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Abstract: Fluid intake monitoring is an essential component in preventing dehydration and over-

hydration, especially for the senior population. Numerous critical health problems are associated 

with poor or excessive drinking such as swelling of the brain and heart failure. Real-time systems 

for monitoring fluid intake will not only measure the exact amount consumed by the users, but 

could also motivate people to maintain a healthy lifestyle by providing feedback to encourage them 

to hydrate regularly throughout the day. This paper reviews the most recent solutions to automatic 

fluid intake monitoring both commercially and in the literature. The available technologies are di-

vided into four categories: wearables, surfaces with embedded sensors, vision- and environmental-

based solutions, and smart containers. A detailed performance evaluation was carried out consid-

ering detection accuracy, usability and availability. It was observed that the most promising results 

came from studies that used data fusion from multiple technologies, compared to using an individ-

ual technology. The areas that need further research and the challenges for each category are dis-

cussed in detail.  
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1. Introduction 

Dehydration is a common issue in elderly people that can lead to serious complica-

tions and death. Patients admitted to the hospital for dehydration have a 17% chance of 

mortality in the first 30 days and a 48% chance after 1 year [1]. Even after accounting for 

confounders, elderly dehydrated patients admitted to the hospital are six times more 

likely to die than those with normal hydration status [1]. Dehydration is subdivided as 

hypertonic (water loss, caused by inadequate intake, sweating/evaporation or vomiting), 

isotonic (salt and water lost proportionally caused often by diarrhea), and hypotonic (salt 

loss, often caused by diuretics) [2]. Seniors are at a higher risk of hypertonic dehydration 

for a multitude of reasons surrounding reduced fluid intake and excessive output. The 

total amount of water in the body reduces by 10–15% in seniors [3,4], which makes them 

vulnerable to small volume fluctuations [1,5]. The sensation of thirst decreases in seniors 

[5], while they have more difficulty concentrating urine in the bladder [6,7]. If a healthy 

young person limits fluid intake, urine output will also decrease; however, this is not the 

case for elderly people [6]. Older adults are more susceptible to chronic renal problems, 

causing electrolyte abnormalities; however, these abnormalities can also occur without 

renal problems [1]. Dehydration can result in confusion, seizures or even death [8]. Med-

ications such as diuretics, which are commonly prescribed for heart failure and some kid-

ney disorders, can cause excessive urination, leading to fluid and salt loss [9]. Addition-

ally, some elderly patients with dementia forget to drink, and some choose not to drink 

because of a fear of experiencing an incontinent episode or urinating too frequently [10]. 
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Other factors including swallowing difficulties, ambulation difficulties, and dexterity can 

also lead to dehydration in seniors by lowering liquid intake [8].  

Monitoring fluid intake/output (fluid cycle) is critical to either diagnose or prevent 

complications. For example, heart failure patients must track their liquid intake and out-

put volume to ensure they are not retaining liquid in the body [11]. People with chronic 

kidney stones must track fluid intake to ensure they are sufficiently hydrated to prevent 

stone formation, and aim for a urine output of 2.5 L per day in adults [12]. Although some 

studies mentioned that the gold standard to measure hydration level is blood se-

rum/plasma osmolality (Posm), this has been highly disputed [13–15]. This method is inva-

sive and is impractical for routine measurement. Some researchers argue that though Posm 

is not adequate to assess chronic dehydration status as it changes constantly, it is best for 

detecting acute dehydration [16,17]. However, since Posm varies throughout the day and is 

very dependent on other factors, Armstrong et al. showed that it is inaccurate in reflecting 

the total body water gains and losses and should not be used in a clinical setting [13]. Posm 

also can only diagnose the water-loss dehydration and cannot be used to diagnose water-

solute-loss [18]. There are also several other common methods to detect and measure de-

hydration including urine osmolality, urine color, urine specific gravity, weight fluctua-

tion, bioelectrical impedance (BIA), urea creatinine ratio, tongue/mouth dryness, dry mu-

cosa, jugular distention, axillary moistness, sunken eyes, skin moisture and turgor [19–23]. 

Though some of these methods have been validated in younger subjects, there is a lot of 

controversy about their effectiveness in the older population [19–23]. Urine biomarkers 

such as osmolality and specific gravity are commonly used to assess hydration status over 

24 hour periods. However, this technique has conflicting evidence in younger and elderly 

populations [18,20,24,25]. Many studies agreed that a single sample of both blood or urine 

is too variable to be used alone [14,24,26]. In general, older adults have more difficulty 

concentrating urine in the bladder, thus using urine as a marker is less useful for acute 

dehydration [16]. Some studies validated urine color as a sign of dehydration, but this can 

be easily affected by medication, diet, and renal function, so a baseline needs to be deter-

mined for each patient [19,27]. Vivanti et al. developed a dehydration screening tool in-

volving 24 h urine sampling, evaluation of physical symptoms and a questionnaire [28]. 

