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Abstract: Diabetic retinopathy, which was primarily regarded as a microvascular disease, is the
leading cause of irreversible blindness worldwide. With obesity at epidemic proportions, diabetes-
related ocular problems are exponentially increasing in the developed world. Oxidative stress due to
hyperglycemic states and its associated inflammation is one of the pathological mechanisms which
leads to depletion of endogenous antioxidants in retina in a diabetic patient. This contributes to a
cascade of events that finally leads to retinal neurodegeneration and irreversible vision loss. The
xanthophylls lutein and zeaxanthin are known to promote retinal health, improve visual function
in retinal diseases such as age-related macular degeneration that has oxidative damage central in
its etiopathogenesis. Thus, it can be hypothesized that dietary supplements with xanthophylls that
are potent antioxidants may regenerate the compromised antioxidant capacity as a consequence
of the diabetic state, therefore ultimately promoting retinal health and visual improvement. We
performed a comprehensive literature review of the National Library of Medicine and Web of Science
databases, resulting in 341 publications meeting search criteria, of which, 18 were found eligible for
inclusion in this review. Lutein and zeaxanthin demonstrated significant protection against capillary
cell degeneration and hyperglycemia-induced changes in retinal vasculature. Observational studies
indicate that depletion of xanthophyll carotenoids in the macula may represent a novel feature
of DR, specifically in patients with type 2 or poorly managed type 1 diabetes. Meanwhile, early
interventional trials with dietary carotenoid supplementation show promise in improving their levels
in serum and macular pigments concomitant with benefits in visual performance. These findings
provide a strong molecular basis and a line of evidence that suggests carotenoid vitamin therapy
may offer enhanced neuroprotective effects with therapeutic potential to function as an adjunct
nutraceutical strategy for management of diabetic retinopathy.

Keywords: diabetic retinopathy; macular xanthophylls; carotenoids; macular pigment; macular
pigment optical density; MPOD; lutein; zeaxanthin; meso-zeaxanthin; diabetes; diabetic retinopathy;
retinal neurodegeneration; neuroprotection

1. Introduction

Although half a billion individuals are estimated to be living with this condition
globally, diabetes remains severely underdiagnosed, with one in every two individuals
living with the disease unaware [1–3]. It is further projected that the prevalence of diabetes
is likely to increase to 700 million by the year 2045 [2–4]. The systemic disease of endocrine
origin leads to progressive damage throughout the body with all end-organs suffering
damage [5–10]. Chronic hyperglycemia causes irreversible damage to all parts of the eye.
Both the anterior segment structures, cornea, conjunctiva, and lens as well as the posterior
segment become damaged [6,11,12]. In the posterior segment, particularly the retina in an
individual shows pathognomonic damage, leading to diabetic retinopathy (DR) [6,7,11,12].
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The prevalence of diabetes mellitus (DM) has reached epidemic proportions [4,12]. In-
creased life expectancy and the chronic nature of diabetes with no “true” cure has led to
and will continue being a massive health care and socio-economic burden [2,3,5,13,14].
Consequently, it is expected that annual global expenditures will exceed USD 825 billion
by the year 2030 [15].

The natural history of DR features retinal capillary degeneration and subsequent
significant visual impairment [16], when poorly managed, causes vasoproliferative disease
in retina and/or edema in the central macular region; these complications may arise
consecutively or simultaneously [11,12]. Approximately one in three individuals with
diabetes is affected by retinopathy [4–7]. The severity of DR is associated with both with
the duration of diabetes and glycemic control [17,18]. An estimated 4.1 million individuals
in the US are afflicted with DR, of which approximately 899,000 have vision-threatening
retinopathy [1]. It is estimated globally that 146 million adults have DR with a projected
increase to 191 million by 2030 [2,3,14]. The vision loss due to hyperglycemia-induced
retinopathy is irreversible as the retinal tissue does not regenerate. However, the damage
due to diabetes and DR is preventable, and thus allows for a potential of improvement in
the quality of life, decrease in susceptibility to further complications, and reducing health
care expenditures [4,7].

Hyperglycemia-induced damage to other parts of the body has been shown to correlate
with the severity of DR, including peripheral neuropathy, nephropathy and cardiovascular
complications [5–10]. It is well known that chronic hyperglycemic states promote oxidative
damage particularly in highly susceptible regions with corresponding high metabolic
demands. The extremely metabolically active retinal tissue is particularly susceptible to
oxidative damage due to constant exposure to light [19,20]. Recent work strongly implicate
that neurodegeneration in retina is proliferated by pro-oxidative and pro-inflammatory
mechanisms prior to indications of clinical retinopathy [5,7,10,18,20–24]. Inherent defense
mechanisms against oxidative damage in the retina involve constant neutralization of
reactive oxygen species (ROS). Congruously, both endogenous and exogenous antioxidants
are essential in maintaining cellular redox homeostasis [20,25,26]. Quite appropriately,
it is postulated that the interdependence between prolonged hyperglycemia, oxidative
stress, and changes in redox homeostasis is a key factor contributing to the pathogenesis of
diabetic retinopathy [19,25].

More than 750 naturally occurring phytochemical carotenoids have been identified
and characterized, of which, approximately 20 types are present in serum and tissue [27–30].
Among them, the only dietary carotenoids which accumulate in the human eye are lutein
and zeaxanthin [27,30]. They belong to the xanthophyll class of carotenoids which contain
oxygen in their polyene chain structure and are more lipophilic in comparison with the
other subgroup of carotenoids known as carotenes, which do not contain oxygen and are
purely hydrocarbons [27,31]. Three isomeric xanthophyll carotenoids—lutein, zeaxanthin,
and meso-zeaxanthin (Figure 1)—are believed to possess significant antioxidant and anti-
inflammatory properties in the retina and have been shown to benefit in prevention of
age-related macular degeneration (AMD) [25,27,32–35]. Oxidative insult contributing to
retinal neurodegeneration is common to the pathogenesis of both DR and AMD. Hence, it
is hypothesized that xanthophyll carotenoids may be clinically beneficial in management
of DR.

