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Abstract: Plasma free fatty acid (FFA) concentration is elevated in obesity, insulin resistance (IR),
non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D), and related comorbidities such
as cardiovascular disease (CVD). Furthermore, experimentally manipulating plasma FFA in the
laboratory setting modulates metabolic markers of these disease processes. In this article, evidence is
presented indicating that plasma FFA is a disease risk factor. Elevations of plasma FFA can promote
ectopic lipid deposition, IR, as well as vascular and cardiac dysfunction. Typically, elevated plasma
FFA results from accelerated adipose tissue lipolysis, caused by a high adipose tissue mass, adrenal
hormones, or other physiological stressors. Reducing an individual’s postabsorptive and postprandial
plasma FFA concentration is expected to improve health. Lifestyle change could provide a significant
opportunity for plasma FFA reduction. Various factors can impact plasma FFA concentration, such
as chronic restriction of dietary energy intake and weight loss, as well as exercise, sleep quality and
quantity, and cigarette smoking. In this review, consideration is given to multiple factors which
lead to plasma FFA elevation and subsequent disruption of metabolic health. From considering a
variety of medical conditions and lifestyle factors, it becomes clear that plasma FFA concentration is
a modifiable risk factor for metabolic disease.

Keywords: non-esterified fatty acid; metabolic syndrome; physical activity; caloric restriction;
obstructive sleep apnea

1. Introduction

Long-chain fatty acids have a chain length of 12 carbons or greater. The vast majority
of stored fatty acids in humans and other animals are in the long-chain form, with the
majority being 16 carbons in length or longer and stored through esterification into the
triacylglycerol (TAG) pool of white adipose tissue [1–4]. Alternatively, the fate for short-
and medium-chain fatty acids is primarily oxidation [5,6], and thus these fatty acids are
not stored as TAG in humans and other animals to an appreciable extent. While TAG
is predominantly stored in adipose tissue, it is also stored at ectopic lipid deposition
sites such as liver and muscle along with related lipid intermediates. The free fatty acid
(FFA) form of fatty acids is an unesterified anion, primarily derived from lipolysis of
TAG, and FFA circulate predominantly bound to albumin in the bloodstream [7,8]. In this
review, the focus is upon long-chain FFA and, throughout the article, the term ‘FFA’ is
used to specifically refer to the long-chain form of this metabolite class, as is a customary
nomenclature when studying lipid metabolism [9–14]. Circulating FFA provides energy
for β-oxidation, and it is believed that this FFA metabolism serves the function of sparing
blood glucose through its role as an alternative fuel. In healthy individuals, the ability to
rapidly mobilize FFA from TAG storage is potentially important for defense of glycemia
during stress such as exercise or fasting [11,15–18]. However, habitual elevation of plasma
FFA beyond energy needs exerts negative health impacts, and plasma FFA elevation is
characteristic of metabolic health conditions and unfavorable lifestyle choices. For example,
the excess adiposity in obesity leads to elevated FFA in plasma [12,19–26], leading to
increased lipid uptake and storage in liver and skeletal muscle. TAG accumulation in liver
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and muscle, which is a result of excessive plasma FFA level, typically presents alongside
elevated levels of lipotoxic intermediates such as diacylglycerol (DAG) [27–31]; DAG and
other lipotoxic intermediates (e.g., ceramide) lead to development of insulin resistance
(IR) [28,32,33]. To address a proximal step in the development of metabolic dysfunction,
reducing the plasma FFA concentration could be desirable. The lipid accumulation in
the liver, resulting from excessive plasma FFA, is of particular concern as NAFLD is the
most common liver disease in the United States and across the globe and can progress to
non-alcoholic steatohepatitis (NASH) and ultimately cirrhosis [34,35]. Furthermore, both
hepatic and skeletal muscle lipid accumulation are associated with IR and type 2 diabetes
(T2D) risk [33,36,37]. In this review, consideration is given to multiple factors which lead
to plasma FFA elevation and subsequent disruption of metabolic health, such as obesity,
physical inactivity, obstructive sleep apnea (OSA), sleep deprivation, and cigarette smoking.
Each of these health conditions is modifiable to a significant extent. While it has been
accepted that plasma FFA concentration plays a role in IR and NAFLD, this comprehensive
review article addresses a broader spectrum of factors that are associated with elevation of
plasma FFA concentration. When one considers various lifestyle and medical factors, it
ultimately becomes clear that there are various modifiable factors, which go far beyond
direct effects of adiposity, which can likely exert their negative health effects through an
elevation of plasma FFA. To accept plasma FFA concentration as an important modifiable
risk factor for disease, the array of modifiable lifestyle factors that impact plasma FFA must
first be acknowledged; outlining this association between plasma FFA with lifestyle factors
and medical conditions is a goal of this review article. The premise for a role of plasma FFA
in disease is further strengthened by appreciating the physiological effects of FFA elevation
upon insulin resistance and vascular dysfunction, as discussed in this article.

