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Abstract: Understanding the specific geographical distribution of stunting is essential for planning
and implementing targeted public health interventions in high-burdened countries. This study
investigated geographical variations in the prevalence of stunting sub-nationally, and the deter-
minants of stunting among children under 5 years of age in Ethiopia. We used the 2016 Ethiopia
Demographic and Health Survey (EDHS) dataset for children aged 0–59 months with valid anthro-
pometric measurements and geographic coordinates (n = 9089). We modelled the prevalence of
stunting and its determinants using Bayesian geospatially explicit regression models. The prevalence
of stunting among children under five years was 36.3% (95% credible interval (CrI); 22.6%, 51.4%)
in Ethiopia, with wide variations sub-nationally and by age group. The prevalence of childhood
stunting ranged from 56.6% (37.4–74.6%) in the Mekelle Special zone of the Tigray region to 25.5%
(10.5–48.9%) in the Sheka zone of the Southern Nations, Nationalities and Peoples region. Factors
associated with a reduced likelihood of stunting in Ethiopia included non-receipt of breastmilk,
mother’s BMI (overweight/obese), employment status (employed), and higher household wealth,
while the enablers were residence in the “arid” geographic areas, small birth size of the child, and
mother’s BMI (underweight). The prevalence and determinants of stunting varied across Ethiopia.
Efforts to reduce the burden of childhood stunting should consider geographical heterogeneity and
modifiable risk factors.

Keywords: undernutrition; stunting; geo-statistics; inequality; Ethiopia; children

1. Introduction

The first 2000 days of life (from conception to age 5 years) provide a great window of
opportunity for improving child survival, good health and development, and these benefits
extend across the life course [1–4]. In this age group, appropriate nutrition, psychosocial
interactions and a built environment are essential to meet childhood developmental and
nutritional requirements. However, early years nutritional deficiencies (that is, becoming
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underweight, stunted or wasted) are associated with short- and long-term adverse con-
sequences among children [1,2,5–8]. Suppressed immunity, increased risk of morbidity
and mortality, and lower school performance have been reported in children with stunt-
ing [1,2,5–8]. Childhood stunting is one of the strongest indicators for assessing the overall
health and well-being of children [9].

Ethiopia is the second most populous country in Africa (after Nigeria), with over
112 million people [10] and has the fastest growing economy in the continent [11]. Evidence
from the Ethiopia Demographic and Health Survey (EDHS) reports showed a steady
decrease in the prevalence of stunting from 58% in 2000 to 37% in 2019 [12–14]; however a
significant number of children are stunted. The reduction in childhood stunting is likely due
to ongoing national and subnational efforts to reduce childhood malnutrition, including the
“Seqota” Declaration to end childhood malnutrition by 2030 [15] and the National Nutrition
Program to end hunger by 2030 [16]. While socioeconomic improvements have been
reported in Ethiopia, about 23% of the population is still socio-economically disadvantaged,
and more than 5 million children under five are reported to be stunted [17]. Additionally,
one in 15 Ethiopian children dies before the age of five years [17], and undernutrition
accounts for an estimated 30% of these deaths [18].

In Ethiopia, more than 40% of the population resides in arid and semi-arid areas [19],
where agricultural production is lower. The country also experiences frequent natural and
manmade disasters, including droughts, flooding, rising temperature, and internal con-
flicts [20,21], These events increase the vulnerability to low-yield agricultural production
that can subsequently lead to food insecurity [22,23] and childhood undernutrition [24–26].

Several studies conducted in Ethiopia have shown that suboptimal infants and young
child feeding (IYCF) [27–30], food insecurity [31,32], lower maternal education [27–30,33],
maternal underweight [33,34], childhood infections (e.g., diarrhea and pneumonia) [27,29]
were associated with childhood stunting. Other relevant factors associated with stunting
included poverty [29], unsafe hygiene and sanitation [29], climate change, low crop pro-
duction, the higher market price of food, and natural and manmade disasters [35]. While
previous studies in Ethiopia provide valuable information, there are gaps in knowledge
relating to the burden of stunting. Firstly, some of the studies (e.g., Haile et al., 2016)
used older EDHS datasets, which does not reflect the current socio-economic, health, geo-
graphic, political and in-country migration status in Ethiopia. Secondly, these past studies
did not examine the subnational-level prevalence of stunting to facilitate within-country
comparisons, as national-level information can mask important geographic differences.
Thirdly, previous studies did not examine the associations between geo-located and/or
geo-referenced determinants (i.e., environmental and climatic factors) of childhood stunt-
ing at the national level in Ethiopia. Finally, the assessment of the geographical variability
of the prevalence of stunting in lower administrative levels can provide locally relevant
public health information that will help decision-makers and efficient resource allocation
in nutritional interventions for Ethiopian children most in need.

The present study aims to: (i) examine the spatial variability of stunting prevalence
among children under 5 years of age at the subnational level in Ethiopia by age groups
(0–23 months and 24–59 months, the child age subcategorization is essential for the design
and implementation of targeted childhood nutrition programs to improve efficacy and
effectiveness) [9]; and (ii) investigate the proximal and contextual factors associated with
stunting among children under 5 years of age at the national level in Ethiopia.