To the best of our knowledge, the neuroprotective potential afforded by these xan-
thophylls in clinical management of DR has not been thoroughly reviewed. The primary
objective of this systematic review focuses on summarizing the evidence from animal
models, clinical observational studies, and randomized controlled trials that have reported
on the putative relationship between DR and carotenoids lutein, zeaxanthin, and/or meso-
zeaxanthin. Thus, the goal of this systematic review is to determine the degree of clinical
benefits of carotenoids as an adjunct therapy for the management of DR.
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Figure 1. Chemical structures of isomeric xanthophyll carotenoids lutein, zeaxanthin, and
meso-zeaxanthin.

Retinal Changes in Diabetics

Retinal changes in diabetes are graded by fundoscopic lesions as outlined by the
International Clinical Disease Severity Scale [12,13,16,36–38]. Large-scale clinical trials
established the severity classification system (Table 1) that is currently used: The Early
Treatment Diabetic Retinopathy Study (ETDRS) and the Wisconsin Epidemiological Study
of DR (WESDR) [16,37–39]. Non-proliferative diabetic retinopathy (NPDR) is seen as
microvascular abnormalities limited to the retinal surface. Additionally, some other fea-
tures visible are intraretinal hemorrhages (“dot and blot” shaped), microaneurysms, hard
exudates, and intraretinal microvascular abnormalities (i.e., tortuous sinus shunt ves-
sels) [37–39]. The degeneration of capillaries and apoptosis in the endothelium are an
outcome of progressive oxidative damage in this stage that leads to capillary nonperfusion
and vascular occlusion leading to retinal ischemia/hypoxia. This compromises oxygena-
tion and further aggravates oxidative and pro-inflammatory processes in the extremely
metabolically-active retina [17,18,36]. These events promote angiogenesis due to the release
of vascular endothelial growth factor (VEGF) [17,18,36,40]. The manifestation of cotton
wool spots represents hypoxic retina that leads to neurodegeneration [18]. Subsequent
retinal neovascularization with aberrant angiogenesis marks disease progression to pro-
liferative diabetic retinopathy (PDR). The new blood vessel formation is an ineffectual
attempt to re-establish vascular perfusion and restore homeostasis. However, the response
mechanism itself paradoxically further threatens function and viability of the retina ensuing
leakage or hemorrhaging into the vitreous cavity, which can lead to retinal detachment and
irreversible vision loss [12,13,16,36].

Structural and cellular changes to the retinal architecture enhance permeability, con-
tributing to the break in the blood–retinal barrier that leads to diabetic macular edema
(DME); the primary cause of significant vision loss in DR [17,36]. Signs of overt edema
are seen during fundoscopic exam. However, subtle edema, evidenced by thickening
of basement membrane and presence of exudates, is best visible using optical coherence
tomography (OCT) [41,42]. It is extremely important to note, the onset of DME can occur
at any stage of DR [5,36].
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Table 1. International Clinical Diabetic Retinopathy Disease Severity Scale [37].

Disease Severity Scale Clinical Features

No apparent retinopathy No fundus abnormalities present

Mild NPDR Microaneurysms only

Moderate NPDR More than just MAs, but less than severe NPDR

Severe NPDR
Any of the following: (with no signs of PDR) extensive DBH in

each of 4 quadrants (≥20/quadrants), venous beading in at least
2 quadrants, and/or IRMA in at least 1 quadrant

PDR One or more of the following: neovascularization, tractional
retinal detachment, or vitreous/preretinal hemorrhage

Abbreviations: NPDR, non-proliferative diabetic retinopathy; MA, microaneurysms; PDR, proliferative diabetic
retinopathy; DBH, dot blot hemorrhages; IRMA, intraretinal microvascular abnormalities.

2. Diabetic Retinopathy and Macular Pigment
2.1. Basics of Macular Pigment

The yellow spot that is visible during ophthalmoscopy is due to macular pigment,
which contains three carotenoids—(1) lutein, (2) zeaxanthin, and (3) a stereo isomer of
zeaxanthin called meso-zeaxanthin [43,44]—which are known as macular xanthophylls.
They are uniquely concentrated in the fovea centralis. A recent study that used confo-
cal resonance Raman microscopy showed that although both lutein and zeaxanthin are
concentrated in the fovea, zeaxanthin mainly accumulates in the inner plexiform, outer
plexiform and outer nuclear layers of the retina [43–47]. Lutein is more diffusely distributed
throughout the macula and is present at lower concentrations in comparison to zeaxanthin
at the fovea [47]. Humans have lost the ability to synthesize lutein and zeaxanthin in vivo
and thus lutein and zeaxanthin can only be acquired through dietary intake [27]. Common
food sources that can provide these xanthophylls are green leafy cruciferous vegetables
and egg yolks [44,48–50]. Unless artificially supplemented, meso-zeaxanthin found in the
retina is an outcome of biochemical conversion of lutein via RPE65 isomerase in the retinal
pigment epithelium (RPE) [44,47,48,51–54]. The biological processes involving the uptake,
metabolism, and transport of xanthophyll carotenoids to the retina have been explored
in greater depth in these review articles [27,28,44,48,51,53–56]. Supplementation of mac-
ular xanthophylls improves their levels in the serum [44,48,52,57] and is well known to
accumulate in the human retina [27,43,57–68].

