophilin expression.
Primer sequences are provided in Supplementary Table S2.

2.5. RNAseq Analysis

Liver RNA samples were processed for library construction using the Lexogen Quant-
Seq 3′ mRNA-Seq Library Prep Kit as previously described [23]. All libraries were pooled
in equimolar amounts and sequenced on the Illumina NextSeq 500 at 75 bp forward and
6 bp forward index reads. Preliminary data analysis was performed using the Lexogen
Quantseq pipeline 2.3.6 FWD on the Bluebee platform for quality control, mapping, and
read count tables. The gene expression profiles were assessed using 6 replicates from each
dietary group. The expression profiling data have been deposited in NCBI under GEO
accession GSE168132.

2.6. Bioinformatics Analysis

Prior to differential gene expression analysis, scaled normalized count data for samples
from the dietary groups (Cas-20%, Cas-5%, Soy-20% + SAA, Soy-10%) were analyzed via
principal component analysis (PCA) (using prcomp package in R, http://www.R-project.org,
accessed on 15 May 2021) to cluster samples based on gene expression similarities, and
to identify potential outliers. Then, differential analysis of RNA read count data was
performed using DESeq2 software [24], which models read counts as a negative bino-
mial distribution and uses an empirical Bayes shrinkage-based method to estimate signal
dispersion and fold changes. Gene expression signals were logarithmically transformed
(to base 2) for all downstream analyses (the lowest expression value being set to 1 for this
purpose). Genes with an absolute log fold change ≥ 1 and false discovery rate (FDR) of 5%
were considered as differentially expressed.

Ingenuity Pathway analysis (IPA)—Pathway over-representation analysis was conducted
using IPA (QIAGEN Inc., Valencia, CA, USA, https://www.qiagenbioinformatics.com/
products/ingenuity-pathway-analysis, accessed on 15 May 2021), considering 2829 differ-
entially expressed genes from the Cas-5% to Cas-20% samples and 2158 differentially ex-
pressed genes from the Soy-10% to Soy-20% + SAA samples (absolute log fold change ≥ 1.3,

http://www.R-project.org
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https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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FDR ≤ 0.3). Within IPA, the Upstream Regulator Analysis module was utilized to identify
putative gene regulators responsible for the observed transcriptional patterns produced by
the respective low protein diets compared to the respective control diets for each protein
source. Several possible types of upstream regulators were considered but special emphasis
was placed on transcription factors, cytokine receptors, G protein-coupled receptors, and
ligand-dependent nuclear receptors. Differential regulation of canonical pathways by the
protein-restricted diets was also examined. Upstream regulators and canonical pathways
with an activation z-score ≥ 2 or ≤−2 were considered to be activated or inhibited, respec-
tively. Heat maps were used to visualize upstream regulators and canonical pathways
that were differentially affected by the two low-protein diets relative to their respective
control diets.

Pre-ranked GSEA analysis—Enrichment analysis of biological pathways (gene sets)
was conducted via gene set enrichment analysis (GSEA) [25]. Specifically, the classical
(unweighted) GSEA option was used with gene set permutation mode and enrichment
computed on pathways present in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [26] available from the Molecular Signatures Database repository (MSigDb,
http://software.broadinstitute.org/gsea/msigdb, accessed on 15 May 2021) [27]. Gene-sets
with FDR≤ 5% were considered as significantly enriched [28]. The individual contributions
of pathway genes to the pathway enrichment signal were visualized via enrichment plots
depicting the trajectory of a normalized pathway enrichment score against the rank of
pathway genes in the context of the full gene list.

2.7. Data Analysis

Body weight, adiposity, food intake, water intake, serum FGF21, and expression
of specific genes were analyzed using one-way ANOVA (GraphPad Prism; San Diego,
CA, USA) with diet as the main effect, and residual variance used as the error term to
calculate standard errors for comparisons of means across groups. Group differences in
EE (kJ/hr/mouse) at the end of the study were compared using ANCOVA as described
previously [18,29]. Protection against type I errors for all comparisons was set at 5%
(α = 0.05).

3. Results
3.1. Effects of Protein Restriction on Energy Balance

Time-dependent changes in body weight and fat mass were compared in mice sub-
jected to protein restriction using diets formulated from either casein or soy. Casein was
restricted from 20% to 5% and soy was restricted from 20% to 10% to produce a comparable
degree of sulfur amino acid (e.g., SAA (methionine and cystine)) restriction. Methionine
and cystine concentrations were equalized between the casein control (e.g., Cas-20%) and
soy control diets (Soy-20% + SAA) during formulation as illustrated in Table 1. The amino
acid composition of the casein and soy protein sources used to formulate the diets is pro-
vided in Supplemental Table S1. Methionine and cystine were also equalized between the
two protein-restricted groups. (e.g., Cas-5% and Soy-10%) so that an equivalent four-fold re-
striction of SAA concentrations were achieved in both the casein- and soy-based diets. The
Soy-20% diet served as a negative control diet for the SAAs added to the soy-20% + SAA
diet. Casein restriction slowed the accumulation of body weight (Figure 1A) and fat mass
(Figure 1E) such that by three weeks, body weight and fat mass were significantly lower in
the Cas-5% group compared to the Cas-20% group. A similar pattern was observed among
the soy diet groups, with the Soy-10% group accumulating body weight (Figure 1B) and fat
mass (Figure 1F) significantly slower than the Soy-20% + SAA and Soy-20% groups. The
differences became significant after two weeks on the respective diets, and interestingly,
the Soy-20% + SAA and Soy-20% groups did not differ at any time point. The three control
groups are compared in Figure 1C,G and show that the Cas-20% group accumulated body
weight and fat mass noticeably slower than the two soy control groups, although the
differences did not become significant until the last 3–4 weeks of the study. However, when