This tool was slightly modified and tested in [29], which found that including subjective 

questions, such as thirst, was not useful. However, they found a significant association 

between laboratory markers and the screening tool scores [29]. In a literature review by 

Hooper et al., they concluded that from the contradicting evidence in literature, 

standalone tests including dry mouth, feeling of thirst, heart rate, urine color, urine vol-

ume, BIA of intracellular or extracellular water, and fluid intake were not solely able to 

detect dehydration level in seniors [30]. The authors conducted another study and found 

that reporting missing drinks between meals, expressing fatigue and BIA resistance at 50 

kHz could potentially be useful in identifying dehydration [30]. The same team performed 

the largest study to date, to our knowledge, to test common dehydration detection meth-

ods in 162 elderly patients in a senior home [20]. The findings confirmed that despite con-

tradicting evidence in the literature, specific gravity of urine, urine color, and urine osmo-

lality were not accurate detectors of dehydration in a senior cohort [20]. Urea and creati-

nine ratio is often used in healthy athletes to assess dehydration, but this can be elevated 

for a variety of reasons other than dehydration in seniors [16]. In healthy patients, a rapid 

change in body weight of 3% or more could be a sign of dehydration, but this is heavily 

influenced by food intake, time of day, clothing weight and accuracy of the scale [19]. Liu 

et al. used a camera to capture images of the skin to determine skin turgor. However, this 

technique is not applicable for seniors as they have lower skin turgor resulting from lower 

collagen levels [31,32]. A dry tongue may be 85% accurate if the dehydration is moderate 

or severe, but the determination of a dry tongue is subjective and it can be caused by many 

other factors [19,31]. Additionally, mucosa is often dry in seniors from medical conditions 

including Alzheimer’s disease, chemotherapy and antidepressants or breathing through 

the mouth [19,31]. Some physicians also test for an absence of jugular venous distention 
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(determining whether the jugular vein bulges when pressure is applied) to diagnose de-

hydration, but this is sometimes difficult to visualize and is a subjective method, leading 

to poor interobserver variability [33]. This was further confirmed by Fortes et al., who 

conducted hydration assessments on 139 adults after hospitalization [18]. They found that 

physical signs and urine biomarkers had poor sensitivity [18]. However, they did find that 

saliva osmolality had moderate sensitivity for both water-loss and water-solute-loss de-

hydration among elderly [18]. 

There is no simple, non-invasive and non-controversial method to measure hydra-

tion levels in seniors. Many studies emphasized the importance of ensuring proper intake 

as most seniors have inadequate liquid intake [6,8,20,34], but none implemented a system 

to monitor fluid intake and output autonomously. There was an overall consensus that if 

the patient had decreased intake/urination, vomiting, diarrhea, swallowing issues, change 

in behavior and a higher pulse, they are likely to suspect dehydration [21]. Paulis et al. 

proposed that a patient-tailored approach considering individual characteristics and en-

vironment could be best for diagnosing dehydration, as some seniors present several 

physical symptoms while others present one or none when dehydrated [21].  

Elderly patients may initially need extra fluid intake to avoid dehydration, but 

comorbidities and age-related decline in organ function may enhance the vulnerability to 

overhydration [35]. Overhydration is when the body has too much fluid and is caused by 

several conditions that either retain water in the body or cannot remove excess water. For 

instance, heart failure, kidney failure, liver disease, uncontrolled diabetes and even drink-

ing too much liquid might result in overhydration [36]. People who drink a lot of water to 

avoid dehydration, including athletes, can develop overhydration as well [36]. Overhy-

dration can lead to hyponatremia, which is when the salt levels are lowered in the body 

(serum sodium levels < 135 mmol/L) [36]. The consequences of overhydration include 

heart failure and edema, confusion, high blood pressure, seizure and death [36]. 

In this paper, we aim to review technologies that are used to monitor oral fluid intake 

focusing on solutions for the elderly, as dehydration is such a prevalent issue among this 

group. There are many comprehensive review papers on monitoring food intake and diet; 

however, to the best of our knowledge, there exists no review paper on monitoring oral 

fluid intake by recognizing drinking activities. For example, Amft et al. surveyed chewing 

and swallowing technologies, focusing on food intake [37]. They determined a taxonomy 

for dietary monitoring technology which included ambient, wearable and implantable de-

vices. Kalantarian et al. [38] reviewed diet monitoring focusing on acoustic, imaging, in-

ertial and manual food diary techniques, while Prioleau et al. [39], Vu et al. [40], and 

Schiboni and Amft [41] focused on wearable food intake monitoring technologies. Vu et 

al. [40] analyzed various data filtering and signal processing algorithms and Prioleau et 

al. outlined common signal processing or machine learning algorithms used on wearable 

food intake signals [39]. Hassannejad et al. reviewed literature consisting of computer vi-

sion and wearable methods for automatic diet monitoring [42], while Stumbo et al. [43] 

focused on visual approaches only. Recently, Heydarian et al. [44] published a review 

paper on upper body limb motion sensors to assess eating behavior. This paper discussed 

future opportunities in the context of dietary assessment and monitoring. These papers 

focused on eating activity as their primary goal, with only some drinking activities in-

cluded. 

In this review, liquid intake monitoring devices are divided into four categories: 

wearable sensors discussed in Section 3, sensors in surfaces discussed in Section 4, vision- 

and environmental-based approaches discussed in Section 5 and sensors embedded into 

cups and bottles discussed in Section 6. Section 7 presents literature that fused multiple 

sensors from different categories. Finally, Section 8 presents challenges and potential fu-

ture research for each category, respectively. A breakdown of the approaches in this re-

view is shown in Figure 1. A visualization of these four categories is found in Figure 2. 
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Figure 1. Number of articles reviewed per year. 