Clinical measurement of the macular pigment optical density (MPOD) is as close
as we can get to quantification of macular carotenoids. The level of MPOD is indeed a
biomarker and is strongly associated with maintenance of retinal health and optimal visual
function in both health and disease [44,46,50,59]. Prior reports have demonstrated that
carotenoids afford enhanced protection in the retina, specifically in the central region, via
two proposed mechanisms: (1) acting as a naturally occurring blue light filter or blocker,
and (2) a potent antioxidant and anti-inflammatory substance in the retina [44,50,59,69–72].
The short-wavelength (blue) light triggers production of ROS due to photo-oxidation that
leads to damage of the lipid bilayer in cell membranes, proteins, and DNA, in addition to
mitochondrial dysfunction which leads to cellular necrosis [44,70–74]. Absorption of the
blue light by macular pigment prevents formation of ROS and the consequent oxidative
injury triggered by photo-oxidation [43,72,73]. These properties of carotenoids in macular
pigment may in part explain how MPOD levels provide neuroprotective capabilities in
the retina.

2.2. Measuring MPOD

There are several techniques available to effectively quantify MPOD in vivo [27,46,50,75–80].
The techniques can be broadly divided into two types: (1) subjective—that is, requiring
patient response or participation and (2) objective—that is, requiring minimal to no partici-
pant involvement to collect measurements [46,50,75,77,81–84].
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Heterochromatic flicker photometry (HFP) is the most widely used technique to
measure MPOD [46,50,75,76,78,79]. The precise mechanism used to measure macular
pigment levels by HFP devices may vary based on the manufacturer, which has been
described in prior literature [27,45,46,50,69,77,78,85–87]. Briefly, current HFP devices adjust
the intensity of the blue to green ratio in the target stimuli, which is perceived as a flicker.
Steady light is observed when the blue component is fully absorbed by the macula, and
only green is visible. This is the lowest point in the absorption curve that is measured and
converted to MPOD density units [46,50,77,79,80,88,89].

Fundus reflectometry [61,83,90–93], fundus autofluorescence [81,82,94] and resonance
Raman spectroscopy [47,95,96] are all non-invasive, objective imaging modalities that can
measure MPOD [50,75]. Details regarding both subjective and objective techniques to
measure MPOD can be found in these review articles [27,45,46,50,75,82,94,97,98].

3. Materials and Methods

This systematic review was conducted in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA) reporting guidelines [99].

3.1. Literature Search and Selection Strategy

Two authors (PGD and DWL) performed a wide-ranging search of the scientific
databases National Library of Medicine and Web of Science to identify all relevant publica-
tions reporting on the association between macular carotenoids and DR until 21 December
2020. Under the guidance of the university librarian, the two authors conducted the
full search strategy and data collection together using the following keywords and the
combination of their variants during the search query: carotenoids, lutein, zeaxanthin,
meso-zeaxanthin, macular pigment, macular pigment optical density, MPOD, diabetes,
diabetic eye disease, and diabetic retinopathy. The database selection strategy was lim-
ited to records pertaining to macular carotenoids (i.e., lutein and/or zeaxanthin and/or
meso-zeaxanthin) and diabetic retinopathy only. Primary search results were identified for
initial screening according to titles and abstracts available in English by PGD and DWL.
Among the eligible records, full-text publications were retrieved and evaluated for study
inclusion or exclusion criteria. To ensure all relevant studies were included in this review,
we individually conducted backward and forward searches of the eligible publications
by reviewing reference lists and cited references, respectively. All records retrieved in
full text were individually screened and evaluated by two authors (PGD and DWL) for
inclusion/exclusion and any discrepancies were resolved through discussion involving the
third author (DLG). Selected publications were quantitative research articles evaluating
the association between MPOD/carotenoids (including lutein and/or zeaxanthin and/or
meso-zeaxanthin) and diabetic retinopathy. Additional records involving other forms of
diabetes-associated ocular disease were not considered in this review (such as diabetic
cataract, diabetic anterior segment or corneal changes associated with hyperglycemia). The
full inclusion criteria for eligible publications from experimental and clinical studies are
outlined below.

3.2. Study Selection

Experimental animal studies included in this review met the following criteria: (1) eval-
uating the effects of treatment with carotenoids (including lutein, L and/or zeaxanthin, Z)
on outcomes of retinal neurodegeneration, such as markers of oxidative stress, cell viability
and visual performance in murine models of DR; (2) carotenoid interventions include
powder diet supplemented with L and/or Z only, nutraceutical diet containing L/Z, and
powder diet supplemented with micronutrient formula containing L/Z; (3) presentation of
DR pathology induced using standard induction methods (i.e., administration of the drug
alloxan/streptozotocin, high-sugar diet, and surgical or chemically-induced damage) or
genetic models (namely the Leprdb model) in rodents only; and (4) experimental models of
type 1 or type 2 diabetes in rodents were included.
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Inclusion criteria for this systematic review were: (1) observational studies evalu-
ating the association among macular xanthophylls and DR; (2) prospective randomized
clinical trials assessing the benefits of carotenoid vitamin therapy in diabetic patients;
(3) interventions include dietary carotenoid supplementation (containing L and/or Z) or in
a multivitamin formula containing micronutrients and antioxidants; (4) assessment of mac-
ular carotenoid levels reported by serum/plasma concentrations of L/Z, or by validated
MPOD measurement techniques; (5) cohorts of diabetic patients (type 1 diabetes mellitus,
T1DM; and/or type 2 diabetes mellitus, T2DM); and (6) study cohorts of both T1DM and
T2DM with either no retinopathy present or mild/moderate NPDR.

Exclusion criteria were based on the following: (1) carotenoid treatment did not in-
clude either lutein and/or zeaxanthin in formulation/design; (2) carotenoid treatment
included other types of carotenoids; (3) experimental diabetes pathology (as listed previ-
ously) were not standard methods of induction; (4) inclusion of adults with other forms of
diabetes associated eye disease; and (5) publications were not available in English.

