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Abstract: Fatty acids play a significant role in maintaining cellular and DNA protection and we
previously found an inverse relationship between blood levels of eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) and DNA damage. The aim of this study was to explore differences
in proteomic profiles, for 117 pro-inflammatory proteins, in two previously defined groups of
individuals with different DNA damage and EPA and DHA levels. Healthy children and adolescents
(n = 140) aged 9 to 13 years old in an urban area of Brazil were divided by k-means cluster test
into two clusters of DNA damage (tail intensity) using the comet assay (cluster 1 = 5.9% ± 1.2
and cluster 2 = 13.8% ± 3.1) in our previous study. The cluster with higher DNA damage and
lower levels of DHA (6.2 ± 1.6 mg/dL; 5.4 ± 1.3 mg/dL, p = 0.003) and EPA (0.6 ± 0.2 mg/dL;
0.5 ± 0.1 mg/dL, p < 0.001) presented increased expression of the proteins CDK8–CCNC, PIK3CA–
PIK3R1, KYNU, and PRKCB, which are involved in pro-inflammatory pathways. Our findings
support the hypothesis that low levels of n-3 long-chain PUFA may have a less protective role
against DNA damage through expression of pro-inflammatory proteins, such as CDK8–CCNC,
PIK3CA–PIK3R1, KYNU, and PRKCB.

Keywords: DNA damage; proteomic; fatty acids; child; adolescents

1. Introduction

Recent advances in omics sciences have enabled the study of health processes that facil-
itate the development of personalized medicine [1–3]. These methodological improvements
are also advancing precision nutrition based on the availability of big data in genomics,
metabolomics, proteomics, and various computational analyses. A major emphasis of
these approaches is the identification and validation of biomarkers that assess molecular
processes that can be altered through nutrition [3].

Nutrients, alone or in combinations, can influence several mechanisms of biological
systems, including the expression of proteins [4]. Proteomics studies can help elucidate the
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interactions between nutrients and gene expression, leading to a better understanding of
the role of nutrition on maintenance of health [4].

DNA damage is caused by various factors that are intrinsic to cell metabolism, such as
reactive oxygen species, or by external stressors such as sunlight or free radicals generated
from environmental pollutants. Pathological processes induced by oxidative stress, inflam-
matory processes, or cellular degeneration may result in atherosclerosis, neurodegenerative
diseases, and malignant diseases, associated with increased DNA damage [5–9].

In response to internal and external stressors, DNA damage responses are initiated for
maintaining normal cellular functions [5,7–9]. These processes depend on regulation of the
cell cycle, a complex regulatory system that involves changes in amount and modifications
of DNA-damage-inducible proteins [5,7]. The DNA damage response is initiated with
the recognition of an injury by sensor complexes such as the Mre11–Rad50–Nbs1 (MRN)
mediator complex and the proliferating cell nuclear antigen (PCNA)-related Rad9–Rad1–
Hus1 complex [10,11]. Kinases and cyclin-dependent kinases are also involved with DNA
damage. These regulatory cell cycle proteins help to regulate gene transcription, acting also
as modulators of DNA damage response [12,13]. Other physiological systems also respond
to these internal and external stressors: increased levels of pro-inflammatory proteins such
as nuclear factor kappa B (NF-κB), toll-like receptor 4 (TLR4), and several interleukins also
contribute to processes involved in DNA damage [14]. Proteomic analysis may be used to
evaluate the factors involved in mechanisms of DNA damage.

Fatty acids play a significant role in maintaining cellular and DNA protection [15]. Our
previous study demonstrated an inverse relationship between blood levels of long-chain n-
3 polyunsaturated fatty acids (PUFAs)—eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA)—and DNA damage [16].

The anti-inflammatory properties of EPA and DHA are thought to help protect against
DNA damage through the synthesis of mediators to solve the inflammation process [17–19]
and via competition with the conversion of n-6 fatty acids to arachidonic acid (AA), which
reduces the formation of pro-inflammatory AA-derived eicosanoids [20]. In addition,
evidence suggests that these long-chain omega-3 PUFAs participate in modulating cell
cycle phases related to induction of apoptosis [21].

Given the potential interactions between components of the inflammatory systems
and DNA damage, we hypothesized that individuals with greater DNA damage and lower
DHA and EPA levels may have distinct proteomic profiles among the 117 pro-inflammatory
proteins tested by our methods compared with individuals with lower DNA damage and
higher DHA and EPA levels. Hence, the aim of this study was to test whether proteomic
expression differs in two groups previously described in the study of Barros et al. [16],
defined by contrasting levels of DNA damage and by DHA and EPA red blood cells levels.