http://software.broadinstitute.org/gsea/msigdb
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the change in body weight (Figure 1D) and fat mass (Figure 1H) were expressed relative
to their respective control groups, it is evident that protein restriction implemented with
either casein or soy produced comparable limiting effect on body weight and fat mass
accumulation over time.
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Figure 1. Impact of protein restriction on body weight (A–D) and fat mass (E–H) in mice fed control
or protein-restricted diets for 8 weeks beginning at 12 weeks of age. Cas-20% served as the control
group for casein protein restriction and Soy-20% and Soy-20% + SAA served as control groups for
soy protein restriction. Dietary composition of the respective diets is described in Materials and
Methods. Body weight and composition were measured weekly for the entire study. In Figure 1D,H,
the changes in body weight (Figure 1D) and fat mass (Figure 1H) were expressed as percent change
in the respective variable relative to the body weight and fat mass at zero time. The change in
body weight and fat mass over time were analyzed using a repeated measures one-way ANOVA as
described in the Materials and Methods, and means from protein-restricted groups annotated with
an ‘asterisk” differ from their respective control groups at p < 0.05. Data in each figure panel are
presented as the mean ± SEM, n = 9–10.
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Average food (Figure 2A) and water intake (Figure 2B) over the course of the study
were increased by both casein restriction and soy restriction. Casein restriction produced a
larger effect on food intake than soy restriction (Figure 2A), but the effects of restriction of
the respective protein sources on water intake did not differ (Figure 2B). Interestingly, food
and water intake in the Soy-20% and Soy20% + SAA did not differ and were comparable
to food and water intake in the Cas-20% group (Figure 2A,B). Casein restriction increased
both nighttime and daytime EE measured at the end of the study, but the nighttime increase
in the Cas-5% group compared to the Cas-20% group was much larger than the increase
during the day (Figure 2C).
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Figure 2. Assessment of impact of protein restriction on average food intake (A), average water
intake (B), 96 h continuous energy expenditure in casein groups (C) and soy groups (D), average
energy expenditure for all groups (E), Fgf21 mRNA and serum FGF21 (F), liver target genes (G),
and inguinal white adipose tissue target genes (H). Food intake and water intake were measured at
weekly intervals, and average food intake was expressed per unit body weight. The means of food
intake and water intake were averaged over the entire study. Energy expenditure was measured
continuously for 4 days after a 3-day equilibration period and calculated by ANCOVA as described
in Materials and Methods. Serum and liver collected at end of study was used to measure FGF21 and
target gene mRNA levels. Inguinal WAT collected at the same time was used to measure target gene
mRNA levels. The respective end points were analyzed by one-way ANOVA and means annotated
with different letters differ at p < 0.05. Data in each figure panel are presented as the mean ± SEM,
n = 9–10.
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EE was also increased in the Soy-10% group compared to the two soy control groups,
although the magnitude of the nighttime and daytime differences among the groups
appeared smaller (Figure 2D). Support for this observation comes when the average EEs
over the 4-day measurement period are compared (Figure 2E). The increase in EE produced
by the Cas-5% group compared to its control is significantly larger than the increase in EE
produced by the Soy-10% diet compared to its controls. Previous work has shown that the
ability of protein restriction to increase EE is dependent on an increase in hepatic FGF21 [12],
so it was not surprising that both casein restriction and soy restriction produced significant
increases in hepatic Fgf21 mRNA and serum FGF21 (Figure 2F). Although the increase in
hepatic Fgf21 mRNA was comparable between the two protein sources, casein restriction
produced a significantly greater increase in serum FGF21 compared to soy restriction
(Figure 2F). It is unclear whether this observation is related to the slightly smaller increase
in EE produced by soy restriction compared to casein restriction (Figure 2E).