2. Materials and Methods
2.1. Data Sources

Data were based on the nationally representative 2016 EDHS (n = 9089). The survey
was implemented by the Central Statistical Agency (CSA) and Inner City Fund (ICF) In-
ternational and funded by the United States Agency for International Development [36],
and the Government of Ethiopia [13,17,37,38]. The 2016 EDHS used a two-stage stratified
cluster sampling technique to select the study participants. In stage one, 645 enumeration
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areas (EAs) were randomly selected in each sampling stratum with probability propor-
tional to EA size, using the 2007 Ethiopia Population and Housing Census [39]. A complete
household listing was conducted to develop a sampling frame for the selection of house-
holds. In stage two, a systematic random sampling technique was used to select a fixed
number of 28 households in each EA. Out of 16,583 eligible women of reproductive age
(15–49 years of age) from the selected households, 15,683 were successfully interviewed,
yielding a response rate of 94.6%.

The 2016 EDHS collected information on maternal and child health indicators, in-
cluding height and weight measurements for children under five children. A total of
10,752 children under five were sampled from 645 clusters in the 2016 EDHS. Our study
included 9089 children who resided in 622 clusters, where valid geographic coordinates
and anthropometric data are collected. The detailed methodology for the 2016 EDHS sur-
vey is reported elsewhere [17]. The 2016 EDHS collected geographic coordinates for each
cluster using the Global Positioning System (GPS) receivers. To keep the confidentiality of
respondents in each cluster, GPS coordinates were displaced (geo-masking) by up to 10 km
for rural clusters and 2 km in urban clusters [40]. For surveys collected after 2008, the GPS
displacement is further restricted to the second administrative level units (“Zones” in the
Ethiopian context) [41,42]. The 2016 EDHS clusters where the prevalence of stunting were
calculated are presented in Figures S1–S3.

For each georeferenced EDHS cluster, climatic and demographic data were extracted
from publicly available remote sensing raster and vector data sources. The raster data
(images and modelled surfaces) rely on pixels or cells to convey their data values, while
vector data (points, lines, and polygons) depend on the discrete location or boundary of a
feature [40]. During the extraction of the geo-covariates, the EDHS circularly buffered the
data within 2 km for urban points and 10 km for rural points to ensure all points (including
coordinates with the maximum displacement) fell within the radius of the circular buffer
and to account for the variation in pixel size in the data sources [40,41]. The detailed
procedure on the extraction of geo-covariates was published in the DHS manual [40].

2.2. Outcome Variable

The main outcome variable for this study was stunting, measured using the World
Health Organization (WHO) Child Growth Standards of height-for-age z-scores (HAZ) [43].
The length or height was measured using Shorr measuring board [44]. Stunting was
measured using the nutritional index of HAZ that was calculated in standard deviation
(SD) units from the median of the WHO reference population for age. Children were
classified as stunted if < −2.0 SD HAZ-score, consistent with the 2016 EDHS report [17] and
previously published studies [45,46]. For this study, the nutritional status of children was
classified on a dichotomous scale (“1 = Yes/stunted” or “0 = No/not stunted”), consistent
with EDHS reports and previously published studies [45,46].

2.3. Study Variables

We adapted the United Nation’s Children Fund (UNICEF) [7] and the WHO [47]
conceptual frameworks for undernutrition [47] and used them in past studies from low-
and middle-income countries (LMICs) [46,48,49] (Figure 1). The study variables were
broadly classified into putative proximal and contextual factors. The proximal factors
have immediate biological (e.g., not eating enough or eating that lack growth-promoting
nutrients) and pathophysiological (infections or diseases that can cause poor nutrient
intake, absorption or utilization) relationships with stunting [7,47,49]. The contextual
factors selected are based on associations with the familial, societal and community contexts
where the child resided [7,47,49].
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The proximal factors included IYCF (early initiation of breastfeeding, minimum
dietary diversity, minimum meal frequency, type of food in the past 24 h, duration of
breastfeeding, and bottle feeding) and child morbidity (diarrhea, acute respiratory infec-
tion (ARI) and anemia). Proximal contextual factors included maternal factors (mother’s
nutritional status, mother’s and father’s education, mother’s and father’s employment
and mother’s age), household factors (household wealth index, source of drinking water,
type of toilet system and cooking fuel), health service factors (frequency of antenatal care
[ANC] visits and place of birth), and child factors (perceived birth size, child age, and
birth order). Environmental contextual factors included media exposure (listening to the
radio, reading a magazine, and watching television), and climatic factors (daytime land
surface temperature (DLST), annual rainfall, aridity and number of wet days per year).
The climatic factors were selected based on past studies and their influence on poverty
and crop production, and with consequent effect on childhood stunting [49–52]. Table S1
provides detailed information on the definitions, classifications and data sources of the
selected study variables.

