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Abstract: Long-chain omega-3 PUFAs, specifically eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA), are of increasing interest because of their favorable effect on cardiometabolic risk. This
study explores the association between omega 6 and 3 fatty acids intake and cardiometabolic risk in
four African-origin populations spanning the epidemiological transition. Data are obtained from a
cohort of 2500 adults aged 25–45 enrolled in the Modeling the Epidemiologic Transition Study (METS),
from the US, Ghana, Jamaica, and the Seychelles. Dietary intake was measured using two 24 h recalls
from the Nutrient Data System for Research (NDSR). The prevalence of cardiometabolic risk was
analyzed by comparing the lowest and highest quartile of omega-3 (EPA+ DHA) consumption
and by comparing participants who consumed a ratio of arachidonic acid (AA)/EPA + DHA ≤ 4:1
and >4:1. Data were analyzed using multiple variable logistic regression adjusted for age, gender,
activity, calorie intake, alcohol intake, and smoking status. The lowest quartile of EPA + DHA intake
is associated with cardiometabolic risk 2.16 (1.45, 3.2), inflammation 1.59 (1.17, 2.16), and obesity
2.06 (1.50, 2.82). Additionally, consuming an AA/EPA + DHA ratio of >4:1 is also associated with
cardiometabolic risk 1.80 (1.24, 2.60), inflammation 1.47 (1.06, 2.03), and obesity 1.72 (1.25, 2.39). Our
findings corroborate previous research supporting a beneficial role for monounsaturated fatty acids
in reducing cardiometabolic risk.

Keywords: omega 3 fatty acids; omega 6 fatty acids; AA/EPA + DHA ratio; cardiometabolic risk;
African-origin; epidemiologic transition

1. Introduction

Metabolic syndrome or, more recently, cardiometabolic risk, is captured by a cluster of
abnormalities that includes hypertension, central obesity, elevated fasting glucose, and dys-
lipidemia [1]. These abnormalities are associated with a state of chronic inflammation and
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an increased risk of developing both type 2 diabetes and cardiovascular disease (CVD) [2].
Globally, the prevalence of this cluster of cardiometabolic abnormalities is increasing at
alarming rates [3]. In low-middle income countries (LMICs), the increasing prevalence of
both obesity and type 2 diabetes are thought to be attributed to the epidemiological transi-
tion. This describes a complex change in disease patterns based on the interactions between
demographic, economic and sociologic determinants [4]. Behavioral modifications, such as
promoting a healthy diet, and weight reduction have been associated with a reduction in
cardiometabolic risk factors [5]. Although weight control is central to addressing the rise in
cardiometabolic risk factors, the impact of different dietary components (e.g., fatty acids)
remains unclear.

Many studies have focused on the benefits of fiber and mono and polyunsaturated
fatty acids in terms of reducing the cardiometabolic risk [6]. To date, however, the majority
of studies exploring the relationship between dietary intake and cardiometabolic risk have
been conducted in predominantly European-origin populations, with little existing data
exploring this relationship in African-origin populations. To our knowledge, there are
limited studies that assess how these dietary factors affect health outcomes in countries
as they span the epidemiologic transition, as indicated by the human development index
(HDI), a country ranking indicating a country’s overall social and economic achievements.
Therefore, the objective of this study is to examine the associations between daily con-
sumption of dietary fiber, omega 3 and 6 fatty acids, and monounsaturated fatty acids,
and cardiometabolic risk, obesity, and inflammation, in four African-origin populations
spanning the epidemiologic transition.

1.1. Dietary Fiber Intake

Dietary fiber refers to a group of complex carbohydrates that are not hydrolyzed by
digestive enzymes, and thus, are not digested or absorbed in the gut [7]. Dietary fiber
has been shown to directly reduce cardiometabolic risk factors such as blood pressure,
cholesterol, and levels of inflammatory biomarkers [7–9], although the exact mechanism
is not known. The two main categories of dietary fiber are soluble fiber and insoluble
fiber. Both soluble and insoluble fiber are resistant to digestion; however, soluble fiber is
fermented to short-chain fatty acids (SCFA) by colonic bacteria in the large intestine [8].
SCFAs have been shown to suppress proinflammatory mediators, such as TNF-α and
IL-6 [7]. Insulin resistance is due to the upregulation of these inflammatory markers in
insulin-target tissues, such as the liver, adipose tissue, and muscles [10]. Insoluble fiber
improves insulin sensitivity by stimulating the secretion of glucagon-like peptide (GLP-1).
GLP-1 is an incretin hormone that stimulates postprandial release of insulin and protects
beta-cell function [11].

1.2. Polyunsaturated Fatty Acids (PUFAs)

There are two main types of polyunsaturated fatty acids (PUFAs): omega-3 and
omega-6. Omega-6 fatty acids are largely represented by linoleic acid (LA 18:2 ω-6) and
omega-3 fatty acids by alpha-linolenic acid (ALA 18:3 ω-3) [12]. Western diets contain
disproportionate levels of omega-6 PUFAs, notably because of increased consumption
of corn and other foods that are rich in omega-6 PUFAs. The typical western diet has a
ratio of approximately 15/1–16/1, whereas a ratio of 4/1 is recommended for secondary
prevention of cardiovascular disease [13]. Diets high in Omega-6 fatty acids are shown to be
prothrombotic and proinflammatory, which increases cardiometabolic risk [14], although
there is some evidence which indicates that this effect may be muted [15]. A possible
mechanism is that the eicosanoid byproducts of omega-6 PUFAs, prostaglandin PGE2 and
leukotriene LTB4, are potent mediators of thrombosis and inflammation [16].