3.2. Transcriptional Effects of Protein Restriction in Liver and Adipose Tissue

To test whether the previously reported transcriptional effects of casein restriction on
liver [12] and adipose tissue target gene expression [30] were recapitulated by soy protein
restriction, representative ATF4 target genes and lipogenic genes were measured in the
liver, and genes associated with adipose tissue remodeling were measured in inguinal
WAT. Casein and soy protein restriction produced comparable significant increases in Asns
and Psat1 expression and decreases in Fasn and Scd1 expression (Figure 2G). In inguinal
WAT, expression of the nuclear-encoded mitochondrial genes, Cox7a, Cox8b, Ucp1, and
Cidea were all significantly increased by casein and soy restriction (Figure 2H). However,
the increase in Cox7a and Ucp1 mRNA by Soy-10% was significantly less than the increases
in these genes produced by Cas-5%. With the exception of a small but significant increase
in Ucp1 mRNA produced by Soy-20%, the mice fed the control casein and soy diets had
comparable expression of these four genes (Figure 2H).

3.3. Differential Gene Expression in the Liver

To obtain a more comprehensive assessment of the transcriptional responses to casein
and soy protein restriction, we used RNAseq in conjunction with bioinformatics analysis
to interrogate the transcriptional responses in livers from mice fed the Cas-20%, Cas-5%,
Soy-20% + SAA, and Soy-10% diets. The Soy-20% control group was excluded from this
analysis because of its similarity to the Soy-20% + SAA group in essentially all responses.
To assess the uniformity of differential gene expression across dietary protein sources,
heat maps of the top 50 genes for each phenotype in input normalized counts were used
to create Ranked Gene List Correlation Profiles for the Cas-5% to Cas-20% comparison
(Supplementary Figure S1A) and the Soy-10% to Soy-20% + SAA comparison (Supplemen-
tary Figure S1B). These figures show the consistent uniformity of expression across samples
within and across dietary group comparisons.

To further explore the systems biology of hepatic transcriptional responses to casein
versus soy protein restriction, Ingenuity Pathway Analysis (IPA) was used to screen differ-
entially expressed genes against Ingenuity′s annotated Knowledge Base to detect predicted
activation or inhibition of canonical pathways and upstream regulators. This algorithm
predicts changes in canonical pathways and transcription factor activity based on observed
patterns of change in expression of genes known to be up- or down-regulated by specific
upstream regulators. Heat maps were constructed to illustrate the comparative effects
of casein restriction or soy restriction on the twenty-five most up- or down-regulated
canonical pathways (Figure 3A) and upstream regulators (Figure 3B). When canonical
pathways were evaluated in terms of activation or inhibition, fourteen pathways were
comparably inhibited by both forms of protein restriction, while only the eIF2 Signaling
pathway was comparably activated by casein and soy restriction (Figure 3A). In contrast,
eight canonical pathways were activated by soy restriction but inhibited by casein restric-
tion (Figure 3A). Viewed together, these findings show that despite substantial similarities
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in the way restriction of the two proteins affected upstream regulators and transcription
factors in the liver (Figure 3B), about 30% of the canonical pathways were differentially
regulated by casein restriction compared to soy restriction (Figure 3A).
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Figure 3. Bioinformatics analysis of hepatic gene expression in mice fed sulfur amino acid-matched
control diets formulated from casein (Cas-20%) or soy (Soy-20% + SAA), and sulfur amino acid-
matched protein restricted diets formulated from casein (Cas-5%) or soy (Soy-10%). Canonical
pathway analysis (A) and upstream regulator analysis (B) were conducted as described in the
Materials and Methods. Pathway analysis was conducted using livers from 6 mice of each diet and
utilized to identify putative gene regulators responsible for the observed transcriptional patterns
produced by the respective protein-restricted diets. Upstream regulators and canonical pathways with
an activation z-score≥ 2 or≤−2 were considered to be activated (red) or inhibited (blue), respectively.
Heat maps were used to visualize the top 25 canonical pathways and upstream regulators that were
differentially affected by the MR diet in the two genotypes.