2.4. Analytical Strategy

Frequencies and percentages of proximal and contextual factors were initially cal-
culated. This was followed by a descriptive analysis that estimated the prevalence of
stunting according to age groups (0–23 months and 24–59 months) by each study factor.
This age group classification was used to examine associations between age-limited study
factors (e.g., IYCF used for children 0–23 months of age) with stunting, and to calculate
geographical variations in stunting across each age group (0–23 months and 24–59 months).
In addition, interaction checks of regression models showed significant differences in the
measures of associations for independent variables (wealth, baby size at birth, anemia,
maternal education, and type of toilet system) across the age classification (0–23 months
and 24–59 months) (Table 1).

Table 1. Non-spatial modelling for proximal and contextual determinants of stunting among children under five years of
age in Ethiopia, 2016 EDHS (n = 9089).

Variables
0–23 Months of Age 24–59 Months of Age

p Interaction for Age
OR (95% Crl) OR (95% Crl)

Child feeding factors

Early initiation of breastfeeding (EIBF)
No 1.00 - -
Yes 0.93 (0.77, 1.12) - -

Minimum dietary diversity (MDD)
No 1.00 - -
Yes 0.86 (0.57, 1.30) - -

Minimum meal frequency (MMF)
No 1.00 - -
Yes 1.02 (0.83, 1.25) - -

Bottle feeding
No 1.00 - -
Yes 0.89 (0.70, 1.13) - -

Duration of breastfeeding
≤12 months 1.00 - -
>12 months 2.03 (1.36, 3.06) - -

Overall feeding status (in 24 h)

0.275
Only breastmilk 1.00 1.00
Breastmilk + supplements 0.87 (0.63, 1.19) 0.50 (0.23, 1.10)
No breastmilk 0.60 (0.39, 0.90) 0.56 (0.47, 0.67)
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Table 1. Cont.

Variables
0–23 Months of Age 24–59 Months of Age

p Interaction for Age
OR (95% Crl) OR (95% Crl)

Other child factors

Mother’s perceived baby size at birth

0.005
Larger than average 1.00 1.00
Average 1.15 (0.92, 1.40) 1.23 (1.07, 1.42)
Smaller than average 1.35 (1.08, 1.70) 1.68 (1.43, 1.97)

Diarrhoeal diseases
0.735No 1.00 1.00

Yes 1.25 (0.99, 1.57) 1.14 (0.92, 1.41)

Acute respiratory infection
0.341No 1.00 1.00

Yes 1.02 (0.72, 1.46) 1.12 (0.83, 1.51)

Childhood anaemia
<0.001No 1.00 1.00

Yes 1.18 (0.97, 1.44) 1.72 (1.52, 1.96)

Maternal factors

Maternal nutritional status

0.298
Normal 1.00 1.00
Underweight 1.36 (1.12, 1.65) 1.19 (1.03, 1.37)
Overweight/obesity 0.45 (0.30, 0.66) 0.82 (0.64, 1.03)

Maternal educational status

0.021
No schooling 1.00 1.00
Primary education 1.00 (0.79, 1.24) 0.99 (0.84, 1.16)
Secondary or higher education 0.66 (0.44, 1.03) 0.83 (0.60, 1.14)

Maternal employment status

0.763
No employment 1.00 1.00
Formal employment 0.70 (0.52, 0.92) 0.95 (0.79, 1.14)
Informal employment 1.11 (0.90, 1.36) 1.07 (0.92, 1.25)

Health service factors

Antenatal care visits

0.300
None 1.00 1.00
1–3 visits 1.16 (0.93, 1.44) 0.87 (0.74, 1.02)
+4 visits 0.92 (0.72, 1.17) 0.95 (0.81, 1.12)

Place of birth
0.652Home 1.00 1.00

Health facility 0.94 (0.75, 1.17) 1.13 (0.95, 1.34)

Household factors

Household wealth status

0.001
Poor 1.00 1.00
Middle 0.68 (0.53, 0.88) 0.89 (0.74, 1.07)
Rich 0.80 (0.62, 1.03) 0.70 (0.58, 0.85)

Source of drinking water
0.157Not protected 1.00 1.00

Protected 1.03 (0.85, 1.24) 1.05 (0.91, 1.21)

Toilet system
0.023Not improved 1.00 1.00

Improved 0.75 (0.55, 1.01) 0.93 (0.75, 1.15)
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Table 1. Cont.

Variables
0–23 Months of Age 24–59 Months of Age

p Interaction for Age
OR (95% Crl) OR (95% Crl)

Climatic factors

Daytime land surface temperature
<30 ◦ C 1.00 1.00

0.78430–34.99 ◦C 0.94 (0.71, 1.22) 1.15 (0.91, 1.46)
+35 ◦C 0.99 (0.69, 1.43) 1.13 (0.82, 1.56)

Annual average rainfall (in mm)

0.863
<141 mm 1.00 1.00
142–1199 mm 0.53 (0.25, 1.14) 1.06 (0.50, 2.25)
≥1200 mm 0.46 (0.21, 1.06) 0.96 (0.43, 2.12)

Aridity

0.138
Wet 1.00 1.00
Semi-arid 1.67 (1.11, 2.49) 1.32 (0.96, 1.81)
Arid 2.21 (1.22, 4.02) 2.40 (1.47, 3.93)

Number of wet days per year

0.071
Low 1.00 1.00
Medium 1.01 (0.68, 1.49) 0.94 (0.65, 1.36)
High 1.33 (0.82, 2.14) 1.58 (1.02, 2.46)

In-sample model validation
DIC 3719.0 6851.9
WAIC 3719.7 6853.5
Marginal likelihood −2108.3 −3687.1

OR = Odds Ratio; 95% Crl = 95% Credible Interval; DIC = Deviance Information Criterion; WAIC = Watanabe-Akaike Information Criterion.