Long-chain omega-3 PUFAs, specifically eicosapentaenoic acid (EPA) and docosa-
hexaenoic acid (DHA), are of increasing interest because of their favorable effect on car-
diometabolic risk [17]. For example, Stanton et al. conducted a double-blind study which
demonstrated that eating foods enriched in omega-3 resulted in a clinically significant



Nutrients 2021, 13, 2442 3 of 14

reduction in diastolic blood pressure and heart rate [18]. Additionally, studies have found
that long-chain omega-3 fatty acids can improve lipid profiles by decreasing serum triglyc-
erides and LDL levels and by increasing HDL levels [19,20]. Omega-3 PUFAs have also
been shown to decrease platelet aggregation and thrombus formation [21].

1.3. Monounsaturated Fatty Acid Intake

Monounsaturated fatty acids (MUFA) contain a single double bond, as opposed to
polyunsaturated fatty acids which contain two or more double bonds [22]. The main type
of MUFA found in our diet is oleic acid, which is primarily derived from vegetable oil [23].
Prior randomized controlled trials demonstrate the benefits of a high-MUFA diet compared
to a high carbohydrate diet. These studies report improvements in metabolic risk factors
such as glycemic control, serum lipids, and blood pressure in both healthy and diabetic
patients [24–27]. Compared to high carbohydrate diet, consumption of MUFAs is associated
with decreased glycemic load, which reduces the demand for insulin and increases insulin
sensitivity [28]. Additionally, some studies show that oleic acid can reduce blood pressure
by improving cell membrane fluidity and by binding to alpha-2-adrenergic receptors [29].

2. Methods
2.1. Study Population and Ethics Approval

The Modeling the Epidemiologic Transition Study (METS) [25] is a prospective cohort
study of 2500 African-origin participants. Participants were recruited from five countries
as they span the epidemiologic transition, and include: Ghana, Jamaica, South Africa, the
Seychelles and the United States. Using the UN Human Development Index (HDI) 2010,
Ghana is a low HDI country, South Africa is a middle HDI country, Seychelles and Jamaica
are high HDI countries, and the United States is a very high HDI country [30]. However, for
the current analysis, data from South Africa were dropped due to concerns about the quality
of the collected dietary data. Baseline measures were obtained between January 2010 and
December 2011. A detailed description of recruitment, measures and protocols has been
previously published [25]. The protocols were approved by the Institutional Review Board
of Loyola University, Chicago, IL, USA (LU#200038); the Committee on Human Research
Publication and Ethics of Kwame Nkrumah University of Science and Technology, Kumasi,
Ghana; the Research Ethics Committee of the University of Cape Town, South Africa; the
Board for Ethics and Clinical Research of the University of Lausanne, Switzerland; and
the Ethics Committee of the University of the West Indies, Kingston, Jamaica. Written
informed consent was obtained from all participants.

2.2. Anthropometry and Biochemical Measures

Body weight (kg) height (cm), and waist circumference (cm) were measured in light
clothing and no shoes using standardized equipment across all sites. Body mass index
(BMI) was calculated as weight/height2 (kg/m2), and participants were classified as
normal weight (BMI: <25 kg/m2), overweight (BMI > 25 kg/m2 and <30 kg/m2) or obese
(BMI > 30 kg/m2).

Fasting blood samples were drawn first thing in the morning for analysis of glucose,
insulin, lipids, and C-reactive protein (CRP), as previously described [25].

2.3. Dietary Intake

A detailed description of the method for capturing dietary intake has previously
been published [25]. Briefly, each study participant completed two 24-h recalls using the
multiple pass method, separated by 1 week [31–33]. Food identification and portion size
estimation were approximated from photographs of local foods at each site following
methodology developed by the Medical Research Council South Africa [34]. Dietary
analysis was performed using the Nutrient Data System for Research (NDSR; University
of Minneapolis, MN, USA) [31–33]. The primary endpoint measures of interest were total
energy intake and macronutrient composition.
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2.4. Physical Activity Measurement

Physical activity (PA) was assessed using triaxial accelerometers (Actical, Phillips
Respironics, Bend, OR, USA) as previously described [35,36]. Briefly, the Actical monitor
was worn on the right hip over an 8-day period. Using a SAS macro program [37] and the
protocol from the National Center for Health Statistics for the analysis of accelerometry
data in the continuous National Health and Nutrition Examination Survey [38]. Daily
moderate, and vigorous physical activity minutes were used to estimate total daily minutes
of moderate-to-vigorous activity (min/per day).

2.5. Clinical Outcomes

Cardiometabolic disease was defined according to the Adult Treatment Panel III
criteria [39,40], which stipulate that individuals have at least three of the following car-
diometabolic components:

1. Waist circumference > 102 cm in males and >88 cm in females;
2. Elevated blood pressure (≥130/85 mmHg) or receiving treatment;
3. Hypertriglyceridemia (≥150 mg/dL) or receiving treatment;
4. Low high-density lipoprotein (HDL) cholesterol (<40 mg/dL in males and <50 mg/dL

in female) or receiving treatment;
5. Elevated fasting plasma glucose (>100 mg/dL) or receiving treatment.

Inflammation was defined as CRP concentrations > 3.0 mg/L [41,42]. Individuals
with a BMI ≥ 30 kg/m2 were defined as obese [41].

2.6. Statistical Analyses

Participant characteristics and cardiometabolic risk factors were summarized using
means ± standard deviations (SD), after being examined for normality. Proportions were
calculated and presented as n (%) for dichotomous variables. Quartiles of total fiber, soluble
fiber, and insoluble fiber, and summation of EPA and DHA were determined for each site as
well as across all sites based on mean individual dietary intake (g/day). We also calculated
the ratio of arachidonic acid (AA) divided by the sum of EPA and DHA [18]. Quartiles of
the AA/EPA + DHA ratio were determined for each site as well as across all sites. %Total
Energy Consumption (TEC) of monounsaturated acid was determined by subtracting
%TEC of fat by %TEC of saturated, polyunsaturated, and trans fatty acids. Quartiles of
%TEC of monounsaturated fatty acids were determined for each site as well as across
all sites. Comparison of cardiometabolic risks at each site was performed by Pearson’s
chi-squared test with statistical significance noted for p ≤ 0.05. Multi-variable logistic
regression was performed with cardiometabolic outcomes, inflammation, and obesity
after adjusting for age, gender, energy intake, smoking, alcohol intake, and PA. Statistical
analyses were performed using SAS (version 9.4, Manufacturer, Cary, NC, USA).