To obtain a more detailed assessment of the differential effects of the two protein
sources on the hepatic transcriptome, GSEA was used to identify pathways in the Ky-
oto Encyclopedia of Genes and Genomes (KEGG) database that were comparably or
differentially regulated by the respective forms of protein restriction. For example, the
GSEA enrichment plots and associated heat maps for the Ribosome pathway presented
in Figure 4A–D; show that protein restriction produces a comprehensive activation of this
pathway with both casein (Figure 4A,C) or soy restriction (Figure 4B,D). GSEA was also
used to test for differential enrichment in a comparison of the respective control groups
(e.g., 20% Casein and 20% Soy + SAA) and no differences were found (data not shown).
GSEA enrichment plots and the associated heat maps for the Drug Metabolism Cytochrome
P450 pathway show that casein (Figure 5A,C) or soy protein restriction (Figure 5B,D) pro-
duced significant but differential effects on gene set enrichment of this pathway. As with
the Ribosome pathway, differential expression levels of the genes within this set were not
detected between the 20% Casein and 20% Soy + SAA control groups. The effects of casein
and soy restriction on the Arginine Proline Metabolism gene set were similar to their effects
on the Ribosome and Drug Metabolism pathways in the sense that differential expression
of genes within the Arginine Proline gene set was not detected between the 20% Cas and
20% Soy + SAA control groups.
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Figure 4. Gene set enrichment analysis (GSEA) of hepatic gene expression in mice fed sulfur amino acid-matched control
diets formulated from casein (Cas-20%) or soy (Soy-20% + SAA), and sulfur amino acid-matched protein restricted diets
formulated from casein (Cas-5%) or soy (Soy-10%). The enrichment plots and corresponding heat maps are shown for the
top-scoring KEGG Ribosome gene set for the Cas-5% to Cas-20% (A,C) and Soy-10% to Soy-20% + SAA comparisons (B,D).
Enrichment was computed as described in the Material and Methods and enrichment plots were generated to visualize
the individual contributions of pathway genes to pathway enrichment. Accompanying heat maps present the normalized
enrichment scores for individual genes within the gene set [blue = downregulation, red = upregulation, gray = not significant
(FDR > 0.1)].
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Figure 5. Gene set enrichment analysis (GSEA) of hepatic gene expression in mice fed sulfur amino acid-matched
control diets formulated from casein (Cas-20%) or soy (Soy-20% + SAA), and sulfur amino acid-matched protein re-
stricted diets formulated from casein (Cas-5%) or soy (Soy-10%). The enrichment plots and corresponding heat maps
are shown for the KEGG Drug Metabolism Cytochrome P450 gene set for the Cas-5% to Cas-20% (A,C) and Soy-10% to
Soy-20% + SAA comparisons (B,D). Enrichment was computed as described in the Material and Methods, and enrichment
plots were generated to visualize the individual contributions of pathway genes to pathway enrichment. Accompanying
heat maps present the normalized enrichment scores for individual genes within the gene set [blue = downregulation,
red = upregulation, gray = not significant (FDR > 0.1)].

However, restriction of each protein source produced a similar degree of enrichment
of genes in this set that were downregulated by 5% Cas and 10% Soy (Figure S2A,B).
Significant gene set enrichment was also detected for seven other amino acid metabolism
pathways when casein or soy protein were restricted, but there were subtle but significant
differences in the way the gene sets were affected by the two protein sources. For example,
with the Alanine Aspartate Glutamate Metabolism pathway, the gene set enrichment score
indicated that a subset of genes in this pathway were expressed at higher levels in the
20% Cas compared to 20% Soy + SAA controls. Thus, although restriction of casein or soy
produced comparable gene set enrichment of genes downregulated by restriction of each
protein compared to controls (Figure S3A,B), the 5% Cas diet produced a stronger down-
regulation of this gene set. In contrast, the Tyrosine Metabolism, Hisitidine Metabolism,
and Glycine Serine Threonine Metabolism gene sets were expressed at comparable levels
between the 20% Cas and 20% Soy + SAA control groups. However, the enrichment scores
for genes downregulated by protein restriction within each pathway indicated that casein
restriction produced a significantly stronger downregulation of these gene sets than soy
restriction for all three pathways (Figures S4A,B, S5A,B and S6A,B). It is also worth noting
that soy protein restriction produced a slightly larger upregulation of a small subset of
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genes in each pathway compared to casein restriction (Figures S4A,B, S5A,B and S6A,B).
The effects of protein restriction on the Cysteine Methionine Metabolism pathway were
unique in that a notable subset of genes within this pathway were expressed at higher levels
in the 20% Cas compared to the 20% Soy + SAA group (data not shown). This difference
in starting points resulted in casein restriction producing a stronger downregulation of a
subset of genes compared to soy restriction, and a stronger upregulation of a small subset of
pathway genes by soy restriction compared to casein restriction (Figure S7A,B). Lastly, the
effects of protein restriction on the Valine Isoleucine Leucine Degradation and Trytophan
Metabolism pathways were similar and based on a significantly stronger downregulation
of a large subset of genes in both pathways by casein restriction compared to soy restriction
(Figure S8A,B and S9A,B). Collectively, these findings make a compelling case that imple-
mentation of protein restriction using diets formulated from different protein sources can
have both differential and common effects across multiple pathways involved in hepatic
amino acid metabolism. Paradoxically, these findings also show that despite these differ-
ences, comparable degrees of sulfur amino acid restriction using different protein sources
can produce a number of common beneficial biologic effects bridging multiple physiologi-
cal, biochemical, and metabolic pathways. We conclude that methionine restriction can be
implemented using dietary restriction of different sources of protein.