2. Materials and Methods
2.1. Study Design and Population

This cross-sectional study is part of a micronutrient intervention project previously
reported [22]. The trial was registered on ClinicalTrials.gov (NCT01823744), accessed on 19
July 2021. Subjects agreed to participate by signing a statement of informed assent, and a
parent signed an informed consent. Brazilian National Ethics Committee approved this
study (CONEP 00969412.6.0000.5440) [22].

In brief, healthy children and adolescents aged from 9 to 13 years, 11 months and
29 days old were recruited in 2013 from one private and two public schools located
in a neighborhood in the city of Ribeirão Preto (São Paulo, Brazil) [22]. All subjects
have access to electricity, sanitation, potable water, and internet. The municipal human
development index (MHDP) is 0.8, which is considered very high [22]. Exclusion criteria
included dietary restrictions, including weight-loss interventions, current intake of vitamin
or mineral supplement, chronic diseases, at least three episodes of liquid stools within the
24 hours preceding data collection, at least one episode of axillary temperature higher than
37 ◦C within the 15 days before the assessment, and participation in another clinical trial
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within the 4 weeks prior to the study. Clinical condition and sexual maturity rate were
assessed by a pediatrician using Tanner criteria [23]. All physiological assessments were
performed by trained personnel and included weight and height measurements and blood
collection. Nutritional status was obtained by the classification of body mass index (BMI)
in accordance to World Health Organization (WHO) [24].

2.2. Fatty Acids Assessment

The polyunsaturated fatty acids, EPA and DHA, assessed in red blood cells (200 µL
RBC lysed with 200 µL of NH4Cl 82.29 mg/mL, NaHCO3 10.00 mg/mL, and EDTA
292.2 mg/mL), were analyzed by gas–liquid chromatography as the method described by
Masood et al [16,25,26].

2.3. DNA Damage Assessment

DNA damage quantification was obtained by alkaline single-cell gel electrophoresis
(comet assay) as the methodology described by Singh et al. [27] and Tice et al. [28], with
minor modifications [16]. Freshly collected blood (25 µL) preserved in EDTA was added
to 0.5% (m/v) low-melting-point agarose (270 µL) at 37 ◦C (Invitrogen, Carlsbad, CA,
USA) [16]. An amount of 80 µL of the cell suspension was transferred onto microscope
slides already covered with 1.5% (m/v) normal-melting-point agarose (Invitrogen, Carlsbad,
CA, USA) [16]. Slides were maintained at 4 ◦C for 20 min for agarose solidification.
The slides were then submerged in lysis solution (2.5 M NaCl; 100 mM EDTA, Sigma-
Aldrich, St Louis, MO, USA; 10 mM Tris, Sigma-Aldrich, St Louis, MO, USA; 10 % (v/v)
DMSO, Sigma-Aldrich, St Louis, MO, USA; 1% (v/v) Triton X-100, pH 10) and maintained
protected from light at 4 ◦C for 24 h [16]. Slides were submerged in electrophoresis solution
(300 mM NaOH, 1 mM EDTA, pH > 13) for 20 min at 4 ◦C, and then placed in a horizontal
electrophoresis unit with the same solution [16]. Electrophoresis was performed for 20 min
at 0.87 V/cm (25 V and 300 mA). During the electrophoresis, fragments of damaged
DNA migrate through the slides, creating a tail shape [16]. Slides were then washed in
a neutralization buffer (0.4 M Tris pH 7.5, Sigma-Aldrich, St Louis, MO, USA) at 4 ◦C
for 5 min and then fixed in ethanol for 2 min [16]. The slides were stained with 200 µL
of GelREDTM solution (Biotium, Fremont, CA, USA, 1:1000) for 3 min and then covered
with coverslips, right before the analysis [16]. A total of 100 nucleoids per subject were
randomly chosen and analyzed with a fluorescence microscope (filter 516–560 nm, barrier
filter 590 nm, 40 × objective) [16]. Samples were assessed using the software CometAssay
IV (Perceptive Instruments Ltd.), through which we obtained tail intensity values, by
the measurement of emitted light in the formed tail of nucleoid, linearly related to DNA
damage [29].