All descriptive analyses including frequencies and percentages were calculated using
the “svydesign” function from the “survey” package to adjust for sampling weights,
clustering and stratification in R (R Core Team, Austria) [53]. Children aged 0–23 with
mother’s perceived small birth size had a higher prevalence of stunting compared to larger
than average birth size (33.0% vs. 24.6%). A higher prevalence of stunting was found
among children aged 0–59 months whose mothers did not have schooling compared to
those with secondary or higher education (41.5% vs. 19.8%). Additional information on
the prevalence of stunting over proximal and contextual factors is presented in Table S2.

Bayesian geostatistical models were used to examine associations between proximal
and contextual factors with stunting by age group, while accounting for the geographical
dependence of EDHS clusters, consistent with previous studies [54–58]. Bayesian geostatis-
tical models are models of point-referenced data that include a spatially structured random
effect implemented with a Bayesian method of inference framework [59]. The geographical
dependence of clusters was incorporated into the models as spatially correlated higher
level random effects by assuming that the spatial autocorrelation decays when the distance
between locations increases [60]. The Bayesian geostatistical models were also used to
produce second administrative-level prevalence of stunting and spatially explicit maps
over the different administrative levels of Ethiopia. All geostatistical models were fitted
using the Bayesian framework for estimating the posterior distribution of fixed effects (such
as odds ratios (ORs), prevalence, standard deviations, and 95% credible intervals (CrIs))
and random parameters (such as kappa, variances and ranges). Figure S4 is presented to
show the presence of global autocorrelation using Moran’s I.

The Bayesian geostatistical models specified were conducted in five stages. In stage
one, a gridded data with geo-covariates and household survey data with geo-coordinates
from the EDHS were imported to the R environment for geostatistical computing [53]. In
R, the imported data (i.e., geo-covariates and household survey data with geo-coordinates)
were merged using “cluster-id” as a unique identifier. In stage two, models with improved
possible combinations of study variables were fitted for variable selection using Watanabe–
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Akaike information criterion (WAIC) and deviance information criterion (DIC) [61,62],
consistent with the past studies [61]. At this stage, the preliminary model selection using
WAIC and DIC removed study variables such as type of cooking fuel, maternal age,
delivery assistance, vaccination status, birth order, birth interval., media exposures (i.e.,
radio, television and magazine), and climatic factors (e.g., proximity to water bodies and
enhanced vegetation index). In stage three, the Stochastic Partial Differential Equation
(SPDE) that assumed a stationary and isotropic Matérn covariance matrix was used to
specify the spatial data process, and to calculate the spatial autocorrelation structure of
the study region using an artificial set of vertices called a mesh (Figure S5). Unlike areal
geospatial data, the point referenced data do not have explicit neighbors to calculate the
spatial autocorrelation, and thus we artificially created mesh to represent the neighboring
structure of the study region. Subsequently, a projector matrix was created to link the
observed locations (EDHS clusters) with the created mesh vertices (that were weighted
based on their distance from the observed locations) to serve as explicit neighbors.

In stage four, non-spatial and geospatial grouped binomial regression models were
fitted using ‘logit’ link function by calculating cluster level proportion of stunting (us-
ing the number of stunted children as numerator and the total number of children as
a denominator) to examine associations between proximal and contextual factors and
stunting. The non-spatial models were fitted to examine the improvements in model
variance after considering the spatial autocorrelation as a random effect in the geostatistical
models. The Bayesian geostatistical models were fitted to examine associations between
the study variables and stunting. To predict the prevalence of stunting at high resolution
grids (un-sampled locations), only proximal and contextual factors with available raster
surfaces (such as maternal education, antenatal care visits 4+, place of birth, type of toilet
system, source of drinking water, aridity, number of wet days, DLST, and annual average
rainfall) were accounted in final prediction models [59]. Maps and second administra-
tive level (referred to as “Zonal level” in Ethiopia) prevalence of stunting were estimated
and reported using the output from these geostatistical prediction models. In stage five,
all models were grouped using a random selection process into a “training set” (75% of
the sample) and a “test set” (remaining 25% of clusters), consistent with previously pub-
lished studies [61,63]. Detailed information on the model formulation, development and
implementation is provided as File S1.