There are clear indications that reducing plasma FFA chronically could reduce disease
burden, and thus significant efforts have been made to develop pharmaceuticals to reduce
plasma FFA. These efforts are ongoing but have not yet led to an approved drug aimed at
suppressing plasma FFA concentration [38,39]. However, compounds are currently avail-
able to temporarily modulate adipose tissue lipolysis to reduce plasma FFA concentration,
resulting in short-term improvement in metabolic health; niacin, and its mimetics such as
Acipimox, can achieve this result in the short-term, but efficacy of the compounds is not
maintained over many months of treatment, and plasma FFA rebounds upward as efficacy
is lost. As discussed in other review articles, a search for additional niacin mimetics has led
to discovery of compounds that may show a more sustained lipolysis inhibition, yet these
compounds have not proceeded onward to approval and clinical use at this time [38,39].
In the present article, the focus is upon describing plasma FFA as a risk factor that can
be managed by lifestyle factor such as dietary energy restriction, weight loss, exercise,
improved sleep, and abstinence from cigarette smoking. The information presented here
on this topic may be considered as examples from biology and medical science that depict
the plasticity of plasma FFA concentration and the benefits of reducing it. It is anticipated
that this information would provide further justification for the search for pharmaceutical
compounds to reduce the plasma FFA level. However, at this point, lifestyle modification
is the best tool for long-term modification of plasma FFA concentration.

2. Plasma FFA Concentration as a Risk Factor for Metabolic Disease

In people afflicted with metabolic disease, it is common to observe a clustering of
various aspects of metabolic dysfunction within the same individual; the term ‘metabolic
syndrome’ refers to this phenomenon, in which abdominal obesity, IR, hypertension, and
other aspects of T2D and CVD risk coincide [40]. The elevation of plasma FFA that oc-
curs in obesity [12,19–24], particularly in abdominal or upper body obesity [12,41], is
likely a central factor that explains a significant portion of the metabolic syndrome etiol-
ogy. That is to say, IR, T2D, NAFLD, and vascular dysfunction are linked through FFA
metabolism. Plasma FFA concentration is significantly elevated in people with IR [24,42–44]
and T2D [21,44,45]. Even in apparently healthy people, higher levels of fasting plasma FFA
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are predictive of future development of IR [46] and T2D [47], exemplifying that risk for
metabolic disease development is worsened by high plasma FFA content. Elevated plasma
FFA is also associated with NAFLD [19,20], hypertension [43,44], and poor myocardial func-
tion [12,48]. Higher fasting plasma FFA is also associated with elevated risk for all-cause
mortality [43,44] and death from CVD [43,44]. In addition to obesity and its associated FFA
levels, it is known that various aspects of the metabolic syndrome (IR and vascular health
indicators) are detrimentally impacted by factors such as sleep deprivation [49–52], sleep
apnea [49,53–55], cigarette smoking [56–59], and physical inactivity [60–63]; as discussed
below, each of these factors leads to elevated plasma FFA as well, and this impact on
circulating FFA concentration may be a causal factor in the detrimental health impacts of
these factors. When we take this information as a whole, it becomes apparent that plasma
FFA concentration is a disease risk factor which is modifiable.