3. Results

Table 1 presents descriptive characteristics of participants by site. Weight, height, and
therefore, BMI, varied greatly across all sites. Ghanaians were shorter (162.6 ± 8.2 cm), lighter
(63.4 ± 11.5 kg), and had lower body mass indices (24.1 ± 4.5 kg/m2) compared to participants
in all the other sites. Conversely, US participants were the tallest (169.9 ± 8.2 cm), heaviest
(91.9 ± 24.2 kg) and had the highest body mass indices (31.9 ± 8.4 kg/m2). Similarly, Ghana-
ians had the lowest average waist circumference (81.2 ± 12.0 cm), while US participants
were on the highest end (99.6 ± 20.4 cm). Additionally, systolic and diastolic blood pres-
sures were lowest in Ghanaian participants (113.8 ± 14.8 mmHg and 67.1 ± 11.3 mmHg,
respectively) and highest in the USA (122.6 ± 16.3 and 80.5 ± 12.7, respectively).

The US participants had the highest mean values of all biochemical measures of
cardiometabolic risk factors (total cholesterol, triglycerides, blood glucose, and CRP). The
lowest mean values of biochemical measures of cardiometabolic risk were distributed
amongst the lower and mid HDI countries. Participants from Ghana had the lowest total
cholesterol and blood glucose while participants from the Seychelles had the lowest CRP
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level. The highest proportion of current and former smokers were from the US (50.6%)
and the lowest proportion were from Ghana (4.3%). The US had the highest proportion
of participants who consumed alcohol (46.5%) and Ghana had the lowest (13.6%). Not
surprisingly, participants from Ghana reported the highest level of daily moderate-to-
vigorous PA (34.3 ± 22.6 min/day) while US participants reported least amount of daily
activity (23.3 ± 28.9).

Table 1. Descriptive characteristics of study population by site.

Ghana
(n = 487)

Jamaica
(n = 398)

Seychelles
(n = 484)

United States
(n = 444)

Demographics:
Female (n, %) 287 (58.9) 244 (61.3) 261 (53.9) 227 (51.2)

Age 34.2 ± 6.7 34.4 ± 6.1 36.2 ± 5.6 35.3 ± 5.6

Anthropometrics
Weight (kg) 63.4 ± 11.5 75.9 ± 17.1 75.9 ± 17.0 92.2 ± 24.3
Height (cm) 162.6 ± 8.2 168.1 ± 8.9 167.2 ± 8.8 169.9 ± 9.0

BMI (kg/m2) 24.1 ± 4.5 27.0 ± 6.5 27.1 ± 5.6 32.0 ± 8.5
Waist circumference (cm) 81.2 ± 12.0 87.1 ± 14.1 88.7 ± 12.0 99.8 ± 20.4

Systolic blood pressure (mmHg) 113.8 ± 14.8 118.4 ± 14.2 116.2 ± 14.7 122.6 ± 16.3
Diastolic blood pressure (mmHg) 67.1 ± 11.3 71.7 ± 11.3 73.0 ± 10.7 80.5 ± 12.7

Biochemical Measures
Cholesterol (mg/dL) 161.3 ± 35.3 162.8 ± 33.9 170.9 ± 35.4 181.0 ± 38.4

HDL-C (mg/dL) 46.1 ± 14.4 46.5 ± 12.1 47.7 ± 12.8 50.8 ± 14.6
Triglycerides (mg/dL) 81.8 ± 40.2 73.2 ± 36.4 79.8 ± 60.6 97.5 ± 57.5
Blood glucose (mg/dL) 100.3 ± 12.3 92.9 ± 9.3 100.6 ± 29.2 103.2 ± 32.9

C-reactive peptide (mg/dL) 4.7 ± 13.3 4.2 ± 6.3 3.1 ± 4.5 6.0 ± 11.0

Lifestyle habits
Smoker or ex-smoker (n, %) 21 (4.3) 130 (32.7) 106 (21.9) 224 (50.6)

Consumes alcohol (n, %) 66 (13.6) 160 (40.2) 204 (42.2) 206 (46.5)
Moderate to vigorous PA

(min/day) 34.3 ± 22.6 23.2 ± 19.3 28.9 ± 20.9 23.3 ± 28.9

Table 2 summarizes habitual dietary intake at the four sites based on the 24-hr dietary
recall. The US participants consumed the most calorie-dense diet (2294.5 ± 891.8 kcal/day)
compared to the other sites. The US diet was highest in fat (36.6% ± 7.0%), including %
saturated fat (11.8% ± 2.9%), high in protein (15.5% ± 4.1%), and low in carbohydrates
(45.8 ± 9.4%). Interestingly, participants in the Seychelles had the highest protein intake
(18.4 ± 4.7%), reflecting the high quantity of seafood consumed in this island nation. The
Ghanaian diet was lowest in fat (21.6% ± 9.1%) and protein (11.9% ± 4.0%), but high in
carbohydrates (65.8% ± 10.4%).

Participants in the US consumed the lowest quantity of total dietary fiber (142. ± 7.1 g/day)
and insoluble fiber (9.5 ± 5.4 g/day). On the other hand, Ghanaians had the highest intake
of total dietary fiber (24.9 ± 9.7) and insoluble fiber (18.8 ± 7.5 g/day). Overall, 43% of
Ghanaians met the Institute of Medicine (IOM) fiber guidelines (>14 g fiber/1000 kcal/day),
compared to only 9% of Jamaicans, 6% of participants from the Seychelles, and only 3% of
participants in the US [42].