4. Discussion

Dietary protein restriction and dietary methionine restriction produce a comparable
set of behavioral, physiological, biochemical, and transcriptional effects in the weeks and
months after their introduction [11–13,17,29–32]. Both experimental diets increase food
and water intake, increase EE, limit fat deposition, increase hepatic transcription and
release of FGF21, decrease the capacity of the liver to conduct de novo lipogenesis, decrease
hepatic and circulating lipid levels, increase tissue-specific and overall insulin sensitivity,
and remodel white and brown adipose tissue to more thermogenically active states (for
reviews see [2,4]). The cumulative effect of these responses is to improve metabolic health,
enhance healthy aging and ultimately to increase longevity of the animal [32–36]. In mice,
the prototypical model of protein restriction involves restriction of casein from 20% to 5%,
effectively reducing dietary sulfur amino acid concentrations from 0.57% methionine and
0.14% cystine to 0.125% methionine and 0.035% cystine. However, implementation of
casein protein restriction typically involves supplementing the 5% casein diet with 0.075%
cystine, bringing the final sulfur amino acid concentration to 0.235% [11]. In the most
widely used implementation of dietary methionine restriction, the control and methionine-
restricted diets are formulated from elemental amino acids to contain 0.86% methionine in
the control diet and 0.17% methionine in the methionine-restricted diet [37,38]. Cystine is
not included in either diet, forcing the animal to use dietary methionine and catabolism of
tissue proteins to obtain sufficient cysteine for synthesis of taurine and glutathione [39].
Given that casein restriction to 5% faithfully reproduces the full metabolic profile of dietary
methionine restriction and restricts sulfur amino acids to a similar extent, it seems likely
that dietary casein restriction is producing some if not all of its biological effects by limiting
dietary methionine intake. If this hypothesis is correct, one should be able to reproduce
the biological effects of casein restriction using a different protein source by carefully
formulating control and experimental diets to match the sulfur amino acid concentrations
to the 20% and 5% casein diets. Using these parameters, Research Diets, Inc. created
two 20% soy control diets, one with no added methionine or cystine and a second with
methionine and cystine added to match the concentrations of methionine and cystine
present in the 20% casein control diet. Additionally, by restricting soy to 10%, the final
concentrations of methionine and cystine were closely matched to the concentrations of
methionine and cystine in the 5% casein diet.

The physiological, endocrine, and molecular responses to the five diets are summa-
rized in Figures 1 and 2, and reveal several unanticipated findings. First, both soy control
diets (e.g., 20% Soy and 20% Soy + SAA) supported a faster rate of growth and fat depo-
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sition than the 20% Casein control diet (Figure 1C,G). The reason for these differences is
unclear, although a previous short-term study also observed faster growth in mice fed a soy-
based compared to casein-based diet [40]. In an experiment of similar design, Zeng et al.
detected a small, but significantly higher rate of food intake of a soy-based control diet
compared to the casein diet, but detected no effect on body weight [41]. In the present
work, food intake did not differ between the 20% casein and 20% soy diets (Figure 2A).
Second, in all other respects, the responses to the two soy control diets were quite similar
to the responses observed in the 20% Casein control group (Figure 2A–H). Third, when
the differences in growth between the soy control groups and casein control group were
accounted for, the body weight and fat deposition responses to restriction of casein or
soy were essentially the same (Figure 1D,H). Fourth, the soy-restricted diet produced a
significant increase in food intake (Figure 2A), water intake (Figure 2B), EE (Figure 2D,E),
and serum FGF21 (Figure 2F), but in each case the magnitude of the effects was slightly
but significantly less robust than the effects produced by casein restriction (Figure 2A,C–F).
The larger effect on EE by casein restriction may be linked to the larger increase in serum
FGF21 produced by casein compared to soy. However, restriction of the two proteins
produced a comparable increase in hepatic Fgf21 mRNA (Figure 2F), four other hepatic
target genes (Figure 2G), and two of four genes in inguinal WAT (Figure 2H). Even′s lab
reported many of the same effects in female Balb/c mice fed casein- and soy-restricted
diets [42,43], but neither of their 6% low protein diets had any effect on body weight or
adiposity [42,43]. This differs from the present findings and their findings may be due
to their use of female mice. Direct comparisons of the effects of methionine restriction in
male and female mice showed that young females on the MR diet preserved adipose tissue
at the expense of lean, whereas male mice preserve lean mass at the expense of fat [21].
Blais et al. did observe a decrease in lean body mass of their protein-restricted female mice
studied at 22 ◦C [42]. Viewed collectively, the overall similarity in responses produced by
casein and soy restriction observed here argue that the equivalent degrees of sulfur amino
acid restriction produced by the diets is an important determinant of these comparable
biological effects.