Evidence indicating plasma FFA concentration as a risk factor for disease is derived
from observation of patients (presented above), as well as from laboratory research linking
an experimental elevation of plasma FFA with indicators of worsened metabolic health.
A common approach for experimentally elevating plasma FFA is to simultaneously in-
fuse heparin and a lipid emulsion (e.g., intralipid); the FFA elevation achieved by hep-
arin and lipid infusion leads to rapid induction of IR [64–70], ectopic lipid deposition
(e.g., in skeletal muscle and liver) [68–71], endothelial dysfunction [72–74], elevated blood
pressure [73,74], worsened aortic stiffness [26], and in a T2D population, even increased
incidence of cardiac arrhythmia during the infusion [75]. Elevating plasma FFA through
use of a low-carbohydrate diet has also been used to confirm the association between
plasma FFA and aortic stiffness [26]. Conversely, a short-term reduction in plasma FFA
through administration of high-dose niacin (a lipolysis inhibitor), or a niacin mimetic
such as Acipimox, reduces plasma FFA [75–78] and thus reduces ectopic lipid accumula-
tion in the liver [76–78], improves markers of insulin sensitivity [75,79–82], and decreases
cardiovascular dysfunction such as cardiac arrhythmia [75]. Additional support for a
mechanistic link between plasma FFA concentration and metabolic health comes from
work on animal models; adipose triglyceride lipase (ATGL) is the primary controller of
lipolysis, and adipose tissue-specific knockout of this enzyme in mice leads to reduced
plasma FFA concentration, resulting in improved insulin sensitivity and reduced hepatic
lipid content [83,84]. Furthermore, adipose-specific ATGL knockout mice are protected
from cardiac pathology in an experimental model of heart failure [85], and this result is
also likely to be a result of the reduced plasma FFA concentration. In summary, from
observational research and experimental research, it becomes clear that a causal link exists
between plasma FFA abundance and metabolic health.

3. Modulation of Plasma FFA Concentration by Clinical Interventions and
Lifestyle Factors
3.1. Body Weight and Energy Balance

The detriments of chronic over-nutrition upon plasma FFA concentration cannot be
corrected simply by a single bout of negative energy balance, because acute fasting actually
raises plasma FFA concentration and elevates ectopic lipid deposition [15–17]. However,
the acute effects of fasting should not be discouraging, as chronic caloric restriction (CR)
with weight loss eventually appears to reduce plasma FFA. Overweight [26] and obese
people [12,19–21,24,25] exhibit elevated plasma FFA concentration in the postabsorptive
state. Thus, one might be able to assume that sustained weight loss would eventually
reduce plasma FFA concentration back near levels of lean individuals. In a study demon-
strating higher plasma FFA in obese women compared to lean women, additional insight
was obtained by studying women who had experienced significant weight loss following
bariatric surgery; the weight-reduced women exhibited lower plasma FFA concentration
than the untreated obese women [86]. Next, one can consider findings from numerous
studies of weight loss, although the majority have been conducted without employing a
weight-stable control group in the study design. For example, in observational studies
following gastric bypass surgery patients over time, the association between weight loss
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and plasma FFA concentration changes has been mixed. In some studies of weight loss
from bariatric surgery [87–90] and CR from dietary intervention [91,92], plasma FFA con-
centration was reported to be lower after weight loss as compared to plasma from the same
individuals before weight loss. In other longitudinal studies (also without weight-stable
control groups), this decline of plasma FFA concentration with weight loss from bariatric
surgery [25,93] or dietary intervention [93] was not observed. Results are mixed but seem
to favor the likelihood of a reduced plasma FFA with weight loss. While these studies are
of interest, they were not controlled trials. One should exercise caution when interpreting
such findings, as it is difficult to control for effects of various factors that could alter plasma
FFA concentration measurements when studies do not include a control group of partici-
pants. Randomized controlled trials (RCT) are needed to confirm the apparent findings.
Indeed, additional support for the modifiable nature of plasma FFA concentration with
weight loss does come from an RCT. The RCT indicated that approximately 6 months after
gastric bypass surgery, when substantial weight loss had occurred, patients exhibited lower
plasma FFA during an oral glucose tolerance test (OGTT) [94]; thus, the ability to suppress
FFA was enhanced by weight loss, although the trend for reduced fasting plasma FFA in
this RCT was not statistically significant. Overall, from cross-sectional and longitudinal
studies, it generally appears that weight loss acts to reduce plasma FFA concentration,
which coincides with the well-accepted health improvements that come from weight loss.
However, additional research, particularly from RCT studies, would be helpful to further
clarify this conclusion.