The Integrated Nested Laplace Approximation (INLA) algorithm was used to conduct
all models using the R-INLA package [64]. Bayesian inference using INLA is a compu-
tationally less intensive alternative to the Markov Chain Monte Carlo (MCMC) that is
designed to approximate the MCMC estimations, particularly in latent Gaussian models
such as generalized linear mixed models, and spatial and spatio-temporal models [64,65].
Gridded predicted risk maps at un-sampled locations were produced on a regular grid of
112,346 pixels on 5 km by 5 km spatial resolution covering all of Ethiopia. All Bayesian
inferences used non-informative priors in the estimation of posterior parameters, including
ORs, 95% CrIs, ranges and variances. Non-informative priors with normal distributions of
mean and precision n (0, 0/τ, τ = 0) for intercepts, and mean and precision n (0, 0.001) for
regression coefficients were used. For random effects, default priors of gamma distributions
with gamma (1, 0.00005) for spatial decays and inverse gamma priors for variance were
specified. ORs with 95% CrIs were estimated and reported as the measure of association
between proximal and contextual factors and stunting in this study. A CrI is an interval
in which an unobserved parameter value falls with a given probability. It is the Bayesian
equivalent of the confidence interval; however, unlike a confidence interval, it is dependent
on the prior distribution, specific to the situation [34].

2.5. Ethics

The survey was conducted after ethical approval was obtained from the National
Research Ethics Review Committee (NRERC) in Ethiopia. During the survey, permission
from administrative offices and verbal consent from study participants was obtained before
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the commencement of data collection. For this study, the dataset was obtained from
Measure DHS/ICF with permission.

3. Results
3.1. Geographical Patterns of Stunting and Notable Subnational Variations

The prevalence of stunting among children under-five years was 36.3% (95% credible
interval (CrI); 22.6%, 51.4%) at the national level in Ethiopia, with wide variations at the
subnational level and by age group. The prevalence of stunting among children aged
0–23 months ranged from 19.1% to 47.7% with a median of 31.2%. Among children aged
24–59 months, the prevalence of stunting ranged from 24.9% to 63.8% with a median of
46.2% (Figures 2–5).

In children aged 0–23 months, the prevalence of stunting was higher in the South-East
zone (p = 37.4%; 95% CrI: 18.3, 61.9) and the Mekelle Special zone (p = 36.8%; 95% CrI:
18.6%, 59.6%) of the Tigray region, while the lowest prevalence was reported in the Sheka
zone of the SNNP region (p = 25.5%; 95% CrI: 10.5%, 48.9%) [Table S3]. Children aged
24–59 months who resided in the Mekelle Special zone of the Tigray region (p = 56.6%;
95% CrI: 37.4, 74.6) and the Oromia Special zone of the Amhara region (p = 55.3%; 95%
CrI: 32.7, 76.1) had a higher prevalence of stunting. Children who were from the Etang
Special zone of the SNNP region had the lowest prevalence of stunting among children
aged 24–59 months (p = 29.4%; 95% CrI: 13.8%, 52.0%) [Table S3].
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3.2. Factors Associated with Stunting among Children 0–23 Months of Age

In the geospatial regression model, which accounted for the spatial autocorrelation
structure, children who were breastfed for more than 12 months (odds ratio (OR) = 2.03;
95% CrI: 1.36, 3.05) and those whose mothers were underweight (OR = 1.36; 95% CrI: 1.11,
1.65) were more likely to be stunted compared to their counterparts. In the same model,
children who were perceived to be smaller than average (OR = 1.35; 95% CrI: 1.08, 1.60)
and those who resided in the “arid” geographic areas (OR = 2.21; 95% CrI: 1.22, 4.02)
were more likely to be stunted compared to their counterparts. Maintaining the influence
of spatial autocorrelation and other covariates constant, children who did not receive
breastmilk within 24 hours prior to the survey (OR = 0.59; 95% CrI: 0.38, 0.89), and
those with overweight/obese mothers (OR = 0.47; 95% CrI: 0.31, 0.69) were less likely to
be stunted compared to their counterparts. Children from middle-income households
(OR = 0.68; 95% CrI: 0.53, 0.89), and those with employed mothers (OR = 0.68; 95% CrI: 0.51,
0.91) had a lower odds of stunting, following the influence of spatial autocorrelation
accounted (Table 2).

In children aged 0–23 months, the spatial range, where the spatial autocorrelation
became negligible (less than 0.1), was 52.2 km (95% CrI: 15.5, 98.8), and the spatial variance
was 0.24 (95% CrI: 0.10, 0.39) (Table 2).

3.3. Factors Associated with Stunting among Children 24–59 Months of Age

In the geospatial regression model, children who did not receive breastmilk (OR = 0.57;
95% CrI: 0.48, 0.67) and those who resided in rich-income households (OR = 0.70; 95%
CrI: 0.58, 0.85) had lower odds of being stunted compared to those who were exclusively
breastfed and those from poor income households, respectively. In the same model, children
who were anemic (OR = 1.73; 95% CrI: 1.52, 1.96), and those who were perceived to be
smaller than average (OR = 1.64; 95% CrI: 1.39, 1.92) were associated with higher odds of
stunting compared to their counterparts. After accounting for the spatial autocorrelation,
children who resided in the “arid” geographic locations were more likely to be stunted
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compared to those who resided in the “wet” geographic locations (OR = 2.02; 95% CrI: 1.11,
3.65) (Table 2).