A more comprehensive evaluation of the transcriptional impact of protein restriction
using casein versus soy was obtained using high content analysis of the hepatic transcrip-
tome. Using Ingenuity Pathway Analysis, the top 25 canonical pathways and upstream
regulators/transcription factors were identified as being activated or inhibited by restriction
of casein or soy relative to their corresponding control groups. The algorithm predicts
activation or inhibition of canonical pathways or upstream regulators based on observed
patterns of change in genes known to be components of those pathways. It is interesting that
transcriptional programs regulated by methionine restriction in multiple tissues [17,44–46],
are also regulated by protein restriction in the current study. These findings support the
view that hepatic methionine sensing plays an important role as a mediating mechanism
of the observed transcriptional responses to protein restriction. However, ~30% of the
canonical pathways were also differentially regulated by casein compared to soy restriction
(Figure 3A). This finding argues that unique differences between the two proteins are
being sensed and produce opposite effects in these pathways. Dietary soy has long been
recognized as producing beneficial metabolic responses that were independent of any
effect of the protein on body size or composition. For example, in short-term studies with
casein-based and soy-based control diets in Wistar or Sprague Dawley rats, the soy-based
diet reduced hepatic expression of lipid synthesis genes, liver and circulating triglycerides,
and fasting insulin [47,48]. Additionally, in long term studies comparing the two diets,
insulin-dependent glucose disposal rates were increased in the soy-fed Wistar rats [48].
Some of these protein-specific responses may also be strain-specific, as shown in longevity
studies where Fisher 344 rats consuming casein diets died earlier and at significantly
higher rates from chronic nephropathy than rats on the soy-based diet [49]. Rats on the
soy-based diets were mostly unaffected by this single cause of death [49]. Considered
together, these studies show that even matched casein and soy diets can produce notably
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different metabolic responses. However, in the present work the two forms of protein
restriction produced a large number of highly comparable transcriptional responses in
the liver. For example, comparison of the activated and inhibited upstream regulators
supports the view that casein and soy restriction produced comparable signaling inputs to
a large number of molecules that regulate transcriptional programs in the liver (Figure 3B).
Figure 3B shows that the directionality of the effects of casein restriction and soy restriction
were similar in all cases, differing only in the degree of activation or inhibition.

Gene set enrichment analysis was also employed to look for common or differential
effects of the two types of protein restriction on hepatic gene sets. The Ribosome pathway,
indicative of changes in RNA biology associated with protein translation, was the highest
scoring pathway for both casein restriction and soy restriction. The enrichment plots
(Figure 4A,B) and corresponding heat maps make a compelling case that casein and soy
restriction were producing comparable transcriptional effects on RNA biology in the liver.
This conclusion is supported by the strong, comparable activation of eIF2 signaling (see
Figure 3A) that is known to be activated by essential amino acid restriction [20,23]. Perhaps
the largest overall impact of restriction of the two proteins was on hepatic amino acid
metabolism, as significant enrichment was detected in the Arginine Proline metabolism
pathway, the Alanine Aspartate metabolism pathway, the Tyrosine metabolism pathway,
the Histidine metabolism pathway, the Glycine Serine Threonine metabolism pathway,
the Cysteine Methionine metabolism pathway, the Valine Isoleucine Leucine degradation
pathway, and the Tryptophan metabolism pathway. These differences may be reflective of
the differences in methionine, cysteine, alanine, aspartate, and glutamate content of the
two proteins, while most other amino acids are similar between casein and soy (Table S1).
It seems probable that these differences are reflective of the previously unrecognized
complexity of the liver′s responses to restriction of proteins with differing amino acid com-
position. However, despite the complexity of the differing responses to restriction of casein
versus restriction of soy in terms of amino acid metabolism pathways (Figures S2–S9), the
physiological and metabolic responses to casein restriction and soy restriction are mostly
comparable and seemingly unaffected by these differences.

An important implication of the present work is that it supports the feasibility of
deriving the therapeutic benefits of dietary methionine restriction by restricting protein
intake in conjunction with a careful accounting of methionine content of the various
proteins that make up the diet. The most straightforward way to restrict methionine is
to formulate amino acid-based diets that reduce the methionine content to ~0.17% and
eliminate cystine. This is the approach used in pre-clinical studies of methionine restriction
and rodents readily adapt to consumption of these diets. However, this approach works
poorly in humans because of poor tolerance of the bitter, metallic taste of elemental amino
acids. The medical food, Hominex®-2 is a methionine free mixture of essential amino acids
that was developed to provide nutritional support to patients with pyridoxine-insensitive
hypercystinuria or hypermethionemia [50]. Although Hominex-2 was moderately effective
in increasing fat oxidation and reducing hepatic lipid content in patients with metabolic
syndrome, the high withdrawal rates from the study and subsequent feedback made it
clear that poor palatability was a significant drawback [51]. A second major drawback to
the use of Hominex-2 is that it contains significant amounts of cystine, which effectively
spares methionine and lessens the severity of the methionine restriction [39]. As shown by
several authors, the addition of even small amounts of cystine to methionine-restricted diets
effectively reverses the metabolic effects of methionine restriction [52–54]. For example,
in work using diets containing 0.17% methionine, the addition of 0.2% cystine completely
reversed the ability of the 0.17% methionine diet to increase EE and reduce fat mass [54].
Therefore, a critical question to be answered is how much dietary cystine can be present
for a given amount of methionine restriction and still preserve the effects of the methionine
restriction alone. In earlier work, the upper threshold of methionine restriction was
~0.25% methionine when no cystine was present in the diet [8]. In the current work, the
sum of methionine and cystine together in the two protein-restricted diets was in the range
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of 0.24% to 0.26%. Together these findings and the present work illustrate that careful
attention to the total amount of methionine and cystine will be needed to successfully
implement a protein-restricted diet that produces therapeutically effective reductions in
sulfur amino acids.