3.2. Exercise

Even though chronic exercise is known to lead to improved health, a single exercise
bout alone is not sufficient to reduce plasma FFA concentration. Indeed, quite the opposite
occurs after each individual bout of exercise. As a result of enhanced adipose tissue
lipolysis, plasma FFA concentration is elevated during [10,11,95–98] and for hours after
each exercise session [11]. Initially, this information may seem inconsistent with the
concept of high plasma FFA concentration being a disease risk factor, as exercise is known
to be a behavior with great benefits to health. However, in a physically active individual,
many hours per day may be spent following full recovery from exercise. Furthermore,
on rest days, habitual exercisers would spend the entire day without exercise-associated
stimulation of lipolysis. Thus, we should ask how chronic exercise training impacts
plasma FFA, when measurements are made outside of the exercise and recovery time
period. This information is needed in order to fully appreciate the role of plasma FFA
in health and its potential status as a modifiable risk factor. Initial clues come from an
observational study of T2D patients; it was reported that patients who reported higher
levels of daily physical activity also had the lowest plasma FFA concentrations amongst
the group of study participants [75], indicating a negative statistical association between
physical activity level and fasting plasma FFA when measurements of plasma FFA are made
outside of the post-exercise recovery time window. Furthermore, a previously published
meta analysis addressed this issue by analyzing effects of chronic exercise training upon
plasma FFA concentration in overweight, obese, and NAFLD patients; the meta analysis
of RCT results revealed a significant reduction in plasma FFA concentration with chronic
exercise training [99]. Studies with an RCT study design that have shown a reduction
in plasma FFA concentrations with chronic exercise training have employed endurance
exercise training at a challenging intensity (70% of VO2max or higher) with variable total
training volumes [100–102]. In exercise RCTs, it is not always reported how many days of
rest were allowed before post-training measurements; however, when reported for studies
demonstrating reduced plasma FFA with training, the post-training measurements were at
least 3 days after the last day of exercise [101,102]. More data are needed, and currently it
is unclear whether resistance exercise or a wide variety of endurance exercise approaches
lead to reduced plasma FFA concentration. Yet, the results described above provide proof
of principle that at least certain types of chronic exercise approaches can reduce plasma
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FFA concentration [99]. The reduction in plasma FFA that occurs with chronic exercise
training corresponds to the well-accepted effect of exercise to reduce hepatic TAG and to
improve insulin sensitivity [103–105]. As plasma FFA reduction is expected to reduce the
severity of hepatic steatosis and IR, there may be a mechanistic role of plasma FFA in the
chronic training response.

3.3. Sleep Deprivation

Insufficient sleep quantity and quality can lead to IR, heightened T2D risk, and
NAFLD [49–52]. As plasma FFA concentration changes could potentially be a root cause
of this effect of sleep dysfunction on disease risk, below the effects of sleep deprivation
on plasma FFA concentration are reviewed. As discussed above in relation to weight loss
studies, it is important to be cautious when interpreting studies that did not employ a
control group. Two studies of sleep deprivation were reported (5 h vs. 10 h of ‘time in bed’
per night) using data from the same study participants [106,107]; participants were studied
before, during, and after this reduction in sleep to 5 h per night, yet no control group was
studied over the same timeframe. In one of these studies, plasma FFA concentration was
surprisingly reduced after four nights of sleep restriction and remained reduced below
baseline after restoration of sleeping patterns [107]. In the second study, following an addi-
tional night of sleep restriction (5 nights total), plasma FFA actually tended to be elevated,
though not to a statistically significant extent [106]. Without knowing the level of drift of
plasma FFA concentration over 4–5 days that would have occurred in a control group, it is
difficult to interpret the findings from these studies [106,107] conclusively. Thus, next in
this section, the focus is upon studies that report investigation of a control condition and a
sleep deprivation condition in randomized order. From these controlled studies, it becomes
clear that multiple nights of sleep deprivation consistently leads to elevated plasma FFA
concentration. Five nights of sleep restriction (4 h compared with 8 h sleep per night) led to
increased fasting plasma FFA and induced IR; the participants (a combined group of men
and women) also exhibited elevated cortisol and catecholamines in urine in response to
sleep deprivation, suggesting a potential role of the hypothalamic–pituitary–adrenal (HPA)
axis and sympathetic nervous system activity [52]. In a study that further supported this
finding, four nights of sleep restriction in men (4.5 h sleep compared with 8.5 h per night)
led to increased plasma FFA during the nighttime and morning, alongside a worsening
of their IR; the sleep restricted participants also exhibited elevated plasma cortisol and
norepinephrine (lipolytic hormones) at these time points [51]. Furthermore, in this study,
the authors demonstrated a significant correlation between elevated nighttime plasma
FFA and the reduction in insulin sensitivity on the next day [51]; thus, elevated plasma
FFA concentration may have led to the subsequent IR that resulted from sleep deprivation.
While multiple nights of sleep deprivation leads to elevated plasma FFA and metabolic
dysfunction, it is less clear if a single night of such a stressor would be sufficient to exert this
detrimental impact. Complete abstinence from sleep for one day did not alter plasma FFA
or glucose [108,109]. In another study, when partial restriction of sleep time was for a single
night (4 h vs. 8 h sleep), while the stimulus was not sufficient to raise fasting plasma FFA,
it did lead to impaired ability to suppress plasma FFA under insulin-stimulated conditions;
this single night of reduced sleep duration resulted in worsened insulin sensitivity and
elevated plasma FFA during a hyperinsulinemic euglycemic clamp [110]. Maintaining
lower plasma FFA concentrations is desirable for metabolic health maintenance both in the
postabsorptive and postprandial states. An impaired ability to suppress plasma FFA in
response to insulin indicates a negative impact of sleep deprivation which could potentially
be manifested following meals in an individual’s daily life. As a whole, the literature
indicates that multiple nights of sequential sleep restriction leads to elevated plasma FFA
and impaired glycemic regulation, and this observation is consistent with the known
relationship between plasma FFA concentration and insulin resistance.
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3.4. Sleep Apnea