 

 

Figure 2. Images of the four reviewed categories including (a) wearables, (b) surface-based sen-

sors, (c) vision and environmental based, and (d) smart containers. 

2. Methods 

Google Scholar was used to take an initial sample of articles available using broader 

search terms. Then, Scopus, IEEExplore and Web of Science were employed as the pri-

mary databases, using more specific search terms. Search terms were selected for each 

subsection ensuring that synonyms for each word were also included. The following is a 

list of search terms included, where the ‘+’ represents “and”, the ‘/’ represents “or”, and 

the ‘*’ represents any suffix that could be added to the word: smart/intelligent + bottle/cup, 

liquid intake monitoring, wearable + liquid/drink, vision-based + liquid/hydration/drink, 

drink + detect*, fusion + hydrate* + elder*/senior, RFID + drink*, radar + liquid/intake, 

drink* + activity recognition/radar/IR, drink* detection/liquid + radar/IR, liquid + volume+ 

estimate*/monitor*, food intake + infrared, drink* + activity recognition, liquid+ volume + 

estimate*/monitor*.  

The search included peer-reviewed studies from book chapters, journals, and confer-

ence proceedings. The main search was conducted from August to November 2020. Ad-

ditionally, keywords from some of the most influential papers were used as search terms. 

The references and “Cited By” sections of relevant papers were further explored to find 

related papers.  

Papers that did not study liquid intake and only studied food intake or other unre-

lated activities were excluded. Since this review is focused on the elderly population, in 

the wearable section, we only included literature that used wristbands and textile tech-

nology which could be easily worn without affecting the normal daily activity of the sub-

jects. We have excluded devices that were not watch/band or textile based such as throat 
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and ear microphones or ear inertial devices as they are not practical for everyday use. In 

Section 6, only drinkable containers were included, and monitoring the liquid level of 

large tanks was excluded. Although this review is focused on the elderly population, stud-

ies that used adult subjects were not excluded, as there are too few that only used seniors. 

The papers were categorized first based on the location of the sensors, for example, “wear-

able”, “environmental”, “on the bottle”, and “on a surface” and then subcategorized by 

specific technology used shown in Figure 3. In total, 201 papers were analyzed, and 115 

relevant papers were selected for this review. As this is a state-of-the-art review paper, we 

focused on literature from the past 10 years shown in Figure 1, where more than half of 

the papers are from 2015 to 2020. 

 

Figure 3. Breakdown of liquid intake monitoring approaches based on the technology used. Or-

ange represents wearables, purple is fusion, green is smart containers, blue is surfaces with em-

bedded sensors, and gray is vision- and environmental-based approaches. 

In order to evaluate previous algorithms, we compared different performance met-

rics such as accuracy and F1-score for drinking detection and the Mean Absolute Percent 

Error (MAPE) or the Mean Percent Error (MPE) for volume intake estimation. For drink-

ing detection, if there was an unbalanced dataset (meaning there are more data points for 

one class compared to another), we compared the F1-scores which consider the tradeoff 

between precision and recall. The MAPE and the MPE reported the standard errors which 

indicate how much the intake volume estimates differed from the actual values. The MPE 

shows whether the model underestimates or overestimates, while the MAPE gives a better 

sense of the true error for each individual intake. 

3. Wearable Technology 

Several wearable techniques are proposed to detect food or liquid intake including 

inertial measurements of the wrist or body [45–73], or textile-based measurements [74–

86]. The majority of studies analyzed and classified food intake with less focus on liquid 

intake. This section will review 28 papers using wearable body sensors (mostly in the form 

of a wristwatch) and 13 papers using textile sensors and exclude throat or ear wearables, 

as they are not practical for long-term use. 

3.1. Intertial 

Several research papers have used Inertial Measurement Units (IMUs) on the wrist 

to measure liquid intake. Most previous work focused on intake recognition, but did not 

attempt to provide an intake volume estimate [45–49]. The wrist-mounted inertial sensors 

are often used in combination with machine learning (ML) algorithms to detect drinking 
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events. However, some studies used template-matching or threshold-based algorithms 

[50,51]. For example, Shen et al. used thresholding to segment the events based on the 

wrist roll values, minimum time between peaks, and velocity [50]. They reported a low 

sensitivity of 66–75% for drinking detection in an unrestricted setting [50]. Additionally, 

Eskandari et al. created motion templates using two 3D wrist accelerometers and gyro-

scopes to differentiate between eating and drinking [51]. Despite having a large dataset of 

22,383 intake events, the accuracy of identifying 5 classes (drinking, single hand eating, 

double hand eating, fork and spoon) was 46%. This low accuracy rate was mainly due to 

the motion artifact, which is a major problem in inertial signals [51]. In this study, drinking 

detection did outperform eating with 83% accuracy, and it was concluded that food and 

drink events had different wrist motion patterns [51].  