Lastly, an alternative approach to dietary methionine restriction was recently described
which reduced the methionine and cystine content of casein by targeted, oxidative deletion
of the sulfur amino acids in the intact protein [19]. The advantage of this approach is
that the sulfur amino acid-depleted casein maintains its palatability and can produce
the metabolic benefits of protein restriction without reducing overall protein content of
the diet. Proof of concept studies comparing methionine-depleted casein-based diets
to elemental amino acid-based methionine restricted diets established the feasibility of
this approach and showed that the beneficial metabolic effects of methionine restriction
were reproduced by the oxidized casein-based MR diets [19]. It will be interesting in
future studies to determine whether combinations of mild protein restriction coupled
with targeted methionine depletion of the proteins to be restricted can be implemented to
produce therapeutically effective diets for the treatment of obesity and metabolic disease.

5. Conclusions

The present work establishes that restriction of dietary soy protein content from 20%
to 10% is able to fully recapitulate the biological effects of restriction of dietary casein
from 20% to 5%, and that the efficacy of both protein-restricted diets is linked to their
comparable restriction of dietary sulfur amino acids. These findings support the feasibility
of using different protein sources to formulate therapeutically effective protein-restricted
diets that limit methionine and cysteine intake to levels that reproduce the biological effects
of dietary methionine restriction.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13082609/s1, Figure S1: Gene Set Enrichment Analysis (GSEA) of hepatic gene expression
in mice fed sulfur amino acid-matched control diets formulated from casein (Cas-20%) or soy
(Soy-20% + SAA), and sulfur amino acid-matched protein restricted diets formulated from casein
(Cas-5%) or soy (Soy-10%). The heat maps are shown for the top 50 up-regulated and down-
regulated genes for the Cas-5% to Cas-20% (1A) and Soy-10% to Soy-20% + SAA comparisons (1B).
The heat maps present the normalized enrichment scores for each mouse and the corresponding
individual genes within the gene set [blue = downregulation, red = upregulation, (FDR > 0.1)],
Figure S2: Gene set enrichment analysis (GSEA) of hepatic gene expression in mice fed sulfur
amino acid-matched control diets formulated from casein (Cas-20%) or soy (Soy-20% + SAA), and
sulfur amino acid-matched protein restricted diets formulated from casein (Cas-5%) or soy (Soy-
10%). The enrichment plots and corresponding heat maps are shown for the top-scoring KEGG
Arginine-Proline Metabolism gene set for the Cas-5% to Cas-20% (2A) and Soy-10% to Soy-20% + SAA
comparisons (2B). Enrichment was computed as described in the Material and Methods and the
individual contributions of pathway genes to the pathway enrichment signal were visualized via
enrichment plots depicting the trajectory of a normalized pathway enrichment score against the
rank of the pathway genes in the context of the full gene list. Ac-companying heat maps present
the normalized enrichment scores for individual genes within the gene set [blue = downregulation,
red = upregulation, gray = not significant (FDR > 0.1)], Figure S3: Gene set enrichment analysis
(GSEA) of hepatic gene expression in mice fed sulfur amino acid-matched control diets formulated
from casein (Cas-20%) or soy (Soy-20% + SAA), and sulfur amino acid-matched protein restricted diets
formulated from casein (Cas-5%) or soy (Soy-10%). The enrichment plots and corresponding heat
maps are shown for the top-scoring KEGG Alanine-Aspartate-Glutamate Metabolism gene set for the
Cas-5% to Cas-20% (3A) and Soy-10% to Soy-20% + SAA comparisons (3B). Enrichment was computed
as described in the Material and Methods and the individual contributions of pathway genes to
the pathway enrichment signal were visualized via enrichment plots depicting the trajectory of a
normalized pathway enrichment score against the rank of the pathway genes in the context of the full
gene list. Accompanying heat maps present the normalized enrichment scores for individual genes
within the gene set [blue = downregulation, red = upregulation, gray = not significant (FDR > 0.1)],
Figure S4: Gene set enrichment analysis (GSEA) of hepatic gene expression in mice fed sulfur amino
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acid-matched control diets formulated from casein (Cas-20%) or soy (Soy-20% + SAA), and sulfur
amino acid-matched protein restricted diets formulated from casein (Cas-5%) or soy (Soy-10%).
The enrichment plots and corresponding heat maps are shown for the top-scoring KEGG Tyrosine
Metabolism gene set for the Cas-5% to Cas-20% (4A) and Soy-10% to Soy-20% + SAA comparisons (4B).
Enrichment was computed as described in the Material and Methods and the individual contributions
of pathway genes to the pathway enrichment signal were visualized via enrichment plots depicting
the trajectory of a normalized pathway enrichment score against the rank of the pathway genes in
the context of the full gene list. Accompanying heat maps present the normalized enrichment scores
for individual genes within the gene set [blue = downregulation, red = upregulation, gray = not