3.3. Data Extraction, Reliability and Risk of Bias Assessment

The PRISMA reporting guidelines were carefully followed as closely as possible, as
discussed previously [99]. The risk of bias was assessed using standard metrics established
to evaluate the intervention studies and randomized controlled trials. The SYRCLE’s RoB
tool which is an adaptation of Cochrane RoB tool was used to evaluate the risk of bias for
the animal studies [100]. The Cochrane Collaboration’s tool for assessing risk of bias for
the randomized controlled trials [101].

4. Results
4.1. Search and Selection of Studies

In total, 397 studies were identified during the primary search from scientific databases
(Figure 2). After removing duplicate records and including additional records retrieved
from reference list searches, 281 studies remained for titles and abstract screening. Conse-
quently, 103 records were excluded based on article type, with an additional 148 records
excluded due to the aforementioned inclusion criteria for clinical and preclinical studies.
Finally, 30 records were identified to be eligible for full-text assessment, of which, 18 studies
were included in the final review: seven preclinical studies [102–108], nine observational
clinical studies [19,25,109–115] and two interventional clinical trials [34,116].

4.2. Carotenoids in the Management of Diabetic Retinopathy—Animal Studies

Figure 3 provides a summary of the assessment of risk of bias using the SYRCLE’s RoB
tool [100]. The studies were unclear on performance bias blinding and outcome assessment
blinding was not performed (see Figure 3). However, given that studies have utilized
laboratory analysis and histology and not psychophysical response measured in animals
or subjective interpretations we can overall safely conclude that the overall risk of bias in
these studies were low.

There is an increasing amount of research and animal trials that substantiate the
neuroprotective effects of carotenoids lutein and zeaxanthin in rodent models of DR using
either chemical induction or genetic modes to engender diabetic state (Table 2) [102–108].
Pharmacological injection of alloxan or streptozotocin (STZ) are often used to recapitulate
T1DM pathology in both mice and rats through death of pancreatic beta cells and subse-
quent insulin deficiency [102–106,117–120]. Genetic modes offer unique models to examine
pathophysiological mechanisms of metabolic perturbations that may contribute to incident
retinopathy; in particular, leptin receptor deficient (db/db) mice develop morbid obesity
and hypoinsulinemia, making them a desirable model for replicating conditions found
in T2DM [107,108,118–120]. Importantly, these murine models mimic the characteristic
pathological changes induced by hyperglycemia, including oxidative stress driven by free
radicals, chronic low-grade inflammation, morphological abnormalities from capillary cell
death, and visual dysfunction. Results from these studies are congruous, indicating that
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lutein and zeaxanthin supplementation has significant potential to protect the retina from
the onset of DR.

Figure 2. Flow diagram of literature search and selection criteria.

Figure 3. SYRCLE’s risk of bias assessment for animal studies [100].
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Table 2. Animal studies of carotenoid treatment in diabetic retinopathy.

Author (Year) DM Study Design Duration Treatment Results

Arnal (2009) [102] T1DM, via STZ-injection in Wistar rats 12 wks L (0.5 mg/kg) Significantly improved
GSH and GPx activity

Kowluru (2008) [103] T1DM, via STZ-injection in Lewis rats 2 months Z (8.4 ± 1.6 mg/d);
Z (44 ± 8 mg/d)

Enhanced MnSOD and
complex III expression

Kowluru (2014) [104] T1DM, via STZ-injection in Wistar rats 11 months L (1 mg/d) and Z (2 mg/d) * Augmented retinal cell
viability and survival

Muriach (2006) [105] T1DM, via A-injection in Albino mice 2 wks L (0.2 mg/kg) Re-established levels of
MDA, GSH and GPx

Sasaki (2010) [106] T1DM, via STZ-injection in C57BL/6 mice 4 months L (0.1% diet) Protected visual function
of inner retina

Tang (2011) [107] T2DM, via genetic db/db mice (Leprdb) 8 wks L (0.05 mg/g fruits) and Z
(1.76 mg/g fruits) †

Attenuated ER stress and
ganglion cell loss

Yu (2013) [108] T2DM, via genetic db/db mice (Leprdb) 8 wks L and Z (values not available) † Ameliorated hypoxia and
mitochondrial stress

Abbreviations: DM, diabetes mellitus; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; L, lutein; Z, zeaxanthin; STZ,
streptozotocin; A, alloxan; db/db, leptin receptor deficient (Leprdb); GSH, glutathione; GPx, glutathione peroxidase; MnSOD, manganese
superoxide dismutase; MDA, malondialdehyde; ER, endoplasmic reticulum * Multivitamin supplement formula; † Wolfberry nutraceutical.

The importance of macular carotenoid’s antioxidant properties is evident by their
enhanced capacity to ameliorate the extent of oxidative injury caused by hyperglycemia
in diabetic retina. Supplementation with lutein and/or zeaxanthin was shown to protect
against measures of oxidative and nitrosative stress, marked by significant reductions
in malondialdehyde, 8-OHdG (oxidatively-modified DNA), and nitrotyrosine, respec-
tively [102,103,105,117,121–123]. Additionally, one study found that micronutrients con-
taining carotenoids prevented a significant rise in retinal ROS levels in T1DM rats following
treatment with the EyePromise Diabetes and Visual Function Study (DVS) formula (ZeaVi-
sion LLC, Chesterfield, MO, USA) [104,124]. These findings suggest that the mechanism of
protection against oxidative damage to the retina may involve improving mitochondrial
dysfunction, the primary source of aberrant free radical production as a consequence
of hyperglycemia [26,125–129]. In fact, lutein and zeaxanthin were shown to protect
against mitochondrial stress induced by T1DM pathology, and improved retinal expression
of mtDNA-encoded proteins involved in oxidative phosphorylation and mitochondrial
biogenesis [26,102,103,108,117]. Thus, dietary treatment using lutein and zeaxanthin sup-
plementation may prevent early lesions of retinopathy by alleviating pro-oxidant stressors
and redox imbalance propagated by hyperglycemic state.