The majority of recent papers used Artificial Intelligence (AI) to detect drinking using 

wearable devices. Considering single wrist inertial devices, fluid intake classification was 

performed using Convolutional Neural Networks (CNN) with Long Short-Term Memory 

(LSTM) networks or LSTM alone [46,52], hierarchical temporal memory (HTM) [48], log 

regression with Artificial Neural Networks (ANN) [53,54], Random Forest (RF) [47,54], 

Hidden Markov Methods (HMMs) with k-nearest neighbors (kNN) [55] and HMMs with 

Gaussian Mixture Modelling (GMM) [56]. Weiss et al. tested several ML algorithms on 

various Activities of Daily Living (ADL), including but not specific to drinking actions. 

This included RF, decision trees, instance-based learning, Naïve Bayes and multilayer per-

ceptron algorithm, a type of ANN [57]. The results from the accelerometer signal in the 

watch significantly outperformed the gyroscope and overall the RF algorithm provided 

the best results [57]. Additionally, models trained and tested on the same person had an 

overall higher average accuracy than models validated based on Leave One Subject Out 

(LOSO) as expected [57]. 

Several studies failed to have a Null class [48,52,58], which includes general activities 

rather than only the specified classification labels. Among the papers reviewed, the high-

est accuracy of >99% was achieved by LSTM for all 5 classes in identifying eating (spoon, 

fork, knife, hand) and drinking using gyroscope signals from the wrist and waist of the 

participants [52]. The additional gyroscope on the waste determined whether the person 

was standing or moving [52]. This paper found that gyroscope data is preferred over ac-

celerometer data and led to a higher accuracy [52]. However, this study did not include a 

Null class that specifies the “other activities”, meaning that only the predefined gestures 

were included in the dataset. The inclusion of a Null class can significantly affect the ac-

curacy of the study, so this has been added as an important factor as seen in Table 1. 

Table 1. Summary of the top seven wearable literature, where #Sen. corresponds to the number of 

sensors used and #Sub. corresponds to the number of subjects in the study. The system accuracy 

denotes the overall average accuracy when classifying all actions. The drink detection accuracy 

shows the accuracy for detecting the drinking action only. The same is applied for the F1-scores. 

Ref. #Sen. Method #Sub 

System Ac-

curacy 

(%) 

Drinking  

Detection 

Accuracy 

(%) 

System  

F1-Score 

(%) 

Drinking 

Detection 

F1-Score (%) 

Null 

Class 

[46] 2 
Binary CNN1 

LSTM2 
41 

95.7 
- 

96.5 
- √ 

81.4 85.5 

[52] 1 5-class RNN3+LSTM2 NA 99.6 100 99.2 100 × 

[54] 1 

Binary RF4 

6 

97.4 97.4 96.7 95.3 

√ 3-class ANN5 98.2 99 95.3 93.3 

5-class ANN6 97.8 98.6 87.2 90.9 

[59] 1 
2-stage CRF7: 8-class 

70 - - 
60 85.5 

√ 
3-class 81.1 93.4 

[60] 1 
Binary Adaboost 

20 
94.4  96.2 - 

√ 
5-class RF4 - - 91 95 
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[61] 
5 

9-class SVM7 20 
91.8 

- 
91.1 - 

× 
2 89 88.4 93.4 

[62] 3 3-stage SVM7+HMM8 14 - - 87.2 - √ 

1 Convolutional Neural Network, 2 Long Short Term memory, 3 Recurrent Neural Network, 4 Ran-

dom Forest, 5 Artificial Neural Network, 6 Conditional Random Fields, 7 Support Vector Machine,  
8 Hidden Markov Model 

From the studies including a Null class, Wellnitz et al. achieved an average accuracy 

of 95.7% for drinking detection using a single IMU on the wrist and 81.4% when placing 

the IMU on eye glasses [46]. Moreover, classical algorithms including Support Vector Ma-

chine (SVM), kNN and RF performed as well as the hybrid CNN-LSTM deep learning 

model [46]. This study also found that there was a low correlation (0.49) between length 

of drink and volume consumed across the 41 participants, showing that this is not a reli-

able way to estimate volume intake [46]. They further attempted to create a ANN archi-

tecture by the zero-padded inertial data. Although this new network was superior to ran-

dom guessing, it was still not accurate to estimate the volume intake [46]. Among papers 

including a Null class, Anderez et al. achieved the best intake classification results, using 

a multistep algorithm with a single wrist IMU [54]. They tested binary, 3-class (Null, 

drinking and eating), and 5-class (Null, drinking, spoon, fork, hand) models. The initial 

stage of the developed algorithm used a Crossing-based Adaptive Segmentation Tech-

nique (CAST) to recognize periods of intake with 100% recall which removed false posi-

tives before preforming classification. Then, gesture recognition was applied with either 

RF (for binary classification) or ANN (for three and five class) algorithms. The system 

achieved an accuracy of 97.4% for binary classification, 99% for the 3-class and 98.6% for 

the 5-class classification models. The recall and precision were both approximately 93% 

for the 3-class, but the system was only tested on a small sample size of 6 subjects [54]. 

The authors also previously tested a CNN model to recognize dietary gestures including 

drinking with an accuracy of about 97% [63,64]. 