In children aged 24–59 months, the spatial range and variance were 54.4 km (95% CrI:
24.4, 87.7) and 0.33 (95% CrI: 0.21, 0.45), respectively (Table 2).

Table 2. Geospatial modelling for proximal and contextual determinants of stunting among children under five years of age
in Ethiopia, 2016 EDHS (n = 9089).

Variables
0–23 Months of Age 24–59 Months of Age

OR (95% Crl) OR (95% Crl)

Child feeding factors

Early initiation of breastfeeding (EIBF)
No 1.00 -
Yes 0.91 (0.76, 1.10) -

Minimum dietary diversity (MDD)
No 1.00 -
Yes 0.86 (0.57, 1.30) -

Minimum meal frequency (MMF)
No 1.00 -
Yes 1.02 (0.83, 1.25) -

Bottle feeding
No 1.00 -
Yes 0.89 (0.69, 1.13) -

Duration of breastfeeding
≤12 months 1.00 -
>12 months 2.03 (1.36, 3.05) -

Overall feeding status (in 24 h)
Only breastmilk 1.00 1.00
Breastmilk + supplements 0.87 (0.63, 1.19) 0.48 (0.22, 1.05)
No breastmilk 0.59 (0.39, 0.90) 0.57 (0.48, 0.67)

Other child factors

Mother’s perceived baby size at birth
Larger than average 1.00 1.00
Average 1.12 (0.91, 1.38) 1.21 (1.05, 1.39)
Smaller than average 1.35 (1.08, 1.70) 1.64 (1.39, 1.92)

Diarrhoeal diseases
No 1.00 1.00
Yes 1.28 (1.02, 1.60) 1.17 (0.95, 1.45)

Acute respiratory infection
No 1.00 1.00
Yes 1.05 (0.74, 1.48) 1.10 (0.82, 1.48)

Childhood anaemia
No 1.00 1.00
Yes 1.17 (0.96, 1.43) 1.73 (1.52, 1.96)

Maternal factors

Maternal nutritional status
Normal 1.00 1.00
Underweight 1.36 (1.11, 1.65) 1.21 (1.05, 1.40)
Overweight/ obesity 0.47 (0.31, 0.69) 0.84 (0.66, 1.06)

Maternal educational status
No schooling 1.00 1.00
Primary education 0.98 (0.78, 1.24) 0.99 (0.84, 1.17)
Secondary or higher education 0.67 (0.44, 1.01) 0.86 (0.63, 1.18)
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Table 2. Cont.

Variables
0–23 Months of Age 24–59 Months of Age

OR (95% Crl) OR (95% Crl)

Maternal employment status
No employment 1.00 1.00
Formal employment 0.68 (0.51, 0.91) 0.95 (0.79, 1.14)
Informal employment 1.05 (0.85, 1.30) 1.00 (0.86, 1.17)

Health service factors

Antenatal care visits
None 1.00 1.00
1–3 visits 1.16 (0.93, 1.45) 0.86 (0.73, 1.00)
+4 visits 0.91 (0.71, 1.16) 0.94 (0.80, 1.11)

Place of birth
Home 1.00 1.00
Health facility 0.93 (0.75, 1.16) 1.12 (0.94, 1.33)

Household factors

Household wealth status
Poor 1.00 1.00
Middle 0.68 (0.53, 0.89) 0.90 (0.74, 1.08)
Rich 0.80 (0.62, 1.04) 0.71 (0.59, 0.85)

Source of drinking water
Not protected 1.00 1.00
Protected 1.02 (0.84, 1.24) 1.03 (0.90, 1.19)

Toilet system
Not improved 1.00 1.00
Improved 0.74 (0.54, 1.01) 0.96 (0.77, 1.19)

Climatic factors

Daytime land surface temperature
<30 ◦C 1.00 1.00
30–34.99 ◦C 0.91 (0.67, 1.22) 1.12 (0.87, 1.45)
+35 ◦C 1.01 (0.66, 1.54) 1.19 (0.82, 1.73)

Annual average rainfall (in mm)
<141 mm 1.00 1.00
142–1199 mm 0.53 (0.21, 1.41) 0.91 (0.36, 2.31)
≥1200 mm 0.52 (0.19, 1.49) 0.85 (0.32, 2.26)

Aridity
Wet 1.00 1.00
Semi-arid 1.67 (1.11, 2.49) 1.33 (0.93, 1.91)
Arid 2.21 (1.22, 4.02) 2.02 (1.11, 3.65)

Number of wet days per year
Low 1.00 1.00
Medium 0.96 (0.59, 1.54) 1.25 (0.79, 1.98)
High 1.20 (0.67, 2.12) 1.77 (1.05, 2.99)

In-sample model validation
DIC 3687.5 6845.6
WAIC 3691.5 6848.0
Marginal likelihood −2115.9 −3681.5