Dietary augmentation of the compromised endogenous antioxidant defenses has been
considered the key modulator in the pathogenesis of DR. Multiple studies found that
lutein and zeaxanthin recovered enzymatic activity and expression levels of glutathione,
glutathione peroxidase and manganese superoxide dismutase [102,103,105,107,117]; indi-
cating a reversal of hyperglycemic-induced impairment in free radical detoxification and
clearance mechanisms [26,121,130,131]. Similarly, one animal model demonstrated that
an AREDS-based micronutrient formulation improved total antioxidant capacity in the
retina, as well as metabolic abnormalities associated with early stages of retinopathy pro-
gression [104]. By regenerating endogenous antioxidant capacity, dietary supplementation
with lutein and zeaxanthin may serve to reduce the proliferation of consequent damage
brought on by oxidative stress and inflammation in diabetic retina [104,121,130–136].

Macular carotenoids may further protect against retinal neurodegeneration by limit-
ing activation of low-grade inflammatory pathways triggered by metabolic and oxidative
insults concomitant with hyperglycemic conditions [17,18,21,22,132,133,137,138]. Con-
sistent with this, carotenoid supplementation was shown to mitigate T1DM-induced
increase in retinal pro-inflammatory mediators, such as nuclear transcriptional factor-B
(NF-kB), interleukin-1β and intercellular adhesion molecule-1 [103–105,137,139–145]. In
addition, several studies found that carotenoids demonstrated significant potential to
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offset pathogenic factor associated with pivotal changes observed in early and advanced
stages of retinopathy [17,21,22,104,108,117]; namely, increased cell permeability and neo-
vascularization, respectively [133,135,136,142,146,147]. This neuroprotection following
lutein and zeaxanthin administration was evidenced by attenuating the upregulation of
pro-angiogenic factor VEGF in diabetic retina of mice and rats [104,108,117]. Preliminary re-
ports suggest carotenoids may protect the local retinal tissue by reducing pro-inflammatory
signaling, thereby limiting exacerbation of the inflammatory response to surrounding
tissues [138,143,144,148].

The neuroprotective potential of lutein and zeaxanthin positively influencing the
pathogenesis of DR was most substantial preventing changes in retinal morphology as a con-
sequence of accelerated capillary cell loss induced by hyperglycemia; regarded as hallmark
features of early-stage retinopathy [17,18,148–153]. Lutein and zeaxanthin improved cell
viability and markedly enhanced cell survival of the retinal vasculature, which was marked
by significant reduction in apoptotic nuclei and formation of degenerative (acellular) capil-
laries [102–104,106,154,155]. Similarly, carotenoid treatment completely reversed significant
loss of ganglion cells caused by hyperglycemic state in murine model [102,106,107]. Studies
found lutein and zeaxanthin effectively protected against DM-induced alterations in retinal
histology, such as accelerated thinning of the ganglion cell layer (GCL), inner plexiform
layer (IPL), inner nuclear layer (INL), outer nuclear layer (ONL), and the photoreceptor
layer (inner and outer segment) [102,106,107]. It is important to note, improvement in
the photoreceptor layer indicate that the extent of augmentation in cell survival follow-
ing lutein and zeaxanthin supplementation can be seen maintaining both vascular and
non-vascular cells throughout the retina.

Experimental studies strongly suggest that carotenoids may sufficiently protect against
the cumulative effect of hyperglycemic-induced retinopathy, or rather progressive neu-
rodegeneration in retinal function made evident by abnormal or delayed response on
electroretinogram (ERG). Studies found that lutein and zeaxanthin preserved measures of
inner retinal function at the post-receptor level, attenuating DM-induced reduction in oscil-
latory potentials and the amplitudes of both a- and b-waves on ERG [102,104–106,156–159].
Increased retinal expression of synaptophysin and brain-derived nuclear factor (BDNF)
seem to corroborate these findings, wherein greater synaptic activity and cell survival
in the inner retina were observed following supplementation with lutein and zeaxan-
thin [106,160–163]. Thus, preliminary findings offer substantial evidence demonstrating
neuroprotective effects of macular carotenoids preventing vision loss in models of both
type 1 and type 2 diabetic retina.

Although results from these animal models are promising, interpretation of the im-
mediate translative potential for clinical application must be performed with prudence.
Briefly, accumulation of carotenoids in the macula is unique to primate retinas, and there-
fore macular pigments cannot be fully studied using only rodent models of DR [27,164,165].
It is important to note the potential limitations depending on the method of DM-induction
utilized in rodents; namely, pathophysiological differences in T1DM (via pharmacological
injection with STZ/Alloxan) compared to T2DM (using genetic modes) [118]. For instance,
while models of T1DM using STZ are more common since it results in the fastest rate of
disease progression, evidence from these reports is not directly comparable between animal
models of DR, and therefore each induction method contains its own set of advantages and
limitations [118]. In light of this, when accounting for average body weight and daily food
consumption in these rodent models, the concentrations of carotenoids and antioxidants
used in some reports [104,117] are largely equivalent to the dosage of lutein and zeaxan-
thin used in clinical intervention trials [34,116,166]. Thus, findings from these preclinical
studies are encouraging since the observed protective effects are not due primarily as a
consequence of inflated carotenoid concentrations that are beyond clinical relevance for
humans. Nonetheless, we can conclude there is a significant and growing body of evidence
in agreement with the neuroprotective benefits of lutein and zeaxanthin in ameliorating
the onset and progression of hyperglycemia-induced retinopathy.
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4.3. Clinical Studies Using Carotenoids in the Management of Diabetic Retinopathy