Chun et al. focused on detecting drinking using adaptive segmentation with a single 

commercial wrist sensor with 30 participants drinking from four containers and perform-

ing a multitude of ADLs including eating and drinking [65]. They achieved an average 

precision 90.3% and recall 91% to detect drinking with binary classification [65]. Instead 

of using the traditional fixed length sliding window, they used an adaptive approach 

which allowed them match the exact duration of the drinking instances [65]. They found 

the RF model performed the best with LOSO cross validation, using 45 extracted features 

[65]. Alternatively in the DrinkWatch, Flutura et al. showed that ML models can be de-

ployed directly on smartwatches to detect drink events in real time [66]. This also had a 

built-in user feedback system where the classification results could be corrected by the 

user. However, when running their app on the watch, the battery life was reduced to only 

4 h [66]. Gomes and Sousa were able to perform the drinking recognition in real time and 

could also predict a hand to mouth action 0.7 s before it occurred using a single commer-

cial IMU on the wrist [47]. The RF model was tested both offline and in real-time with an 

average F1-score of 97% and 85% for drinking recognition, respectively [47]. The data was 

collected from 12 participants in a lab environment and 5 in a free-living environment. 

Both scenarios included a Null class of “non-drinking” excluding “eating”. The lower F1-

score of the real-time scenario is likely due to more motion artifacts in a real-world envi-

ronment. A subsequent study by Gomes to evaluate free living conditions also found RF 

to be the most effective model in detecting fluid intake activity [67]. The accuracy was 

superior using binary models over multiclass (with eating, drinking, and Null) models 

[67]. The study obtained an F1-score of 97% for one young participant using the device all 

day, and 93% average F1-score for 5 others [67].  

Hamatani et al. and Huang et al. were the only studies that estimated liquid volume 

intake using wrist IMUs and machine learning [59,60]. Both studies first performed a bi-
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nary classification, then a gesture spotting (3 sub-classes) and finally intake volume esti-

mation. The gesture spotting sub classified the detected drinking events into micro-activ-

ities such as lifting the bottle, sipping and releasing the bottle. Additionally, both studies 

had a Null class of various activities and various drinking containers which created a da-

taset of 70 and 20 subjects, correspondingly. Hamatani used a linear regression model in 

a laboratory setting and in free living conditions to obtain a MAPE of 31.8% and 34.6%, 

and a MPE of 14% and 15% for intake volume estimation, respectively [59]. This test was 

limited as the users had to remain relatively still while drinking and they had to place the 

bottle down before picking it up to take another drink [59]. The drink detection had a 

precision and recall of 84% and 87%, respectively with an 8-class Conditional Random 

Fields (CRF—a prediction modelling algorithm often applied in structured prediction.) 

[59]. They used sip duration, integration of the x-axis and y-axis as features to estimate 

fluid intake, and found a correlation of R = 0.69, −0.6, and −0.55, respectively [59]. 

Huang et al. tested several machine learning algorithms [60]. A binary Adaboost al-

gorithm was used for drinking events recognition with 94.42% accuracy, RF was used for 

gesture spotting (lift, sip, release) with 90% sensitivity and 92% precision, and finally a 

linear SVM algorithm was used for fluid intake estimation with a 40.11% MAPE [60]. Amft 

et al. also used a wrist accelerometer to detect drinking events and further attempted to 

classify the liquid level and container type based on upper body posture [45]. This model 

could not estimate the accurate amount of liquid intake, as their algorithm only detected 

three levels of fluid in the container (empty, half full and full) [45]. In a laboratory setting, 

the algorithm had an average liquid level recognition accuracy of 72% when tested on 9 

different containers. 

Studies by Junker et al., Amft et al., Moschetti et al. and Ordonez et al. used multiple 

IMUs on different parts of the body [61,68–70]. Amft et al. and Junker et al. failed to in-

clude a Null set, and both used HMMs to classify various eating and drinking events 

[68,69]. Both studies required two IMUs on each arm and Junker added an additional de-

vice on the trunk, which is quite cumbersome. Some studies include drinking when per-

forming general ADL classification. For example, Moschetti et al. placed IMUs on three 

fingers and the back of the hand to test various ADLs including eating and drinking ac-

tivities [61]. They compared Decision Tree (DT) with an SVM algorithm, and found that 

the SVM with all 4 IMUs provided the highest accuracy of 91% to classify 9 gestures [61]. 

Using four IMUs on the fingers is not comfortable nor practical in real life. Using only one 

IMU on the index finger and wrist was a good balance to compromise accuracy and real-

world feasibility, as the system achieved an average accuracy of 89% [61]. The results 

showed that adding any of the finger IMUs improved the accuracy of the system where 

the average accuracy using only the wrist IMU was 65.03% [61]. It is worth mentioning 

that these results are for classifying several gestures and not solely drinking. Ordonez et 

al. used deep learning on two existing datasets where the subjects had either 7 IMUs and 

12 accelerometers (placed across arms, trunk, legs and feet) or 10 accelerometers on each 

arm to classify ADLs including drinking [70]. They achieved an F1-score of 90% using 8-

layer convolutional and LSTM layers to classify “drinking coffee” which might take 

longer relative to other activities in the dataset [70]. Using their 8-layer algorithm, they 

achieved superior results compared to the baseline CNN models.  