US participants also consumed the lowest amount of EPA + DHA (0.15 ± 2.7 g/day) while
participants in the Seychelles consumed the highest amount of EPA + DHA
(0.69 ± 0.64 g/day). Overall, 52.1% of participants in the Seychelles met the International Soci-
ety for the Study of Fatty Acids and Lipids (ISSFAL) guidelines (≥0.50 g/day of EPA and DHA)
compared to 7.2% of US participants [43]. US participants consumed highest ratio of AA/EPA +
DHA (6.5 ± 25.2 g/day) while participants in Ghana consumed the lowest AA/EPA + DHA
ratio (0.43 ± 1.4). Overall, 7.2% of US participants consumed a ratio of AA/EPA + DHA < 4:1
versus 17.3% of participants in Ghana. In patients with cardiovascular disease, an AA/EPA +
DHA ratio of <4:1 has been associated with a 70% decrease in mortality [14].
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Table 2. Dietary analysis of study population by site.

Ghana
(n = 487)

Jamaica
(n = 398)

Seychelles
(n = 484)

United States
(n = 444) p-Value

Energy (kcal) 1848.8 ± 496.3 1893 ± 582.8 1843.6 ± 593.9 2294.5 ± 891.8 <0.0001

% Energy from fat 21.6 ± 9.1 25.7 ± 6.6 28.4 ± 7.7 36.6 ± 7.0 <0.0001
% Energy from saturated fat 7.1 ± 4.1 9.5 ± 4.0 8.4 ± 2.9 11.8 ± 2.9 <0.0001

% Energy from monounsaturated fat 8.2 ± 3.7 8.5 ± 2.7 9.0 ± 3.0 13.6 ± 3.1 <0.0001
% Energy from polyunsaturated fat 4.6 ± 2.5 5.4 ± 2.1 8.6 ± 3.4 7.9 ± 2.8 <0.0001

% Energy from carbohydrates 65.8 ± 10.4 58.6 ± 8.4 51.3 ± 9.4 45.8 ± 9.4 <0.0001
% Energy from protein 11.9 ± 4.0 14.6 ± 3.9 18.4 ± 4.7 15.5 ± 4.1 <0.0001

Dietary fiber 24.9 ± 9.7 15.9 ± 8.3 13.6 ± 7.2 14.2 ± 7.1 <0.0001
Soluble fiber (g) 6.0 ± 2.8 4.7 ± 2.6 3.9 ± 2.2 4.6 ± 2.4 <0.0001

Insoluble fiber (g) 18.8 ± 7.5 11.2 ± 6.1 9.6 ± 5.4 9.5 ± 5.4 <0.0001

Meeting 14 g fiber/1000 kcal (n, %) 207 (42.5) 35 (8.8) 28 (5.8) 14 (3.2) <0.0001

Omega 3:
Average EPA + DHA g/day 0.65 ± 0.81 0.30 ± 0.40 0.69 ± 0.64 0.15 ± 2.7 <0.0001

EPA + DHA > 0.5 g/day (n, %) 193 (39.6) 76 (19.1) 252 (52.1) 32 (7.2) <0.0001

AA/EPA + DHA ratio
Average AA/EPA + DHA ratio 10.0 ± 9.5 8.3 ± 3.1 1.0 ± 2.7 6.5 ± 25.2 <0.0001

AA/EPA + DHA ratio < 4:1 (n, %) 85 (17.3) 32 (6.4) 31 (6.3) 3 (0.7) <0.0001

Monounsaturated fatty acids:
%TEC 10.0 ± 4.2 10.8 ± 3.1 11.4 ± 3.6 16.8 ± 3.7 <0.0001

>15% TEC (n, %) 66 (13.5) 32 (8.0) 76 (15.7) 309 (69.8) <0.0001

US participants consumed the highest %TEC of monounsaturated fatty acids at
(16.8 ± 3.7 %TEC) while participants in Ghana consumed the least amount of %TEC of mo-
nounsaturated fatty acids (10.0 ± 4.2%TEC). Overall, 69.8% of US participants exceeded the
American Heart Association’s guidelines to consume <15% of TEC from MUFA compared
to only 8% of participants in Jamaica [44].

3.1. Cardiometabolic Risk across the Epidemiologic Transition

Figure 1 compares cardiometabolic risk by site. Participants in the US had the greatest
prevalence of cardiometabolic risk factors. Overall, 33% of US participants had 3/5 car-
diometabolic risk factors, 41% had inflammation defined as a CRP level > 3, and 52% were
obese. Participants in Jamaica had the lowest percentage of participants who met 3/5 car-
diometabolic risk factors. However, while the prevalence of cardiometabolic risk was low in
Jamaica, 32% of participants presented with inflammation and 31% were obese. Ghanaians
had lowest percentage of participants with inflammation (21%) and obesity (9.9%).

Nutrients 2021, 13, x FOR PEER REVIEW 7 of 14 
 

 

in Jamaica, 32% of participants presented with inflammation and 31% were obese. Gha‐

naians had lowest percentage of participants with inflammation (21%) and obesity (9.9%). 

 

Figure 1. Comparison of prevalence for participants with at least 3/5 cardiometabolic risk factors 

by site. 