Clinical studies implicate MPOD depletion, as well as low serum levels of lutein
and zeaxanthin, may represent a novel clinical feature of DR; one that is likely contingent
upon several metabolic perturbations associated with chronic hyperglycemia in type 1
and type 2 diabetes. Reports from observational studies are consistent in demonstrating
carotenoid levels (measured both in serum and the macular pigment) are further reduced
among diabetic patients with clinically evident retinopathy (Table 3) [19,25,34,109–116].
In fact, one study found that lower plasma concentrations of lutein and zeaxanthin were
significantly associated with greater risk of incident maculopathy as well as disease pro-
gression in patients with T2DM [109]. Macular pigment data seem to mirror these findings,
providing a strong line of evidence that MPOD levels are substantially lower in diabetic
retina [34,110–115] and in particular, individuals with T2DM with retinopathy [19,25,112].
Several studies have also shown the severity of diabetic maculopathy was significantly
associated with lower MPOD levels [110–113]. Moreover, preliminary findings are largely
comparable and suggest that the relationship between compromised macular pigment and
incident retinopathy may vary between diabetes types [19,25,112].

Table 3. A summary of the observational trials.

Author (Year) Participants DR Present Results

Brazionis (2009) [109] 111 patients with T2DM, aged
44–77 years in USA

78 No DR,
33 DR

Lower risk of DR with greater serum
levels of non-pro-vitamin A (including

L/Z) carotenoids (p = 0.039)

Cennamo (2019) [110]
59 patients with T1DM, aged (38.2
± 13.4) years; 40 healthy controls,

aged (31.6 ± 7.4) years in Italy
59 DR Significantly reduced MPOD (p < 0.001)

measured by fundus reflectometry

Davies (2002) [111]

34 patients with DM (24 T2DM,
10 T1DM), aged (48.1 ± 11.6) years;

34 healthy controls, aged (36.7 ±
15.1) in United Kingdom

Not specified Significant lower MPOD among patients
with grade 2 maculopathy (p = 0.016)

Lima (2010) [112]
29 patients with T2DM, aged (60.7
± 10.7) years; 14 healthy controls,
aged (56.2 ± 11.7) years in USA

17 No DR,
12 NPDR

T2DM patients with or without
retinopathy showed reduced MPOD

(p < 0.001) measured by autofluorescence

Mares (2006) [113]
1698 women from CAREDS, aged

53–86 years (108 patients with
diabetes) in USA

Not specified
MPOD measured by HFP (p < 0.01)

significantly inversely related to diabetes
and waist circumference

Scanlon (2015) [19]

102 patients with DM (34 T1DM,
68 T2DM), aged (53.2 ± 12.2) years;
48 healthy controls, aged (52.5 ± 16)

years in Ireland

55 No DR,
47 NPDR

MPOD measured by cHFP significantly
lower among T2DM (p = 0.04) compared

to T1DM and controls

Scanlon (2019) [25]
188 patients with T2DM, aged (64.7
± 8.3) years; 2594 healthy controls,
aged (61.4 ± 7.6) years in Ireland

152 No DR,
10 NPDR

T2DM patients saw lower MPOD
(p = 0.047) measured by cHFP compared

to non-diabetic controls

She (2016) [114]
182 patients with DM, aged (62.5 ±

7.2) years; 219 healthy controls,
aged (63.6 ± 7.4) years in China

134 No DR,
48 NPDR

MPOD level measured by HFP was
significantly associated with central

foveal thickness (p = 0.001)

Zagers (2005) [115]
14 patients with DM, aged (46 ± 11)
years; 14 healthy controls, aged (47
± 11) years in Netherlands

Not specified

Diabetic eyes showed significant
reduction in fundus reflectance MPOD

measurement (p < 0.001) compared
to controls

Abbreviations: NPDR, non-proliferative diabetic retinopathy; DM, diabetes mellitus; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes
mellitus; L, lutein; Z, zeaxanthin; HFP, heterochromatic flicker photometry; cHFP, customized heterochromatic flicker photometry.
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There is limited evidence of RCTs evaluating the benefits of carotenoids in manage-
ment of diabetic retinopathy. We used the Cochrane Collaboration’s tool for assessing risk
of bias, which covers the following domains—selection bias, performance bias, detection
bias, attrition bias, reporting bias, and other bias [101]. Figure 4 provides a summary of the
risk assessed using the Cochrane Collaboration’s tool.

Figure 4. The Cochrane Collaboration’s tool for assessing risk of bias in randomized controlled
trials [101].

It is well known that both type 1 and type 2 diabetic patients with mild NPDR or no
retinopathy exhibit a notable range of visual function impairment, even in the absence of
clinically relevant lesions of neurodegeneration in the retina [167–173]. Following active
oral supplementation containing lutein and/or zeaxanthin micronutrients, two interven-
tional studies (Table 4) observed marked improvements in serum carotenoids and MPOD
levels. Additionally, clinically meaningful improvements in visual performance were also
observed in these short-term supplementation trials between three and six months, respec-
tively [34,116]. Most notably, the randomized, placebo-controlled Diabetes Visual Function
Supplement Study (DiVFuSS) demonstrated an average increase of 27% in MPOD levels
(measured by HFP) after six months of active supplementation [34]. This study revealed
that daily supplementation of 4 mg lutein and 8 mg zeaxanthin plus antioxidants offered
significant improvement in contrast sensitivity, color discrimination error score and mean
visual field sensitivity in diabetic patients presenting with or without mild-to-moderate
NPDR [34]. Thus, these results suggest that carotenoid vitamin therapy formulation may
offer protection against diabetes-induced retinal neurodegenerative pathology with con-
comitant effects on visual performance measures in both type 1 and type 2 diabetes. In fact,
the enhanced neuroprotective capacity of a similar carotenoid formula has been shown in
experimental model of DR using chemical induction to recapitulate pathology observed in
T1DM, discussed previously [34,104,166]. The risk of bias was low for this trial as assessed
by the Cochrane Collaboration’s tool.