Merck and Mirtchouk et al. performed several studies on liquid intake recognition 

using IMUs on both wrists and Google Glasses to get inertial head movement. They re-

ported low recall rates (44–47%) throughout three studies [71–73]. In one study, the 

amount of fluid intake was estimated by a 47.2% Mean Absolute Error (MAE). However, 

the model was not improved by this additional parameter, but provided the best results 

when combining both audio and motion data from the glasses. 
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3.2. Textile 

Textile applications can provide more information than inertial sensors, including 

chewing and swallowing detection. However, they are less practical and are often incor-

porated into shirts in the form of a turtleneck. In this section, there are two main textiles: 

(1) in the form of collars/bands around the neck, containing electrodes detecting swallows, 

and (2) using Respiratory Inductance Plethysmography (RIP). When one swallows, there 

is an apneic event in the respiratory signal captured by RIP. This method detects swallow-

ing based on a continuous measurement of respiration using plethysmography.  

Cheng et al. first used textile-based electrodes integrated into a turtleneck shirt to 

measure the changes in capacitance in the throat [74]. This was used to recognize chewing, 

swallowing, speaking and sighing in different head positions, while sitting or walking 

[74]. Although the authors claimed that the proposed textile approach did not need direct 

skin contact or excessive fixation to the body, large amount of data was lost in their initial 

tests. The overall classification accuracy using a threshold-based algorithm was achieved 

77% when sitting and 69% when walking. Under sitting conditions, the swallowing liquid 

action had a classification precision of 60% and recall of 80% when tested on 3 subjects. 

The neckband system was further validated on 3 subjects for 3 days [75]. They reported a 

high rate of false positives (136 FP for only 64 true events) considering their small sample 

size [75]. Zhang et al. investigated a generic fabric to place bio-impedance electrodes and 

resistive pressure sensors [76]. The fabric was used in the seam of a men’s dress-shirt and 

was invisible and unobtrusive [76]. This study was only a pilot study with three subjects 

and they did not report any accuracy values. However, it was found that fusing the pres-

sure and bio-impedance data can improve the results. Amft and Tröster combined surface 

EMG and a microphone in the collar of a shirt. EMG signals were able to detect the swal-

lowing events, but they did not provide useful information about the volume and viscos-

ity of the swallow [77]. They attempted to classify low and high volume size and low and 

high viscosity of swallows. They achieved an accuracy of 73% with Linear Discriminant 

Analysis (LDA) and NB and 75% with kNN. Using three classes (low, medium, high) pro-

vided very poor results and was excluded. Subsequently, they could obtain a swallow 

detection accuracy of 70% [78]. These studies both had four and five subjects, respectively. 

Farooq et al. detected food and liquid intake using electroglottography (EGG) in a neck-

lace [79]. The EGG mounted on the neck collar monitors the electrical impedance of the 

larynx to detect swallowing with a detection rate of 89.7% for females and 90.3% for males 

[79]. EGG signal was found to be superior compared to a throat microphone when tested 

on 30 individuals [79]. 

Respiratory Inductance Plethysmography (RIP) 

Moreau Gaudry et al. detected swallowing events in elderly patients by an elasticized 

jacket which measured chest movement continuously to obtain the respiration signal, 

known as an RIP [80]. The accuracy of the system was given by the area under the receiver 

operating characteristic (ROC) curve, and was greater than 0.9 when tested on 14 subjects 

[80]. Dong and Biswas expanded this idea with a chest piezo respiration belt to detect 

pauses in breathing that occur when one is swallowing [62,81–85]. This belt had no contact 

with the skin and converted tension from chest motion into respiration signals. They first 

used template matching to classify normal breathing, swallowing while exhaling and 

swallowing while inhaling [81]. This template-matching algorithm was tested only on 

three subjects with their own customized templates. This method had an average true 

positive rate of 92.5% and false positive rate of 3.3%. They also used SVM to perform the 

same classification with an average recall and false positive rate of about 98.1% and 0.4%, 

correspondingly [82]. Using time or frequency domain features provided similar classifi-

cation results. They also tested SVM to differentiate food and drink swallows in 3 subjects, 

obtaining an average accuracy of 81.3% [77]. In another study, they compared the feature 

matching and machine learning methods on seven subjects and found that the DT model 
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provides better outcomes compared to the template matching (96.6% recall vs. 82.1%) [84]. 

In addition, they found that body movements did not noticeably change the breathing 

signal and the algorithm could correctly classify “spontaneous swallows”, i.e., swallows 

as a result of saliva only, as non-drinks [84]. This study was later refined to test food intake 

detection using a two-step SVM with HMM [85]. They tested 6 healthy young adults with 

no swallowing difficulties and obtained a precision of 75% and recall of 86% on solid food 

swallows. The combination of SVM and HMM gave better results compared to using SVM 

alone. They proposed a 3-stage SVM and HMM hierarchical classifier: first detect normal 

breathing or inhale/exhale swallowing, then detect talking or swallowing food, and finally 

categorize the swallow into liquid or solid intake [62]. For this experiment, the user had 

to wear two RIP belts and a wrist accelerometer to aid in determining the meal duration 

and frequency [62]. The F1-score was improved from 68% to 83% in the second stage when 

including the hand gesture features; however, these had no effect on the first and third 

stages [62]. The F1-score for each stage ranged from 82% to 87.2% [62]. Tatulli et al. applied 

RIP for swallow detection on five subjects using diverse food intake [86]. The method was 

similar to Dong and Biswas but used quadratic discriminant analysis as the classifier [86]. 