OSA increases risk for developing IR, other metabolic syndrome factors, and vas-
cular disease [49,53–55]. The literature indicates that this type of sleep dysfunction also
elevates plasma FFA concentration. The plasma FFA elevation can be corrected through
treatments of the sleep apnea, as discussed below, and these findings indicate that circu-
lating FFA abundance is a potential mechanism by which treatment can improve health.
In a study of male and female patients with OSA, treatment with continuous positive
airway pressure (CPAP) was studied, and CPAP reduced plasma FFA, glucose, and cortisol
concentrations [111]; the authors interpreted the finding to suggest that hypoxia and sleep
fragmentation in OSA each increase activity of the HPA axis and sympathetic nervous
system, while CPAP can correct the abnormality. In another study assessing effects of treat-
ment, male and female congestive heart failure patients were studied; heart failure patients
with and without OSA were compared to one another. The patients with OSA exhibited
higher plasma FFA during the nighttime sleeping hours, and administering supplemental
oxygen to treat OSA reduced plasma FFA to normal levels [112]. In a cross-sectional study
comparing patients with and without OSA, it was discovered that fasting plasma FFA and
glucose were higher in OSA patients than controls [54]. Furthermore, the severity of OSA
in these men and women correlated with the magnitude of plasma FFA elevation [54]. In
another cross-sectional study, comparing men with and without OSA, the OSA patients
exhibited higher fasting glucose, a worsened glucose excursion during an OGTT, and
less suppression of plasma FFA during the OGTT [55]. In conclusion, OSA is a common
comorbidity of obesity which leads to worsened metabolic health, likely in part through
effects upon plasma FFA concentration. Treating OSA can reduce plasma FFA, indicating
that plasma FFA concentration is modifiable as a potential means to improve health.