Table 4. Characteristics of the eligible randomized clinical trials.

Author (Year) Participants DM Subtype Duration Interventions Results

Chous (2016) [34]

67 patients with no
retinopathy or

mild/moderate NPDR, aged
(56.1 ± 13.2) years in USA

27 T1DM,
40 T2DM 6 months

Daily: 4 mg L and 8 mg Z
(n = 39, multivitamin oral

supplementation) †;
placebo (n = 28)

Significant increase in MPOD
(p < 0.001), contrast sensitivity

(p < 0.01, for all) and color
error score (p < 0.001)

Hu (2011) [116]

60 patients with NPDR, aged
(59.5 ± 14.5) years; 30 healthy
controls aged (55 ± 9.0) years

in China

10 T1DM,
50 T2DM 3 months

Daily: 6 mg L and 0.5 mg Z
(n = 30 NPDR); placebo
oral supplementation

(n = 30 NPDR, 30 controls)

Significant increase in serum
L/Z (p < 0.001), visual acuity

(p < 0.001) and contrast
sensitivity (p < 0.05, for all)

Abbreviations: NPDR, non-proliferative diabetic retinopathy; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; L, lutein; Z,
zeaxanthin; † EyePromise DVS multivitamin supplement.
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Various reports seem to suggest these improvements in visual performance following
increases in serum carotenoid levels and MPOD concentrations may be attributed, at least
in part, to the enhanced functional capacity of the macular pigments to preferentially
absorb short-wavelength blue light [27,174–183]. Greater MPOD levels may provide neu-
roprotective, pre-receptoral filtration against harmful blue light thereby attenuating the
deleterious effects of chromatic aberration [27,178,180–183]. One school of thought argues
that MPOD status may represent a sine qua non for improvements in visual function;
namely, that significant benefit in visual performance will occur only after MPOD density
has been maintained at greater concentrations for a period of time [62,178,184]. Alterna-
tively, carotenoid vitamin therapy is also believed to augment total antioxidant capacity
which may ameliorate intracellular redox homeostasis in the surrounding tissue including
the photoreceptor cells of the neurosensory retina [26,127,185,186]. Further implications of
greater carotenoid levels in the macula are also thought to improve metabolic efficiency
of the visual cycle thereby promoting enhancement of the post-receptoral circuitry [187].
Indeed, the neuroprotective benefits in ganglion cells and photoreceptors observed in
experimental models [102,106,107] are also implicated in humans marked by restoring
clinical measures of both inner and outer retinal function, respectively [34,116,169,188].
By augmenting their levels in the diet through oral supplementation, the potent antioxi-
dant and anti-inflammatory properties of xanthophyll carotenoids likely counteract the
compounding insult from oxidative stress and chronic inflammation in the diabetic retina,
as discussed previously [10,55,189–204]. However, future studies are required in order
to elucidate the precise mechanisms responsible for the visual improvements in diabetic
retina using carotenoid vitamin therapy.

In view of these findings, available reports among diabetic patients with and without
non-proliferative retinopathy are encouraging in demonstrating the potential for carotenoid
supplementation as an adjunct nutraceutical approach to offer enhanced protection against
further hyperglycemia-induced injury to the retina. Figure 5 illustrates major causative
mechanisms which have been postulated in diabetic retinopathy onset, of which, several
interconnected processes are believed to represent key drivers among those with type 2
diabetes or poorly-managed type 1 diabetes [34,205]. One mechanism of action involves
systemic, atherogenic metabolic imbalance which is believed to play a significant role
in macular pigment depletion [49,189,190,192,195,202,205–208]. Prior to exerting their
nutraceutical effects, lutein and zeaxanthin acquired from the diet must first be released
and then absorbed from food matrices before being transported into circulation [56,206,209].
The bioavailability of these dietary xanthophylls in the blood has been shown to fluctuate
greatly as a consequence of high-glycemic-index foods [205,206,210–213]. It is known
that dietary behaviors such as those in the Western diet contribute significantly to the
onset of metabolic syndrome and may also contribute to MPOD depletion in DR. Thus,
metabolic perturbations typically present in patients with T2DM or poorly controlled
T1DM, such as obesity, dyslipidemia, insulin deficiency and hyperglycemia are believed
to substantially compromise the bioavailability and assimilation of dietary lutein and
zeaxanthin to the retina [55,189–195,206]. The bioavailability of dietary carotenoids is
also strongly influenced by age, gender, and racial/ethnic origin, in addition to these
anthropometric measures [55,112,175,176,189,190,192–195,206].

While there are no established recommendations currently regarding daily intake
levels of lutein and zeaxanthin consumption, oral supplementation with these carotenoids
has a relatively high safety profile, with low risk for adverse effects and are appropriately
considered by the US Food and Drug Administration to be Generally Regarded as Safe
(GRAS) [214]. Large-scale epidemiological studies are needed to elucidate the putative
role of dietary carotenoid intake and risk of DR along with disease progression among
cohorts of both type 1 and type 2 diabetic patients. To this point, population data in
healthy individuals on dietary intake levels of lutein and zeaxanthin is fairly limited
and likely varies significantly among populations based on their dietary behaviors, as
mentioned previously [28]. However, one may speculate that individuals whose diet



Nutrients 2021, 13, 2441 13 of 23

primarily consist of foods rich in refined carbohydrates and artificially sweetened beverages
containing high-fructose corn syrup, such as those with T2DM or poorly controlled T1DM
for instance, are likely to have significantly lower levels of daily carotenoid intake when
compared to those following a Mediterranean-style diet [28,205,215–217]. This may be
explained, at least in part, by the disparities in regular consumption of various functional
food groups (i.e., fresh fruit, nuts, leafy vegetables, and unrefined cereals), of which,
several possess relatively high concentrations of lutein and zeaxanthin content per serving
(Table 5) [27,28,44,215,218,219]. Based on the available evidence, it remains unclear whether
relying solely upon dietary consumption of these carotenoid-rich food is sufficient to
achieve the neuroprotective benefits with greater MPOD levels observed in patients with
type 1 and type 2 DM following the use of carotenoid vitamin therapy.