2.4. Proteomic Analysis

One hundred and seventeen plasma proteins involved in regulating inflammation
were selected from the 1129 quantified proteins by the SomaLogic proteomic Somas-
can assay version 1®(SomaLogic Inc., 2945 Wilderness Place, Boulder, CO 80301, USA)
(Supplementary Table S1). Somascan consists of DNA Aptamers, which are similar in
concept and function to monoclonal antibodies. In brief, the proteins to be measured
bind to their cognate nucleic acid-based SOMAmers (modified aptamers), which include
a photo-cleavable biotin (PCB) and a fluorescent label at the 5’end. Streptavidin-coated
beads (SA) capture the bound protein–SOMAmer complexes by the PCB present on the
SOMAmer. Unbound aptamers are washed away, and the bound proteins are tagged
with biotin. UV light cleaves the PCB, releasing protein–SOMAmer complexes into so-
lution. SOMAmers are quantified by hybridization. Each probe is proportional to the
amount of SOMAmer recovered, quantifying the amount of protein present in the original
sample [30,31]. Laboratory analysis and quantification were conducted by SomaLogic.
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2.5. Statistical Analyses

All statistical analyses were performed using SPSS®20.0. We previously found the
K = 2 clusters presenting different degrees of DNA damage [16] using k-means cluster tests.
Analysis of covariance (ANCOVA) was performed to compare proteomic analysis between
these clusters, adjusting for the confounding variables age, sex, body mass index (BMI),
and energy intake. We also performed multiple regression analysis to evaluate the strength
of the relationship between the variables.

3. Results

Over 151 children and adolescents were recruited for the study, 141 individuals met
the inclusion criteria and 140 had DNA damage results that met our predetermined quality
standard. Two clusters were previously identified differing in DNA damage using k-means
cluster test: cluster 1 (n = 62) had a tail intensity of 5.9% ± 1.2 and cluster 2 (n = 78) had a
tail intensity of 13.8% ± 3.1 [16]. The characteristics of the two groups of DNA damage
regarding age, sex, and sexual maturity rate were not significantly different (Table 1). Sixty-
eight individuals (48.6%) were overweight or obese children and adolescents, without
difference between groups.

Table 1. Characterization of DNA damage clusters *.

Characteristics Cluster 1 (n = 62) Cluster 2 (n = 78) p-Value

Age (years old) 11.4 ± 1.1 11.4 ± 1.1 0.989 3

Sex (n; %) 0.728 4

Male 26 (41.9) 35 (44.9)
Female 36 (58.1) 43 (55.1)

Sexual Maturity Rate (n; %) 1 0.497 4

1 4 (6.4) 10 (12.8)
2 29 (46.8) 32 (41.0)
3 21 (33.9) 27 (34.6)
4 5 (8.1) 8 (10.3)
5 3 (4.8) 1 (1.3)

Nutritional status (n; %) 2 0.332 4

Eutrophic 29 (46.8) 43 (55.1)
Overweight 19 (30.6) 14 (17.9)

Obese 14 (22.6) 21 (26.9)

Energy Intake (kcal/day) 2061.6 ± 664.5 2065.2 ± 848.6 0.978 3

Tail intensity (%) 5.9 ± 1.2 13.8 ± 3.1 <0.001

DHA (mg/dL) 6.2 ± 1.6 5.4 ± 1.3 0.003 3

EPA (mg/dL) 0.6 ± 0.2 0.5 ± 0.1 <0.001 3

* Table adapted from Barros TT et al. (2020). Cluster 1, lower DNA damage, and cluster 2, higher DNA damage. 1 Sexual maturity rate defined
by Tanner Criteria [23]. 2 Classification of BMI/age according to WHO growth curves (2006–2007) [24]. 3 Student’s t-test. 4 Chi-square test.

As shown in our previous article [16], levels of the long-chain PUFA, DHA and EPA,
were greater in cluster 1 (lower DNA damage), compared with cluster 2 (Table 1; Figure 1).

Of 117 plasma proteins analyzed (Supplementary Table S1), 6 were statistically dif-
ferent between the two clusters: cyclin dependent kinase 8 (CDK8), cyclin C (CCNC),
kynureninase (KYNU), phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA),
phosphatidylinositol 3-kinase regulatory subunit 1 (PIK3R1), and protein kinase C beta
(PRKCB) (Table 2). Levels of CDK8–CCNC, PIK3CA–PIK3R1, KYNU, and PRKCB were
lower in the cluster with lower DNA damage (cluster 1) with higher levels of DHA and
EPA. Detailed information about these proteins is described in Table 3.
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Table 2. Protein levels in the two clusters of DNA damage.