3.2. Dietary Fiber Analysis 

Table 3, the adjusted multivariate logistic regression models demonstrate an inverse 

relationship between dietary fiber intake and cardiometabolic risk. After adjusting for age, 

gender, energy intake, physical activity, smoking, and alcohol use, it is established that 

increasing total fiber, soluble fiber, and insoluble fiber intakes are associated with lower 

cardiometabolic  risk,  inflammation, and obesity. Participants who met 3/5 cardiometa‐

bolic risk factors were 1.96 times (1.25, 3.06) as likely to be in the lowest quartile of total 

fiber  intake, 1.83 times  (1.17, 2.84) as  likely to be  in the  lowest quartile of soluble  fiber 

intake, and 1.80 times (1.16, 2.79) as likely to be in the lowest quartile of insoluble fiber 

intake compared to participants in the highest quartile of fiber intake. Additionally, par‐

ticipants with elevated CRP were 1.70 times (1.28, 2.43) as likely to be in the lowest quartile 

of total fiber intake and 1.46 times (1.03, 2.07) as likely to be in the lowest quartile of insol‐

uble fiber. Finally, participants in the lowest quartile of total, soluble, and insoluble fiber 

were more likely to be obese; however, these associations were no longer statistically sig‐

nificant after controlling for site. 

Table 3. Adjusted odds ratios for cardiometabolic risk based on quartiles of total fiber, soluble fiber, and insoluble fiber 

intake in four countries across the epidemiological transition. 

Total Fiber Analysis 

  Not Controlled for Site  Controlled for Site 

Quartiles of Total   

Fiber 

3/5 CM Risk Fac‐

tors 
Inflammation  Obesity 

3/5 CM Risk Fac‐

tors 
Inflammation  Obesity 

0.0–10.34 g (Q1)  1.96 (1.25, 3.06) *  1.70 (1.18, 2.43) *  2.76 (1.90, 4.02) *  1.43 (0.85, 2.42)  1.27 (0.84, 1.93)  1.05 (0.68, 1.62) 

10.34–15.05 g (Q2)  1.60 (1.05, 2.42) *  1.67 (1.20, 2.32) *  2.52 (1.78, 3.57) *  1.40 (0.86, 2.25)  1.37 (0.95, 1.99)  1.23 (0.82, 1.83) 

15.05–22.03 (Q3)  0.97 (0.63, 1.49)  1.21 (.87, 1.67)  1.62 (1.14, 2.29) *  .86 (0.54, 1.36)  1.07 (0.76, 1.51)  1.01 (0.69, 1.48) 

>22.03(Q4)  Reference  Reference    Reference    Reference    Reference    Reference 

Soluble Fiber Analysis 

Quartiles of Soluble 

Fiber 
3/5 CM Risk Fac‐

tors 
Inflammation  Obesity 

3/5 CM Risk Fac‐

tors 
Inflammation  Obesity 

0.0–3.00 g (Q1)  1.83 (1.17, 2.84) *  1.25 (0.88, 1.80)  1.85 (1.28, 2.67) *  1.59 (0.98, 2.56)  1.08 (0.74, 1.58)  1.13 (0.75, 1.67) 

3.00–4.34 g (Q2)  1.37 (0.90, 2.08)  1.56 (1.12, 2.16)  1.78 (1.26, 2.51)  1.19 (0.76, 1.87)  1.37 (0.97, 1.93)  1.15 (0.79, 1.67) 

4.34–6.00 (Q3)  1.16 (0.77, 1.76)  1.08 (0.78, 1.49)  1.55 (1.11, 2.16)  1.05 (0.68, 1.61)  1.01 (0.72, 1.40)  1.28 (0.90, 1.84) 

>6.00 (Q4)  Reference    Reference    Reference    Reference    Reference    Reference   

Figure 1. Comparison of prevalence for participants with at least 3/5 cardiometabolic risk factors by site.
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3.2. Dietary Fiber Analysis

Table 3, the adjusted multivariate logistic regression models demonstrate an inverse
relationship between dietary fiber intake and cardiometabolic risk. After adjusting for age,
gender, energy intake, physical activity, smoking, and alcohol use, it is established that
increasing total fiber, soluble fiber, and insoluble fiber intakes are associated with lower
cardiometabolic risk, inflammation, and obesity. Participants who met 3/5 cardiometabolic
risk factors were 1.96 times (1.25, 3.06) as likely to be in the lowest quartile of total fiber
intake, 1.83 times (1.17, 2.84) as likely to be in the lowest quartile of soluble fiber intake,
and 1.80 times (1.16, 2.79) as likely to be in the lowest quartile of insoluble fiber intake
compared to participants in the highest quartile of fiber intake. Additionally, participants
with elevated CRP were 1.70 times (1.28, 2.43) as likely to be in the lowest quartile of total
fiber intake and 1.46 times (1.03, 2.07) as likely to be in the lowest quartile of insoluble fiber.
Finally, participants in the lowest quartile of total, soluble, and insoluble fiber were more
likely to be obese; however, these associations were no longer statistically significant after
controlling for site.

Table 3. Adjusted odds ratios for cardiometabolic risk based on quartiles of total fiber, soluble fiber, and insoluble fiber
intake in four countries across the epidemiological transition.

Total Fiber Analysis

Not Controlled for Site Controlled for Site

Quartiles of
Total Fiber

3/5 CM Risk
Factors Inflammation Obesity 3/5 CM Risk

Factors Inflammation Obesity

0.0–10.34 g (Q1) 1.96 (1.25, 3.06) * 1.70 (1.18, 2.43) * 2.76 (1.90, 4.02) * 1.43 (0.85, 2.42) 1.27 (0.84, 1.93) 1.05 (0.68, 1.62)

10.34–15.05 g (Q2) 1.60 (1.05, 2.42) * 1.67 (1.20, 2.32) * 2.52 (1.78, 3.57) * 1.40 (0.86, 2.25) 1.37 (0.95, 1.99) 1.23 (0.82, 1.83)

15.05–22.03 (Q3) 0.97 (0.63, 1.49) 1.21 (.87, 1.67) 1.62 (1.14, 2.29) * .86 (0.54, 1.36) 1.07 (0.76, 1.51) 1.01 (0.69, 1.48)