3.5. Cigarette Smoking

When considering the detrimental impacts of cigarette smoking, the focus is typically
upon lung cancer and chronic obstructive pulmonary disease (COPD). However, it is
important to note that chronic smokers also exhibit IR and elevated T2D risk [56]. In
male and female smokers with T2D, during even a single session of cigarette smoking
(1 cigarette per hour), plasma FFA concentration was elevated and IR was worsened [113].
Furthermore, in studies of non-diabetic habitual male smokers, plasma FFA concentration
was elevated acutely after smoking two cigarettes on the study day [114] and plasma FFA
concentration was even elevated following smoking only a single cigarette in another
study [115]. In a study comparing chronic smokers with non-smokers, each with T2D,
it was shown that diabetic smokers have worse insulin sensitivity than diabetic non-
smokers, and the smokers also exhibited a worsened ability to suppress plasma FFA
during a hyperinsulinemic euglycemic clamp [58]. In another study of regular smokers,
an acute smoking bout (rate of 2 cigarettes per hour) substantially elevated plasma FFA
concentration; in this study stable isotope tracers were used to also demonstrate an elevated
plasma FFA rate of appearance in response to smoking, indicating most likely that adipose
tissue lipolysis was the cause of the elevated plasma FFA during smoking [116]. In further
support of these findings, in a study of male smokers compared with non-smokers, plasma
FFA was substantially higher in the fasted state and muscle insulin sensitivity was lower in
smokers [57]. Thus, overall, this significant body of literature indicates that abstinence from
smoking would help people maintain lower plasma FFA levels and thus superior metabolic
health. Next, one may wonder if electronic cigarettes or other sources of nicotine would
exert similar impacts upon plasma FFA, as any means of delivering nicotine might lead to
elevated plasma FFA. From work in mice, it is known that chronic nicotine administration
exacerbates the obesity-related elevation of plasma FFA concentration and increases skeletal
muscle lipid accumulation [117], and nicotine also increases hepatic lipid accumulation
in mice [118]. Furthermore, nicotine administration in mice also decreased the ability
to suppress plasma FFA concentration in response to insulin administration in vivo and
decreased the suppression of lipolysis in adipose tissue in response to insulin treatment
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in vitro [118]. In addition to direct effects upon adipose tissue, nicotine appears to stimulate
lipolysis through increased epinephrine and norepinephrine secretion, as demonstrated
in an intravenous nicotine infusion study in men [119]. Thus, in conclusion, responses to
smoking and other forms of nicotine intake provide support for the notion that plasma FFA
concentration is a modifiable risk factor for metabolic disease and is responsive to lifestyle
factors.

4. Mechanisms

Adipose tissue lipolysis is considered to be a primary determinant of the plasma
FFA concentration. Thus, any worsening of the ability to restrain lipolysis in adipose
tissue could lead to elevated plasma FFA. The elevated adipose tissue mass in obesity is
statistically associated with the accelerated release rate of FFA into circulation. While in
obesity the rate of FFA release per gram of adipose tissue is somewhat reduced, because
total adipose mass is substantially increased in obesity, the net results is that obese people
exhibit an elevated total rate of whole body plasma FFA turnover [120]. Therefore, elevated
fat mass alone may be sufficient to elevate the plasma FFA abundance. IR in adipose
tissue could be another factor that promotes elevated plasma FFA, as insulin exerts potent
anti-lipolytic effects in healthy adipose tissue but not in insulin resistant adipose tissue.
Adipose tissue IR is typically assessed by the degree of plasma FFA suppression during an
OGTT or during a hyperinsulinemic euglycemic clamp. Indeed suppression of plasma FFA
concentration by insulin is blunted in T2D [45], as well as in other instances of IR such as
sleep deprivation [110] and following cigarette smoking [58,113]; furthermore, weight loss
via gastric bypass surgery [94] and treatment of sleep apnea [55] each enhance the ability to
suppress plasma FFA concentration during an OGTT. Activation of the sympathetic nervous
system can also impose challenges upon metabolic health, as β-adrenergic signaling in
adipose tissue enhances lipolysis and thus accelerates the release of FFA into circulation.
As discussed above, excessive FFA in circulation can promote IR and vascular pathology,
and thus over-activation of the sympathetic nervous system can be problematic. Stress
hormones such as catecholamines (epinephrine and norepinephrine) as well as cortisol
promote adipose tissue lipolysis and appear to be potentially elevated in some studies
when investigating factors such as sleep restriction [51,52] and cigarette smoking [121].
Furthermore, the reduction in plasma FFA in sleep apnea observed during CPAP treatment
is associated with a reduction in cortisol levels [111], further indicating that lipolytic control
by stress hormones is a potential mechanism for changing plasma FFA concentration with
lifestyle and medical treatments.