significant (FDR > 0.1)], Figure S5: Gene set enrichment analysis (GSEA) of hepatic gene expression
in mice fed sulfur amino acid-matched control diets formulated from casein (Cas-20%) or soy
(Soy-20% + SAA), and sulfur amino acid-matched protein restricted diets formulated from casein
(Cas-5%) or soy (Soy-10%). The enrichment plots and corresponding heat maps are shown for the
top-scoring KEGG Histidine Metabolism gene set for the Cas-5% to Cas-20% (5A) and Soy-10% to Soy-
20% + SAA comparisons (5B). Enrichment was computed as described in the Material and Methods
and the individual contributions of pathway genes to the pathway enrichment signal were visualized
via enrichment plots depicting the trajectory of a normalized pathway enrichment score against the
rank of the pathway genes in the context of the full gene list. Accompanying heat maps present
the normalized enrichment scores for individual genes within the gene set [blue = downregulation,
red = upregulation, gray = not significant (FDR > 0.1)], Figure S6: Gene set enrichment analysis
(GSEA) of hepatic gene expression in mice fed sulfur amino acid-matched control diets formulated
from casein (Cas-20%) or soy (Soy-20% + SAA), and sulfur amino acid-matched protein restricted diets
formulated from casein (Cas-5%) or soy (Soy-10%). The enrichment plots and corresponding heat
maps are shown for the top-scoring KEGG Glycine-Serine-Threonine Metabolism gene set for the Cas-
5% to Cas-20% (6A) and Soy-10% to Soy-20% + SAA comparisons (6B). Enrichment was computed
as described in the Material and Methods and the individual contributions of pathway genes to
the pathway enrichment signal were visualized via enrichment plots depicting the trajectory of a
normalized pathway enrichment score against the rank of the pathway genes in the context of the full
gene list. Accompanying heat maps present the normalized enrichment scores for individual genes
within the gene set [blue = downregulation, red = upregulation, gray = not significant (FDR > 0.1)],
Figure S7: Gene set enrichment analysis (GSEA) of hepatic gene expression in mice fed sulfur amino
acid-matched control diets formulated from casein (Cas-20%) or soy (Soy-20% + SAA), and sulfur
amino acid-matched protein restricted diets formulated from casein (Cas-5%) or soy (Soy-10%).
The enrichment plots and corresponding heat maps are shown for the top-scoring KEGG Cysteine-
Methionine Metabolism gene set for the Cas-5% to Cas-20% (7A) and Soy-10% to Soy-20% + SAA
comparisons (7B). Enrichment was computed as described in the Material and Methods and the
individual contributions of pathway genes to the pathway enrichment signal were visualized via
enrichment plots depicting the trajectory of a normalized pathway enrichment score against the
rank of the pathway genes in the context of the full gene list. Accompanying heat maps present
the normalized enrichment scores for individual genes within the gene set [blue = downregulation,
red = upregulation, gray = not significant (FDR > 0.1)], Figure S8: Gene set enrichment analysis
(GSEA) of hepatic gene expression in mice fed sulfur amino acid-matched control diets formulated
from casein (Cas-20%) or soy (Soy-20% + SAA), and sulfur amino acid-matched protein restricted diets
formulated from casein (Cas-5%) or soy (Soy-10%). The enrichment plots and corresponding heat
maps are shown for the top-scoring KEGG Valine-Isoleucine-Leucine Degradation gene set for the Cas-
5% to Cas-20% (8A) and Soy-10% to Soy-20% + SAA comparisons (8B). Enrichment was computed
as described in the Material and Methods and the individual contributions of pathway genes to
the pathway enrichment signal were visualized via enrichment plots depicting the trajectory of a
normalized pathway enrichment score against the rank of the pathway genes in the context of the full
gene list. Accompanying heat maps present the normalized enrichment scores for individual genes
within the gene set [blue = downregulation, red = upregulation, gray = not significant (FDR > 0.1)],
Figure S9: Gene set enrichment analysis (GSEA) of hepatic gene expression in mice fed sulfur
amino acid-matched control diets formulated from casein (Cas-20%) or soy (Soy-20% + SAA), and
sulfur amino acid-matched protein restricted diets formulated from casein (Cas-5%) or soy (Soy-
10%). The enrichment plots and corresponding heat maps are shown for the top-scoring KEGG
Tryptophan Metabolism gene set for the Cas-5% to Cas-20% (9A) and Soy-10% to Soy-20% + SAA
comparisons (9B). Enrichment was computed as described in the Material and Methods and the
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individual contributions of pathway genes to the pathway enrichment signal were visualized via
enrichment plots depicting the trajectory of a normalized pathway enrichment score against the
rank of the pathway genes in the context of the full gene list. Accompanying heat maps present
the normalized enrichment scores for individual genes within the gene set [blue = downregulation,
red = upregulation, gray = not significant (FDR > 0.1)], Table S1: Essential amino acid (EAA) and
non-essential amino acid (NEAA) composition of the casein and soy proteins used to formulate the
experimental diets, Table S2: Primer sequences used for real time qPCR.
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