>22.03(Q4) Reference Reference Reference Reference Reference Reference

Soluble Fiber Analysis

Quartiles of
Soluble Fiber

3/5 CM Risk
Factors Inflammation Obesity 3/5 CM Risk

Factors Inflammation Obesity

0.0–3.00 g (Q1) 1.83 (1.17, 2.84) * 1.25 (0.88, 1.80) 1.85 (1.28, 2.67) * 1.59 (0.98, 2.56) 1.08 (0.74, 1.58) 1.13 (0.75, 1.67)

3.00–4.34 g (Q2) 1.37 (0.90, 2.08) 1.56 (1.12, 2.16) 1.78 (1.26, 2.51) 1.19 (0.76, 1.87) 1.37 (0.97, 1.93) 1.15 (0.79, 1.67)

4.34–6.00 (Q3) 1.16 (0.77, 1.76) 1.08 (0.78, 1.49) 1.55 (1.11, 2.16) 1.05 (0.68, 1.61) 1.01 (0.72, 1.40) 1.28 (0.90, 1.84)

>6.00 (Q4) Reference Reference Reference Reference Reference Reference

Insoluble Fiber Analysis

Quartiles of
Insoluble Fiber

3/5 CM Risk
Factors Inflammation Obesity 3/5 CM risk

Factors Inflammation Obesity

0.0–6.99 g (Q1) 1.80 (1.16, 2.79) * 1.46 (1.03, 2.07) * 2.68 (1.86, 3.86) * 1.25 (0.74, 2.09) 1.05 (0.70, 1.57) 1.01 (0.66, 1.55)

6.99–10.57 g (Q2) 1.52 (1.00, 2.30) * 1.59 (1.15, 2.20) * 2.32 (1.65, 3.28) * 1.24 (0.77, 1.99) 1.23 (0.85, 1.78) 1.06 (0.71, 1.58)

10.57–16.29 (Q3) 1.01 (0.65, 1.56) 1.04 (0.75, 1.45) 1.54 (1.08, 2.18) * 0.95 (0.60, 1.51) 0.91 (0.64, 1.29) 1.00 (0.67, 1.46)

>16.29 (Q4) Reference Reference Reference Reference Reference Reference

Multivariate model adjusted for age, gender, energy intake, physical activity, alcohol intake, and smoking. * p ≤ 0.05. CM = cardiometabolic.

3.3. Omega-3 and Omega-6 Fatty Acid Analysis

The prevalence of cardiometabolic risk was analyzed by chi-square analysis comparing
the lowest quartile of EPA+ DHA (Q1) with the highest quartile (Q4), and by comparing
participants who consumed an AA/EPA + DHA ratio of ≤4:1 and >4:1. The trend for the
lower prevalence of cardiometabolic risk factors with increased intake of EPA and DHA
and a total AA/EPA + DHA ratio of ≤4:1 was seen for cardiometabolic conditions in some
sites. However, it should be noted that differences in the prevalence of cardiometabolic risk
factors and EPA and DHA intake and an AA/EPA + DHA ratio ≤ 4:1 and >4:1 were modest,
with statistical significance achieved only in the prevalence of increased cardiometabolic
risk in the Seychelles based on an AA/EPA + DHA ratio of ≤4:1 and >4:1.
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In Table 4, the adjusted multivariate logistic regression models demonstrate an inverse
relationship between EPA + DHA intake and cardiometabolic risk. After adjusting for
age, gender, energy intake, physical activity, smoking, and alcohol, increasing EPA + DHA
intake is associated with protection from higher cardiometabolic risk (2.16 (1.45, 3.20)),
inflammation (1.59 (1.17, 2.16)), and obesity (2.06 (1.50, 2.82)). However, these associations
are no longer seen after controlling for site. The adjusted multivariate logistic regression
models demonstrate how an AA/EPA + DHA ratio of ≤4:1 also protects against increased
cardiometabolic risk (1.80 (1.24, 2.60)), inflammation (1.47 (1.06, 2.03)), and obesity (1.72
(1.25, 2.39)). However, these associations are no longer seen after controlling for site.

Table 4. Adjusted odds ratios for cardiometabolic risk based on the AA/EPA + DHA ratio of 4:1 intake in four countries
across the epidemiological transition.

Not Controlled for Site Controlled for Site

AA/EPA + DHA 4:1 3/5 CM Risk
Factors Inflammation Obesity 3/5 CM Risk

Factors Inflammation Obesity

≤4:1 Reference Reference Reference Reference Reference Reference

>4:1 1.80(1.24, 2.60) * 1.47 (1.06, 2.03) * 1.72 (1.25, 2.39) * 1.03 (0.69, 1.55) 1.04 (0.74, 1.47) 0.85 (0.60, 1.22)

Quartiles of EPA + DHA 3/5 CM Risk
Factors Inflammation Obesity 3/5 CM Risk

Factors Inflammation Obesity

0.0–0.07 g (Q1) 2.16(1.45, 3.20) * 1.59 (1.17, 2.16) * 2.06(1.50, 2.82) * 1.05 (0.65, 1.70) 0.98 (0.69, 1.41) 0.80 (0.54, 1.18)

0.07–0.23 g (Q2) 1.30 (0.85, 1.97) 1.08 (0.78, 1.49) 1.20 (0.87, 1.67) 0.83 (0.52, 1.34) 0.82 (0.58, 1.15) 0.72 (0.49, 1.04)

0.23–0.58 (Q3) 1.23 (0.80, 1.87) 0.83 (0.60, 1.15) 1.04 (0.75, 1.44) 1.19 (0.77, 1.85) 0.74 (0.53, 1.03) 0.85 (0.60, 1.21)

>0.58 (Q4) Reference Reference Reference Reference Reference Reference

Multivariate model adjusted for age, gender, energy intake, physical activity, alcohol intake, and smoking. * p≤ 0.05. CM = cardiometabolic.