Following consideration of the physiological mechanisms that typically govern changes
in plasma FFA concentration, next it is important to consider the mechanisms that may
link those FFA abundances to pathology and disease risk. While the primary focus of
this review article is to highlight evidence that plasma FFA concentration is a risk factor
for disease at the organismal level, below a brief review is presented of potential cellular
mechanisms by which plasma FFA concentration exerts its detrimental effects. Uptake of
FFA into cells occurs down concentration gradients. When intracellular FFA concentrations
are elevated, FFA can be lipotoxic and lead to cell death and dysfunction [122–124]. In ad-
dition to TAG storage in lipid droplets, intermediates in the pathway toward lipid storage
(e.g., DAG) can accumulate when lipid supply is excessive [27–31]. Elevated DAG can lead
to IR though activation of specific protein kinase C isoforms [28,32,33]. Additionally, other
intermediates in the TAG synthesis pathway (phosphatidic acid and lysophosphatidic acid)
as well as ceramides are potentially lipotoxic [33,125–128]. NAFLD is associated with IR
and is mechanistically linked to cellular steatosis and excessive FFA supply from plasma.
The cellular dysfunction in NAFLD can cause progression to NASH when inflammation
and related pathological processes are triggered. The steatosis and elevated intracellular
FFA in NAFLD can lead to increased production of reactive oxygen species (ROS), due to
elevated substrate supply to the fatty acid oxidation pathways [129–131]; the steatosis and
FFA elevation in liver cells can also lead to endoplasmic reticulum (ER) stress [129–132].
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Oxidative stress and ER stress each contribute to inflammation and downstream induction
of apoptosis [129–132]. In addition to effects of excessive FFA supply upon IR and NAFLD,
there are also detrimental effects upon the vasculature and cardiovascular health. The
stimulation of ROS production by FFA is a commonality amongst various tissues, including
vascular endothelial cells [112,133,134]. FFA elevation can harm vascular health likely
through various mechanisms, acting through multiple aspects of the metabolic syndrome
and through effects of steatosis in multiple tissues, including in the heart. Nonetheless, it
is specifically noteworthy that elevated plasma FFA concentration exerts impacts directly
upon the vascular endothelium; FFA elevation leads to endothelial dysfunction, manifested
as blunted control of vasodilation [72,133–135], potentially caused by ROS-mediated im-
pairment of endothelial nitric oxide synthase activity [112,133,134]. In summary, research
on the physiological effects of elevated cellular FFA supply and lipotoxicity indicate a com-
pelling link between plasma FFA elevation and poor health outcomes in people afflicted
with obesity, physical inactivity, sleep deprivation, OSA, and in those who use nicotine
products such as cigarettes.

5. Summary and Conclusions

In conclusion, habitual elevation of plasma FFA concentration in the postabsorptive
and postprandial states can lead to heightened risk for developing various diseases re-
lated to metabolic syndrome, IR, and cardiovascular function. Plasma FFA concentration
should not replace other well-established risk factors for disease (e.g., body mass index,
serum low-density lipoprotein and triacylglycerol). Rather, FFA concentration should be
potentially added to the panel of clinical factors that are considered as components of risk
determination for disease. While there are established management plans for some risk
factors such as low-density lipoprotein cholesterol [136], for plasma FFA, additional efforts
will be needed to establish harmonized methods for biomarker assessment and guidelines
for management. Reducing one’s plasma FFA concentration throughout the day should be
a goal. Plasma FFA concentration is modifiable by lifestyle factors, and thus we need not
wait for novel drug development to begin acting upon this risk factor. Though initially it
had appeared that exercise may simply elevate plasma FFA, it is now apparent that chronic
exercise training may actually blunt plasma FFA concentration at times that are away from
the exercise session and outside the post-exercise recovery period. Furthermore, it now
appears likely that plasma FFA concentration can be reduced by treating obesity with
weight loss and by medically treating any associated sleep apnea. Finally, while there have
been many valid reasons to abstain from cigarette smoking in the past (e.g., cancer and
COPD), additionally it has become apparent that smoking or taking other nicotine products
leads to elevated plasma FFA and thus IR. Identifying FFA as a modifiable risk factor for
metabolic disease paints the picture of a biological and clinical linkage between various
factors that alter metabolic health, such as obesity, physical inactivity, sleep, smoking, and
potentially other factors that are not yet appreciated. Work related to target identification
and drug development aimed at suppressing plasma FFA is ongoing, yet also actionable
information is available now with regard to implementation of lifestyle recommendations
for managing one’s plasma FFA concentration.
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