The overall accuracy was 79%, which was improved further to 86% after using an EGG 

signal to remove speaking artifact [86]. All reviewed articles in this paper used the RIP 

signals to detect the swallow events and to our knowledge, RIP technology was not used 

to estimate the amount of food or drink consumed. RIP belts do not need direct skin con-

tact and can be incorporated into a shirt comfortably. Table 1 summarizes the top studies 

that used wearable technology for fluid intake detection. 

4. Surfaces 

Tables or table mats embedded with sensors have been used to monitor dietary in-

take [87–95]. Table sensors are used for both drinking and food monitoring, while coaster 

solutions targeted drink detection specifically. All these solutions used load cell, force-

sensing resistors, or pressure mats to measure weight and its distribution. 

Chang et al. created a smart table with weight sensors to determine the amount con-

sumed and RFID sensors to label each food [87]. This method provided 80% accuracy de-

tecting eating and various transferring of food events, but was not practical as every food 

needed an RFID tag [87]. The weight recognition accuracy of the system was 82.62%. The 

sensors on the table had a very low spatial resolution and all food had to be placed in 

specific areas on the table to be read by the load cells, properly [87]. Zhou et al. developed 

a smart table cloth consisting of a textile matrix of pressure sensors (1 cm2 resolution) and 

commercial force sensor resistors on each corner [88,89]. Five subjects tested 40 meals with 

drinks to recognize different movements of cutting, scooping, stirring, and picking up 

drinks with 90% recognition accuracy using a subject dependent 7-class DT algorithm [89]. 

To spot the actions in the continuous data stream, the same algorithm was used and an 

average F1-score of 87.06% and 71.35% for subject dependent and independent were 

found, correspondingly. Although they used a high-resolution pressure sensor matrix, the 

intake weight estimation had a RMSE of 16% [89]. The final system provided high resolu-

tion but low weight accuracy. Haarman et al. embedded 199 5 kg load cells in a table for 

high resolution and tested 4 users eating pie and drinking [90]. Weight measurement er-

rors ranged from 0.3 to 3.6 g, or 0.25% in the pilot study [90]. Mattfeld et al. created a tray 

with load cells and monitored 271 subjects eating and drinking unrestrictedly in a cafete-

ria [91]. The algorithm detected the weight of each bite but weighed only 39% of all food 

and drink bites due to the instability of the scale [91]. Eating and drinking were discrimi-

nated using a weight curve with 1 false positive for every 10 bites [91]. Watanabe et al. 

proposed a portable sensor sheet, similar to a place mat, to monitor food and drink con-

sumption during mealtimes at nursing homes [92]. The system comprised a gel sheet be-

tween eight pressure sensors and an acrylic hard board, and was tested by having two 

caregivers feed two volunteers as if they were in a nursing home setting [92]. The maxi-

mum error for food intake volume was 49 g, with an error of 9 g for drink estimation, but 
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this study had a very small sample size of only 2 meals [92]. Lessel et al. developed a 

coaster using a load cell to track liquid intake and an LED for feedback to remind the user 

to drink [93]. After 3 weeks with 20 subjects, they found that most subjects reached their 

liquid intake goals, but they lost some data due to Bluetooth transmission issues and 

movement of the coaster [93]. Chan and Scaer had a very similar design of a coaster but 

did not test it on human subjects [94]. Plecher et al. placed force-sensing resistors in a base 

to measure liquid intake volume [95]. This design is bulky and not transportable, though 

works in a seniors home to inform the caregiver that the elderly person is drinking [95]. 

All these methods need the user to place their meal/drinks in a specific area to be able to 

measure the volume intake or to detect the drinking action. Therefore, for an elderly pop-

ulation, this might not be a practical solution as they might forget easily to put the con-

tainer in that specific location. Table 2 summarizes the top four studies that used surface 

technology for fluid intake detection. 

Table 2. Summary of surface embedded literature. The drinking detection accuracy shows the 

classification accuracy for detecting drinking action only, while the system accuracy is the average 

classification accuracy considering all classes. The weight error/accuracy shows the performance 

for identifying the volume intake. 

Ref. #Sen Method #Sub 

System  

Accuracy 

(%) 

Drinking 

Detection Ac-

curacy (%) 

Weight  

Error/ 

Accuracy 

Limitations 

[87] 9+ 
Rule-based, tem-

plate matching 
3 80 - 

82.62%  

accuracy  

Small sample size, all ob-

jects need RFID  

[89] 1264 

DT1, 7-class 

No LOSO2 5 
91 99 

16% RMSE Low weight accuracy 

With LOSO2 76 99 

[91] 1 
Segmentation and 

thresholding 
271 

39% of bites 

are 

undetected 

39% of drink 

sips 

undetected 

- 
Many false positives and 

undetected intakes 

[92] 8 

Comparing 

against acoustic 

neck microphone 

2 - - <9 g error  Small sample size 

1 Decision Tree, 2 Leave-one-subject-out 

5. Vision- and Environmental-Based Methods 

5.1. Cameras 

Vision-based approaches used cameras and computer vision algorithms or deep 

learning to detect drinking activity. Many of the studies in this field used Microsoft Kinect 

which calculates depth and takes RGB images. Chua et al. applied a Haar-like deep learn-

ing feature algorithm on images to detect a hand grasping a cup [96]. This network was 

only trained with images and did not capture drink intakes [96]. Subsequently, they used 

a Microsoft Kinect placed in front of the subject to detect various hand postures during 

the drinking activity [97]. They focused on using the depth information exclusively to 

eliminate privacy concerns. Drinking events were classified with 89% accuracy using a 

Dynamic Time Warping (DTW) [97]. Kassim et al. and Cunha et al. also used a Kinect to 

monitor wrist joint motion and find the number of bites and drinks consumed [98,99]. 