3.4. The Association of Monounsaturated Fatty Acids and Cardiometabolic Risk across the
Epidemiological Transition

The prevalence of cardiometabolic risk factors was analyzed by chi-square analysis
comparing the lowest quartile of %TEC monounsaturated fatty acids (Q1) with the highest
quartile (Q4), and by comparing participants who consumed <15% TEC of monounsatu-
rated fatty acids and ≥15% TEC. The trend for the lower prevalence of cardiometabolic risk
with increased %TEC of monounsaturated fatty acid intake and ≥15% TEC of monounsat-
urated fatty acids was seen at some sites.

In Table 5, the adjusted multivariate logistic regression models demonstrates no
significant association between higher cardiometabolic risk, obesity, and inflammation
when comparing quartiles of %TEC of MUFA or when comparing a diet with %TEC of
MUFA ≥ 15% or <15%.

Table 5. Adjusted odds ratios for cardiometabolic risk based on %TEC monounsaturated fatty acids <15% and >15% in four
countries across the epidemiological transition.

Not Controlled for Site Controlled for Site

% of MUFA Intake 3/5 CM Risk
Factors Inflammation Obesity 3/5 CM Risk

Factors Inflammation Obesity

<15% 0.52 (0.38, 0.70) 0.72 (0.57, 0.91) 0.50 (0.39, 0.65) 1.25 (0.86, 1.82) 0.97 (0.72, 1.31) 1.12 (0.81, 1.54)

≥15% Reference Reference Reference Reference Reference Reference

Not Controlled for Site Controlled for Site

Quartile of %TEC
MUFA Intake

3/5 CM Risk
Factors Inflammation Obesity 3/5 CM Risk

Factors Inflammation Obesity

0.0–8.9 0.39 (0.26, 0.60) 0.51 (0.36, 0.71) 0.31 (0.21, 0.45) 1.08 (0.64, 1.81) 0.80 (0.54, 1.19) 0.94 (0.61, 1.45)

8.9–11.8 0.42 (0.28, 0.63) 0.70 (0.51, 0.95) 0.47 (0.34, 0.65) 1.16 (0.72, 1.88) 1.04 (0.72, 1.50) 1.13 (0.76, 1.68)

11.8–15.30 0.60 (0.42, 0.86) 0.74 (0.55, 1.00) 0.82 (0.61, 1.11) 1.15 (0.77, 1.72) 0.97 (0.70, 1.36) 1.54 (1.08, 2.20)

>15.3 Reference Reference Reference Reference Reference Reference
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4. Discussion

In our study, we found a heterogeneous pattern of cardiometabolic risk factors in
the four populations spanning the epidemiologic transition. Despite this, the prevalence
of cardiometabolic risk factors is lowest in Ghana (lowest HDI) and highest in the US
(highest HDI) compared to the other study. The data also suggest that LMICs may be
experiencing a rise in obesity rates and nutrition-related noncommunicable diseases by
adopting a more western-style diet. Indeed, as populations become more affluent, both
the total calories consumed as well as the macronutrient component changes, with the
consumption of inexpensive ultra-processed foods. A systemic evaluation conducted by
the Bill and Melinda Gates foundation found that a suboptimal diet is responsible for more
deaths globally than other risk factors, including tobacco smoking [45]. While significant
emphasis has been placed on promoting diets that are low in sodium, sugar, and fat, the
assessment shows that diets low in whole grains, fruits, nuts and seeds, vegetables, and
omega-3 fatty acids account for more than 2% of global deaths [46].

4.1. Dietary Fiber Intake

When comparing the prevalence of cardiometabolic risk between participants con-
suming either the lowest or highest daily total, soluble, and insoluble dietary fiber across
all sites, a significant association is seen for higher cardiometabolic risk, inflammation (indi-
cated by elevated CRP levels), and obesity in the participants with the lowest total, soluble,
and insoluble fiber intake. The only exception is the association between inflammation
and soluble fiber intake. This study corroborates previous studies that demonstrate how
dietary fiber can be protective against cardiometabolic risk [7–9]. Similarly to fiber, meat
and saturated fats are not completely digested and are fermented in the gut to produce
short chain fatty acids. However, the metabolism of meats and saturated fats produces
inflammatory and pro-neoplastic nitrogenous metabolites, such as nitrosamines, phenolics,
and p-cresol [47]. However, high fiber diets can counteract these inflammatory and neoplas-
tic pathways [48]. The Institute of Medicine (IOM) recommends consuming at least 14 g of
fiber per day, and the US Department of Agriculture (USDA) recommends that women
consume at least 22 g of fiber per day and that men consume 38 g/d [42]. While 42.2% of
participants in Ghana met the 14 g/day cut-off recommendation by the IOM, less than 10%
of participants in the Seychelles, Jamaica, and the United States met these guidelines.

4.2. Omega-3 and Omega-6 Fatty Acid Intake

A significant association is seen between higher cardiometabolic risk, inflammation
(indicated by elevated CRP levels), and obesity in the participants consuming the low-
est quantity of EPA and DHA versus participants in the highest quartile. Our study
supports previous studies that demonstrate the beneficial effects of EPA and DHA in
reducing the risk of cardiometabolic outcomes [18–21]. Unfortunately, in most countries
and regions, the intake of omega-3 fatty acids is substandard [49]. ISSFAL recommends
consuming ≥ 0.50 g/day of EPA and DHA [50], while the American Heart Association
(AHA) recommends that patients with coronary artery disease consume 1 g of EPA and
DHA per day and that patients with hypertriglyceridemia consume 2–4 g of EPA and DHA
per day [51]. In the Seychelles, 52.2% of participants met these guidelines. However, across
the other sites, most participants did not meet the ISSFAL guidelines. In fact, only 7.2% of
participants in the United States consumed the recommended amount of EPAH and DHA.