Spatial random effects
Kappa 7.33 (2.14, 11.86) 6.43 (2.92, 10.65)
Variance 0.24 (0.10, 0.39) 0.33 (0.21, 0.45)
Range * (in km) 52.2 (15.5, 98.8) 54.4 (24.4, 87.7)

OR = Odds Ratio; 95% Crl = 95% Credible Interval; DIC = Deviance Information Criterion; WAIC = Watanabe-Akaike Information Criterion;
* Range indicates the distance value (in the unit of the point coordinates) above which spatial dependencies become negligible.
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3.4. Model Validation

In children aged 0–23 months, model validation check using 25% of randomly selected
locations showed that the predicted model had root mean square error (RMSE) of 18.6, and
57.7% of the predicted proportions were found within 95% CrIs of the posterior predicted
distribution. Pearson’s correlation coefficient (r = 0.61) indicated a stronger correlation
between observed and predicted values (Figure S6).

4. Discussion

This study showed wide variations in the prevalence of stunting across the administra-
tive zones of Ethiopia. The prevalence of stunting was highest in the South-East zone and
the Mekelle Special zone of the Tigray region, while the lowest prevalence was reported
in the Sheka zone and the Etang Special zone of the SNNP region. The factors associated
with stunting also varied slightly by age group. For children aged 0–23 months, limiting
factors were non-receipt of breastmilk, mother’s BMI (overweight/obese), employment
status (employed) and higher household wealth. Enabling factors for stunting in children
aged 0–23 months included breastfeeding for more than 12 months, residence in the “arid”
geographic areas, mother’s perceived birth size of the child (smaller than average) and
mother’s BMI (underweight). Almost similar limiting and enabling factors were found
among children aged 24–59 months, but with the exception of anemic children, who had a
higher likelihood of being stunted compared to that of non-anemic children.

Understanding the specific geographical differences in stunting has several advantages
for public health interventions and research in Ethiopia. Firstly, it helps to highlight where
new and/or additional public health efforts are needed to tackle childhood undernutrition.
Secondly, it helps to ensure that scarce resources are specifically used in regions/areas
with the highest burden of the disease. Thirdly, it helps to unmask important geographical
heterogeneity and to facilitate subnational comparisons of childhood undernutrition, as
country-level estimates cannot provide detailed subnational variations. Finally, it helps to
provide more granular subpopulation data, which are essential to the emerging concept of
precision public health which has been briefly described as “the use of best available data to
target more effectively and efficiently interventions of all kinds to those most in need” [66].
Our study provides detailed subpopulation data on stunting in Ethiopia, where nutrition
efforts can be specifically implemented to further reduce the burden of childhood stunting.

Several studies from LMICs have shown clustering of undernutrition within-country
regions [67–69]. The present study showed that there was a higher proportion of stunted
children in the northern Ethiopian regions of Tigray, Afar, Amhara and Benishangul Gumz,
and the causes may be multifactorial. The northern regions experience higher than normal
natural and manmade shocks, including cyclical drought and famines, civil conflicts
and insurgencies [70,71]. These events have important implications for low agricultural
production, food insecurity and childhood undernutrition. Additionally, long-lasting high
population pressures and deforestation, as well as a high variability in rainfall in the region
are likely to have affected land preservation and suitability for crop production and animal
grazing [5,71]. Geographically targeted nutritional interventions have the potential to
accelerate reductions in childhood stunting through improvement and optimization of
resource allocation for programs and services.

The study showed that children who breastfed for more than 12 months were more
likely to be stunted compared to those who ceased breastfeeding within 12 months. Studies
conducted in Nigeria [46], Nepal [72] and Thailand [73] showed a similar association,
where a longer duration of breastfeeding was associated with stunting. WHO/UNICEF rec-
ommends EBF from aged 0–5 months and the introduction of timely, diversified, frequent
and safe complementary foods to children around the age of six months [74]. However, in
many LMICs, the practices of EBF and the timely introduction of complementary foods
are often not achievable [75–80]. A recent study conducted in India [45] reported that
inappropriate complementary feeding was associated with stunting and severe stunting,
where unsafe food handling and storage were indicated as one of the enabling factors.
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These inappropriate food handling practices are evident in Ethiopia [81,82] and may be
contributing to the burden of stunting in the country [45].

Consistent with studies from Tanzania [83], Burundi [84], Nigeria [46], India [45] and
Nepal [72], our study showed that children perceived by their mothers to be smaller than
average size at birth had higher odds of stunting. In the absence of measured birth weight
data, mother-reported perceived birth size data have been used as a proxy indicator to
approximate birthweight [45,46,72,83,85]. The relationship between smaller birth size and
stunting could be due to lower sized children at birth having an increased vulnerability
to infection (such as diarrhea, ARI, and malaria) [86–88] with resultant complications that
include respiratory distress, jaundice, anemia, fatigue and loss of appetite [89,90]. These
findings have been reported in research conducted in Nigeria [46], Bangladesh [91] and
other LMICs [92]. Mechanisms as to why and how infections increase the risk of childhood
stunting have been reported elsewhere [45]. Comprehensive interventions to improving
women’s nutritional status, and increasing access and quality of women’s perinatal health
services might be beneficial for reducing the burden of stunting attributed to smaller
birth size.