Protein (pM) Cluster 1 (n = 62) Cluster 2 (n = 78) p-Value 1

CDK8–CCNC 2265.5 (1989.0; 2468.1) 2399.5 (2093.7; 2708.4) 0.008
KYNU 985.4 (837.7; 1150.2) 1061.8 (906.0; 1207.8) 0.028

PIK3CA–PIK3R1 1332.7 (1132.4; 1523.0) 1424.0 (1228.6; 1614.8) 0.044
PRKCB 24,843.2 (20,265.4; 27,851.2) 25,460.1 (21,616.7; 29,323.1) 0.024

Cluster 1, lower DNA damage, and cluster 2, higher DNA damage. CDK8: Cyclin-dependent kinase 8; CCNC: Cyclin
C; KYNU: kynureninase; PIK3CA: phosphatidylinositol 3-kinase catalytic subunit alpha; PIK3R1: phosphatidylinositol
3-kinase regulatory subunit 1; PRKCB: protein kinase C beta. 1 ANCOVA, adjusted for age, sex, BMI, and energy intake.

Table 3. Statistically significant proteins associated to DNA damage between clusters 1 and 2.

Gene ID Full Name Function Action

CDK8
1024

Cyclindependent
kinase 8

This kinase and its regulatory subunit, cyclin C, are components
of the mediator transcriptional regulatory complex involved in
both transcriptional activation and repression. This kinase
phosphorylates the carboxy-terminal domain of RNA
polymerase II [32–34]

Pro-inflammatory [35,36]

CCNC
892 Cyclin C

Cyclin C interacts with cyclin-dependent kinase 8 and induces
the phosphorylation of RNA polymerase II. The level of mRNAs
for the gene that encodes this protein reaches its peak in the G1
phase of the cell cycle [32,37]

Anti- and pro-inflammatory [38]

KYNU
8942 Kynureninase

KYNU is a pyridoxal-5′-phosphate-dependent enzyme that
catalyzes the cleavage of L-kynurenine and
L-3-hydroxykynurenine. KYNU is involved in biosynthesis of
NAD cofactors from tryptophan through kynurenine pathway [39].

Pro-inflammatory [39,40]

PIK3CA
5290

Phosphatidylinositol
3-kinase catalytic

subunit alpha

PIK3CA is the catalytic subunit of phosphatidylinositol 3-kinase
(PI3K). It uses ATP to phosphorylate phosphatidylinositol,
phosphatidylinositol-4-phosphate, and phosphatidylinositol
4,5-bisphosphate. The gene that encodes this protein has been
found to be oncogenic [41].

Pro-inflammatory [10,41]

PIK3R1
5295

Phosphatidylinositol
3-kinase regulatory

subunit 1

PIK3R1 is the regulatory subunit of phosphatidylinositol
3-kinase, which phosphorylates the inositol ring of
phosphatidylinositol at the 3-prime position.
Phosphatidylinositol 3-kinase plays an important role in
metabolic actions of insulin [41].

Pro-inflammatory [10,41]

PRKCB
5579 Protein kinase C beta

PRKCB is a member of protein kinase C (PKC) family. PKC
family members phosphorylate a wide variety of protein targets
and are involved in diverse cellular signaling pathways. PRKCB
has been involved in many different cellular functions, such as B
cell activation, apoptosis, endothelial cell proliferation, and
intestinal sugar absorption [42].

Pro-inflammatory [43]

Gene Id from National Center of Biotechnology Information in https://www.ncbi.nlm.nih.gov/, accessed on 19 July 2021 [44].

https://www.ncbi.nlm.nih.gov/
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A statistically significant relationship was found between these proteins and DNA
damage using multiple regression analysis. The model with all proteins and confounding
variables explained 13% of the variation in DNA damage, after being adjusted (Table 4).
Regression analysis models were also performed with each protein separately (Table 4),
and the relationships remained statistically significant.

Table 4. Association of proteins and DHA and EPA levels with DNA damage.

Protein (pM) R R Square Adjusted R Square Durbin–Watson p-Value 1

All proteins 0.44 0.19 0.13 1.93 0.002
CDK8–CCNC 0.42 0.18 0.13 1.98 0.001

KYNU 0.42 0.18 0.13 1.94 0.001
PIK3CA–PIK3R1 0.41 0.17 0.12 1.98 0.002

PRKCB 0.42 0.18 0.13 1.97 0.001

1 Multiple regression analysis. Dependent variable: tail intensity; Predictors: proteins, DHA, EPA, energy intake,
BMI, age, and sex.