Across all sites, a significant association is seen between cardiometabolic risk, in-
flammation, and obesity in the participants consuming an AA/EPA + DHA ratio of >4:1.
Only 0.7% of US participants consumed a diet with an AA/EPA + DHA ratio < 4:1. In
Ghana, 17.2% of participants consumed a diet with an AA/EPA + DHA ratio < 4:1. The
increased omega-6 fatty acid consumption in western diets can be attributed to high intake
of processed foods and the increased use of corn or sunflower oil (which are rich in omega-6
fatty acids) [52]. Additionally, animal feed is now predominantly grain instead of grass
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in many countries. This has caused an increase in the level of arachidonic acid, a type of
omega-6 fatty acid, in meat, eggs, and dairy products [53].

4.3. Monounsaturated Fatty Acid Intake

When comparing the prevalence of cardiometabolic risk between participants con-
suming either the lowest and highest %TEC of monounsaturated fatty acids across all sites,
no significant association was seen with cardiometabolic risk, inflammation, and obesity.
Similarly, no significant association was seen with cardiometabolic risk, inflammation,
and obesity when comparing participants who consumed %TEC of monounsaturated
fatty acids greater than or less than 15%. Current studies investigating the relationship
between MUFA intake and cardiometabolic risk report inconsistent findings [54,55]. A
possible explanation for the discrepancy is that the source of MUFA is often not specified.
In Western diets, MUFA is mainly derived from animal-based sources, such as dairy and
meat. Animal-based sources of MUFA are higher in saturated fats compared to plant-based
sources, such as olive oil, nuts, or avocado, which could be confounding the results [56].
While plant-based sources of MUFA have been associated with health benefits, health
organizations such as the United States Department of Agriculture and the American
Diabetes Association do not provide specific dietary recommendations for MUFA intake
for healthy individuals or for individuals with chronic conditions. The current MUFA
recommendations vary between 12% and 25% of TEC, equaling a remarkable range of
~30–70 g/day for a 2500 kcal diet [57].

4.4. Significance of Site

After we controlled our analysis for country of origin, the association between dietary
factors and cardiometabolic risk was no longer significant. This could be attributed to the
disproportionate number of participants in the US who have cardiometabolic risk (33.3%)
compared to <10% of the population at the other three sites. Overall, the prevalence of
metabolic risk factors, such as waist circumference and cholesterol levels, is much lower in
Ghana (lowest HDI) compared to the US (highest HDI), while sites with a medium HDI fall
between those observed in Ghana and the United States. This underlies large differences in
other risk factors that are highly related to mean BMI across the included countries.

Despite these trends, the overall quality of diet across all of the sites remains poor. The
epidemiologic transition has caused a shift in dietary patterns resulting in an increase in
the quantity and a decline in the quality of macronutrients, mainly fats and carbohydrates.
In many of these countries, traditional foods that are rich in whole grains and dietary fiber
are being replaced by highly refined carbohydrates [57]. In addition, there has been an
increase in the consumption of refined sugars and sugar-sweetened beverages, along with
animal products [58].

Popkin et al. conducted a study to analyze trends in obesity and waist circumference
across low-and-middle income countries, from 1990 to 2010, among adults aged 19–49. The
study found an increase in BMI at each percentile in most countries, particularly at the
95th percentile. For example, in 1993, the BMI cut-off for the 95th percentile for women
aged 30 years was 28.7. However, in 2008, the BMI cut-off for the 95th percentile was
31.3 [59]. In addition to an increase in BMI cut-offs, the study found an overall increase
in waist circumference at each BMI cut-off. Many studies show an association between
waist circumference and an increased cardiometabolic risk [60]. The nutrition transition
has resulted in dietary changes that can stray away from traditional healthful diets and
towards a pattern of highly processed and refined foods. The data demonstrate the need
to develop policy at a global level to improve education and access to nutritious foods,
and to promote the avoidance of over nutrition (particularly sugar beverages), in order to
slow down the high rates of obesity and the tremendous societal health and economic costs
associated with it.
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4.5. Limitations

This study represents one of the few studies that examines cardiometabolic risk across
multiple international sites spanning the epidemiological transition in people of African
origin. This was achieved using central training of research staff, standardized question-
naires, protocols, analysis and methodology to allow us to conduct these comparisons
across all sites. However, we recognize that there are limitations to our study. Firstly,
dietary information was dependent on two self-reported 24-h recalls. Twenty-four-hour
recalls frequently result in an underestimation of the portion size and do not account for
variations in diet across many days and seasons [61]. Additionally, how we quantified
dietary data differs from other studies. For example, studies that looked into the association
between omega-6 and omega-3 fatty acids and cardiometabolic risk use the omega-3 index
as the primary outcome. The omega-3 index is calculated as the sum of EPA and DHA
expressed as a percentage of the total fatty acids in erythrocyte membranes [18]. The
omega-3 index correlates with the level of EPA and DHA in cardiac tissue [62], and is a
predictor of cardiovascular events and all-cause mortality [19,63,64]. Lastly, within each
site, the sample size was relatively small, and not necessarily representative of that country
as a whole. The study has a fairly narrow age range and does not include individuals
over the age of 50. While this allows for direct comparison across sites, individuals older
than 50 are more likely to have cardiometabolic disease and, generally, higher levels of
cardiovascular risk factors.

5. Conclusions

Diet has become one of the most important risk factors to reduce the global burden of
noncommunicable chronic diseases. The purpose of our study is to further elucidate our
understanding of which dietary nutrients are commonly, or even universally, considered
important. Given the likely benefits of fiber and omega-3 fatty acids shown in this study,
further concerted effort, through multi-sectoral interventions and policy, should be made
to improve availability and access to foods that are rich in these nutrients and to adjust
food-based guidelines so that they are specific to a given country or region.
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