Research on the intergenerational effects of childhood undernutrition indicated that
perinatal maternal nutritional disadvantage has adverse effects on the health and devel-
opment of infants and young children [93,94]. These studies showed that children whose
mothers were underweight are more likely to be underweight, stunted and wasted. The
children also performed worse at school, earned lower income and had a higher risk of
non-communicable diseases in adulthood compared to their counterparts [8,94,95]. In the
present study, children whose mothers were underweight (i.e., BMI < 18.5 kg/m2) had
a higher risk of being stunted, but children of mothers who were overweight or obese
were less likely to be stunted compared to their counterparts. Similar findings have been
reported in studies conducted in Tanzania [83], Nigeria [46], and Pakistan [96]. Maternal
underweight possibly contributes to childhood stunting through mother–baby shared
genetic factors and the socioeconomic, health and the environmental context in which both
mother and child live, and increased the risk of preterm birth and/or LBW from maternal
underweight [93,97,98].

Improved household socioeconomic conditions can influence child nutrition through:
(i) higher household income, (ii) improved household purchasing power for foodstuffs,
and (iii) improved knowledge and childcare practices [1,99–101]. This study indicates
that children who resided in socioeconomically improved households (i.e., wealthy house-
holds or having formally employed mothers/caregivers) were less likely to be stunted.
The association between wealthy households and lower odds of stunting was reported
in Kenya [102], South Africa [103], and sub-Saharan region [99]. Studies conducted in
Uganda [104], South Africa [103], India [45], and sub-Saharan region [81,82,99] also showed
the negative influence of mother’s not being employed on childhood stunting.

Our study showed that children from the “arid” geographic areas were associated with
stunting, consistent with studies conducted in Uganda [105], Mali [58], and India [49]. The
evidence from this study supports the hypothesis of the direct relationship between high
aridity index (characterized by excessive heat, and inadequate and variable precipitation)
and stunting [52,106]. In Ethiopia, these “arid” geographic areas are associated with
stunting potentially due to the impacts of climate change such as frequent and severe
shortfalls in precipitation, and continuous rises in temperature, which may result in food
insecurity, droughts and undernutrition (including stunting) [107]. Furthermore, more than
three quarters of Ethiopians depend on subsistence and rain-fed farming, and livestock
production that is historically linked to low crop production, and less diversified and
commercial foods [105]. Although this study showed the positive relationship between the
“arid” locations and stunting, there is a need for further research in order to examine the
mediating effect of crop production and food insecurity with childhood stunting.
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5. Strengths and Limitations

The use of EDHS data has limitations. Firstly, recall bias due to the interviewer-
administered nature of some of the questions may have affected the study results, but
objective anthropometric measurement (e.g., height) was used to calculate the nutritional
index (HAZ) for stunting [17]. Secondly, the inability to consider all potential confounders
(such as food insecurity, and social network factors) may have influenced the measures
of association between the study variables and stunting. Nevertheless, climatic factors
(e.g., aridity and temperature) were considered in our models, and can approximate
factors such as crop production and food insecurity [49–52]. Thirdly, observed differences
in the prevalence of stunting are likely to be under-estimated due to non-differential
misclassification bias related to the displacement of GPS coordinates of EDHS clusters,
though a circular buffer was drawn for each cluster during the extraction of the geo-
covariates [40]. Fourthly, the number of clusters sampled (645 EAs) for the 2016 EDHS
was limited, leading to generalizing estimates to the whole of Ethiopia (i.e., 84,915 EAs),
nevertheless we implemented a geostatistical model that allowed measurements at any
location in the country. Finally, clearly articulating temporal relationships between study
factors and outcomes is difficult due to the cross-sectional nature of the study. However, an
observational study might be the only method available to investigate some of the study
variables (e.g., climatic factors).

The strengths of the present study include: (i) the nationally representative DHS data;
(ii) the use of Bayesian inference, which is superior in modelling geographical dependence
of outcomes [65]; (iii) the inclusion of environmental and climatic factors (in addition to
the individual level data) may further improve the robustness of our estimates; (iv) the
production of subnational surface area maps and with small area stunting prevalence,
which can inform resource allocations and implementation of programs in specific areas.

6. Conclusions

Subnational estimates from the administrative zones showed wide variations in the
prevalence of stunting in Ethiopia, highlighting the wide heterogeneity in socioeconomic,
cultural and climatic risk factors, as well as differences in vulnerability to man-made
and natural disasters in Ethiopia. The subpopulation data provides information where
nutritional efforts are implemented to further reduce the burden of childhood stunting.
Integrated governmental and non-governmental efforts are also needed to break the in-
tergenerational complex interplay of socioeconomic, health, environmental and political
factors for childhood stunting. Further research is recommended, to examine whether crop
production and food insecurity have mediated the relationship between climatic condition
and undernutrition in Ethiopia.
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