Figure 2 illustrates the experimental flow of the present study and our first published
one regarding the DNA damage, DHA and EPA clusters [16], and the main results found
in this study.
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4. Discussion

Seemingly separate biological pathways often interact in the functioning of the biolog-
ical system. For example, our previous work found differences in levels of DHA and EPA
and the amount of DNA damage [16]. In this study, we found associations between DHA
and EPA, DNA damage, and six proteins involved in inflammatory responses. Inflamma-
tory responses are often initiated by reactive oxygen species produced by cell metabolism,
or by ionizing radiation, chemical agents, and UVB light, all of which can lead to inflamma-
tion and DNA damage [45]. The interacting responses activate several signaling pathways,
leading to the upregulation of protein expression. Moreover, the overexpression of certain
proteins can further stimulate ROS production [45].

Cyclins and CDKs participate in cell cycle regulation but with different substrates
and functions. The transcription-associated CDKs, including CDK7, CDK8, CDK9, CDK12,
and CDK13, are critical regulators of gene expression [12]. Evidence suggests several
novel functions of these CDKs, including regulation of epigenetic modifications, intronic
polyadenylation, DNA damage responses, and genomic stability [12]. Cyclin-dependent
kinase 8 (CDK8) is a transcription-regulating serine/threonine kinase and a subunit of
CDK module [32,36]. CDK8 is a mediator kinase and operates as a positive regulator of
transcription, acting in the phosphorylation of polymerase II in specific networks, including
cancer signaling pathways [32,36,46]. However, CDK8 also functions in the pathogenesis
of cancer as a mediator of damage-induced tumor-promoting paracrine activities [46]. The
tumor suppressor gene, p53, plays a crucial role in cell cycle control and DNA damage
and is positively regulated by CDK8 [33]. Under stress conditions inducing DNA damage,
p53 acts to block the cell cycle, thereby allowing DNA repair or cellular apoptosis [47,48].
An increased expression of CDK8 occurs in some types of cancer, while DNA damage is
closely linked to the etiology of malignant diseases. Failure in repair is associated with
mutagenesis and the generation of cells with genetic instability.

In the present study, higher levels of CDK8–CCNC complex were identified in the
cluster of higher DNA damage and lower DHA and EPA levels (cluster 2). Since the
individuals of the present study are healthy and present no type of cancer, it seems that
CDK8–CCNC may act as components of the normal cell repair machinery, because CDK8
also phosphorylates several other proteins, many of which are related to DNA repair and
transcription [12,49]. Cyclin C (CCNC), also a component of the repair machinery, is the
regulatory subunit of CDK8 [50]. Stieg et al showed that CCNC also plays a role in response
to oxidative stress and induces apoptosis [38,51]. Others have found that CDK8–CCNC
may play a role in lipid metabolism and are key repressors of lipogenic gene expression, de
novo lipogenesis, and lipid accumulation in mammals [52]. This function of CDK8–CCNC
occurs through site-specific phosphorylation of the nuclear SREBP-1c protein, resulting in
rapid degradation of this central regulator of lipid metabolism [52]. Further studies are
needed to specifically relate DHA, EPA, CDK8–CCNC, and DNA damage.

PIK3CA and PIK3R1 are, respectively, a catalytic and a regulatory subunit of phos-
phatidylinositol 3-kinase (PI3K), a cell membrane signaling component that acts in a variety
of cellular functions, such as survival, growth, metabolism, and chemotaxis [53,54]. In-
creased ROS levels activate the PI3K/Akt and cause a reduction in autophagy occurrence,
leading to proteins and DNA damage [55–57]. In our findings, PIK3CA and PIK3R1 were
significantly higher in the cluster of children with higher DNA damage and lower DHA
and EPA levels (cluster 2). MRE11–RAD50–NBS1 (MRN) mediator complex is increased
in DNA damage and functions by recognizing double-strand breaks. The NBS1 subunit
of MRN interacts with PI3K, stimulating its activity, which could explain its higher levels
in cluster 2 [10]. Other authors found similar associations. Chandra Pal et al. showed a
reduction in UVB-induced inflammation and DNA damage through the inhibition PI3K
signaling [58]. Nguyen et al. found that the inhibition of PI3K/AKT pathway can lead to a
reduction in telomeric DNA damage through the modulation of CD4 T cells [59].