Figure 5. Schematic overview of proposed causative mechanisms and metabolic perturbations implicated in diabetic retinopa-
thy. MPOD, macular pigment optical density; HDL, high-density lipoprotein; VEGF, vascular endothelial growth factor.

It is important to note that these clinically meaningful benefits in diabetic patients
with or without DR were independent of any changes in hyperglycemic status or in relation
to blood glucose control. Moreover, based on these results, there is a considerable body of
preliminary evidence to substantiate the neuroprotective capacity of macular carotenoids to
inhibit or reverse disease progression by ameliorating the metabolic correlates and comor-
bidities often seen in patients with type 2 or poorly controlled type 1 diabetes. Encouraging
results from early interventional studies offer scientific justification for renewed clinical
trials thereby corroborating the potential use of carotenoid vitamin therapy as an adjunctive



Nutrients 2021, 13, 2441 14 of 23

therapeutic approach in the management of diabetic retinopathy for patients with either
type 1 or type 2 diabetes.

Table 5. Common dietary sources of xanthophylls lutein and zeaxanthin [218,219].

Foods Serving Size Lutein + Zeaxanthin Content (mg)

Spinach, frozen (cooked) 1 cup 29.8
Kale, frozen (cooked) 1 cup 25.6
Swiss chard (cooked) 1 cup 11.0

Collard greens, frozen (cooked) 1 cup 8.9
Summer squash (cooked) 1 cup 4.0

Peas, frozen (cooked) 1 cup 3.8
Brussel sprouts, frozen (cooked) 1 cup 2.4

Broccoli, frozen (cooked) 1 cup 2.0
Edamame, frozen 1 cup 1.6

Sweet yellow corn (boiled) 1 cup 1.5
Asparagus (boiled) 0.5 cup 0.7

Avocado, raw 1 medium-size 0.4
Egg yolk, raw 1 large 0.2

However, there are several limitations currently that must be addressed in future
clinical studies should carotenoid supplementation be used for this purpose. First, there is
a growing need for further studies to investigate the potential implications associated with
long-term use of adjunctive carotenoid vitamin therapy in larger cohorts of individuals
with T1DM and T2DM. Second, additional randomized placebo-controlled trials are needed
to determine the optimal dosage of lutein and zeaxanthin necessary to achieve clinically
meaningful benefits, in addition to whether all three xanthophyll carotenoids found in the
retina should be included in formulation. A recent systematic review in healthy adult eyes,
found that lutein and zeaxanthin intake of less than 5 mg per day (by oral supplement
or food sources) was insufficient dosage to significantly raise MPOD levels during trials
up to six months [220]. Additionally, there have been no clinical trials investigating the
effects of oral supplementation with meso-zeaxanthin in diabetic patients with or without
DR to date. Further investigations are required to better understand if the addition of
meso-zeaxanthin in combination with lutein and zeaxanthin may offer greater benefit or
ascertain whether formulations with the two dietary xanthophylls are sufficient to elicit
protective effect in diabetic retina. One of the limitations of this systematic review is that
the number of databases searched was limited to National Library of Medicine and Web
of Science. Additionally, the articles evaluated were limited to those published in the
English language.

Lastly, given the systemic etiopathogenesis of diabetes which can manifest in the eye
as vascular endotheliopathy, future strategies may focus on ameliorating early microvas-
culature complications such as retinal vascular occlusion as a consequence of capillary
nonperfusion. While experimental models have shown that lutein and zeaxanthin offer
protection against retinal capillary degeneration triggered by ischemic-reperfusion injury,
it is unclear whether these xanthophylls can prevent microvasculature alterations which
ultimately lead to vascular dysregulation. However, oral supplementation with a simi-
lar xanthophyll carotenoid known as astaxanthin has been shown in healthy adults has
shown to exert benefits on retinal hemodynamic measures including capillary blood flow
and velocity of choroidal circulation [221–224]. Given that astaxanthins retinal uptake
has not been clearly demonstrated, its similar neuroprotective properties comparable
to those of lutein and zeaxanthin provide scientific rationale for including astaxanthin
into carotenoid vitamin therapy formulations in future nutraceutical trials of diabetic
retinopathy [221–224].
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5. Conclusions

Substantial efforts are necessary in developing early prophylactic measures that of-
fer synergistic protection against several pathogenic mechanisms contributing to retinal
neurodegeneration and subsequently preventing irreversible vision loss. To this accord,
there is robust preclinical evidence and at least early clinical trials supporting the potential
use of carotenoid vitamin supplementation in diabetics with and without retinopathy.
Chronic hyperglycemia significantly compromises the endogenous defense systems in a
diabetic individual. The metabolic changes due to diabetes possibly lead to depletion of
macular carotenoids lutein, zeaxanthin, and meso-zeaxanthin, in addition to other potent
antioxidants that are pertinent for maintaining retinal health as seen in various observa-
tional studies. MPOD measurements may also have a role to play in screening high-risk
individuals prior to overt changes in retina due to DR pathology. Further randomized
placebo-controlled trials are needed to support and solidify its use more universally as a
first line of defense in combination with routine systemic management of diabetes and in
susceptible individuals that are at risk of diabetes or pre-diabetics.
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