The cluster with lower DNA damage (cluster 1) had higher levels of DHA and EPA in
red blood cells. Denys et al. showed that DHA and EPA replace arachidonic acid (ARA)
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in the composition of membrane phospholipids and suppress IL-2 gene expression by
inhibiting the membrane recruitment of protein kinase C (PKC) and blocking the nuclear
translocation of NF-kB involved in T cell proliferation, interrupting the inflammatory
pathway [60,61], which can reduce DNA damage. Kim et al. demonstrated that treatment
with DHA led to a reduction in PI3K in lung cancer cells [62]. That cell culture study also
showed that addition of DHA induced autophagy by downregulation of the PI3K/AKT
signaling pathway [62]. Apoptosis is a mechanism regulated by the cell cycle in order
to protect cells against DNA damage propagation, preventing the proliferation of cells
with injured DNA [5–8]. Increased apoptosis could explain the increased levels of these
intracellular proteins in the plasma of the participants in our study.

A recent study demonstrated that the PI3K pathway is inhibited by the downregula-
tion of kynureninase (KYNU), which corroborates another finding of our study [40]. KYNU
catalyzes the degradation of its metabolite kynurenine, produced in the first step of trypto-
phan catabolism. Under conditions of inflammation, KYNU levels are elevated [39,63,64].
DNA damage caused by ROS may increase the de novo synthesis of nicotinamide adenine
dinucleotide (NAD) by kynurenine pathway. Poly ADP-ribose polymerase (PARP) uses
NAD produced by this pathway, leading to the depletion of NAD. Increased DNA damage
may stimulate this pathway and deplete NAD stores, thereby inducing cell dysfunction or
cell death [45,65,66]. Gomes et al. triggered inflammation through the administration of
lipopolysaccharide (LPS) to mice, resulting in an increase in kynurenine and tryptophan.
The increase of kynurenine and tryptophan was attenuated by EPA and DHA treatment,
which also contributed to the decrease of inflammatory biomarkers [67]. These results may
explain our findings regarding the increased level of KYNU in the group of higher DNA
damage and lower levels of n-3 PUFA (cluster 2) compared with the cluster 1, demonstrat-
ing a potential protective effect of DHA and EPA against DNA damage mediated in part
by the kynurenine pathway.

Protein kinase C β (PRKCB) was also increased in individuals with higher DNA
damage. ROS production is stimulated by PRKCB, thus leading to an increase in DNA
damage, which can explain the association found in this study [68,69]. Others have
demonstrated that PRKCB regulates cellular signaling pathways involved in the autophagic
process [43]. Patergnani et al. found that the activation of this protein leads to inhibition
of autophagy, suggesting a negative regulation of this pathway. The downregulation of
apoptosis pathways may cause persistence of injuries to the genome through proliferation
of cells with damaged DNA [43]. Davidson et al. showed that a diet rich in n-3 PUFA
and pectin led to a reduced expression of PRKCB and enhanced apoptosis in mice colon
cancer cells in comparison to an n-6 PUFA/pectin diet, demonstrating a protective effect
by suppression of PRKCB expression [70].

This study has some limitations, such as the lack of an additional biomarker to assess
DNA damage. DNA damage was measured in lymphocytes (white blood cells) and cannot
be considered a biomarker of DNA damage for other cells in the whole body. However, the
comet assay is a sensitive method for the assessment of DNA damage and has been widely
used. In addition, our study population is composed of healthy children and adolescents,
and DNA damage (tail intensity values) is considered low [71]. Reproducibility of these
results is appropriate in other medically compromised populations.

In conclusion, these findings show that children and adolescents with higher DNA
damage and lower levels of n-3 PUFAs—DHA and EPA—presented higher levels of
proteins involved in inflammatory mechanisms. The importance of our study lies in the
long-term negative impact of these pro-inflammatory proteins on DNA damage recurrence
in children and adolescents with low DHA and EPA levels. DNA damage is a crucial
component in the development of several diseases [5–8]. Malignant and neurodegenerative
pathologies are recognized by higher rates of DNA damage in association with reduced
levels of repair or autophagy, which causes a persistence of injuries in gene structure and
promotes the proliferation of abnormal cells, characteristics in these diseases [5–8,43,45].
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Further longitudinal studies are needed to validate the expression of proteins and omega-3
PUFA levels in a small cohort.
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