They used a single frontal view, which can lead to occlusion issues [99]. Burgess et al. 

monitored fluid intake using a Kinect and a NB Classification, and tested different loca-

tions of the device [100]. This study only tested a single subject. They concluded that when 

the Kinect is placed on the right side of the subject, there was more obstruction detecting 

fluid intake [100]. Cippitelli used a top down Kinect view to prevent occlusion and com-

bined RGB and depth data to monitor food and drink intake [101]. When testing 35 adults, 

they achieved a 98.3% average drink detection accuracy using an adapted Self-Organized 

Map algorithm, a type of ANN algorithm, to detect the human gestures on the depth map, 

and processing the RGB frame to detect the presence of a glass [101]. Iosifidis et al. created 
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3D volumes from frames in food and drink intake videos and then performed Fuzzy Vec-

tor Quantization and LDA [102]. In low dimensional discriminant subspaces, the activity 

classes are linearly separable, with a classification rate of 93.3% [102].  

Some reviewed papers performed general activity monitoring and included drinking 

as one of their main category. Cebanov et al. detected hand position of seniors while drink-

ing in standing and sitting positions using the built-in skeletal tracking and gesture detec-

tion algorithm on images data from the Kinect camera. They obtained a 70% drinking 

detection accuracy [103]. To protect privacy and to operate in any lighting condition, they 

only used the IR and depth streams [103]. In addition, they estimated the liquid intake 

volume by assuming that each intake sip was constantly 100 mL, leading to a poor esti-

mate that was not validated [103]. Chang et al. used deep learning model trained with 

video and depth stream from a Kinect camera to classify several types of human activities, 

including drinking [104]. An average accuracy of 96.4% was achieved when combining 

color, depth and optical flow in a CNN algorithm. When using two Kinect sensors, Brena 

and Nava achieved superior results classifying four to six activities in a meeting room 

including drinking water [105]. Using a kNN algorithm, they achieved an average accu-

racy above 95.4% [105]. This was specifically tested on people seated, and the use of two 

Kinects aided with occlusion problems.  

Several researchers have developed wearable cameras to monitor food or drink in-

take, but the majority focused on food [106–110]. Two different studies which used the 

Microsoft SenseCam wearable necklace camera lost 28–29% of their data due to absent 

images, blurry/dark images, not wearing the camera, or not wearing the camera properly 

despite clear instructions to the participants [106,107]. Many studies used images from 

smartphones to classify food and drinks and determine volume type, but the user had to 

manually take pictures with a smartphone before and after each meal [111–115].  

5.2. Radar 

Although several papers used radar for activity recognition, few had recognized liq-

uid intake. A single paper by Shah and Fioranelli was reviewed in this section which cap-

tured human data using Frequency-Modulated Continuous Wave radar (FMCW) to per-

form activity recognition of six human motions in four geographical locations, including 

drinking water [116]. SVM, kNN and GoogleNet were tested and the average accuracy 

was reported between 74.7% and 78.25% [117,118]—Table 3 summarizes the top five stud-

ies that used vision-based technology for fluid intake detection. 

Table 3. Summary of vision- and environmental-based literature. 

Ref. #Sen. Method #Sub 

System 

Accuracy/ 

Precision (%) 

Drinking 

Detection Ac-

curacy 

(%) 

Null 

Class 

[101] 1 ANN1 33 98.3 - × 

[104] 1 3D CNN2, 13 classes 1950 videos 96.4 92 √ 

[102] 4 
Fuzzy vector quantization,  

LDA3 3 class 
4 93.3 100 √ 

[105]* 2 

kNN4 4 class 

2 

89.13 100 

√ kNN4 6 class 95.4 93.1 

kNN4 5 class 98.7 96.88 
* This paper only reported the precision values and the accuracy values were not reported by the 

authors. 1 Artificial Neural Network, 2 Convolutional Neural Network, 3 Linear Discriminant Anal-

ysis, 4 k-Nearest Neighbours. Where #Sen. corresponds to the number of sensors used and #Sub. 

corresponds to the number of subjects in the study. 

6. Smart Containers 

This section describes current research and commercial containers that monitor liq-

uid intake. Liquid level monitoring in smart water bottles is divided into several methods: 
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load and pressure, inertial, capacitive and conductive, radar and WiFi, vibration, acoustic 

and other. Kreutzer et al. stated that for elderly people, the use of radar, guided micro-

wave, ultrasonic, and flow sensors to detect drinking activity need a lid on top which 

could impeded the drinking and cleaning process [117]. They claimed that using conduc-

tivity, capacity, and load cells were the most practical solutions [117]. Plecher et al. pro-

vided a list of requirements for elderly smart bottles/cups such as hygiene, usage of their 

own cup, and safety [95]. They stated that sensors that are in contact with the liquid are 

usually less hygienic, likely not dishwasher safe and in some cases less safe [95]. They also 

stated that if the seniors can select their own cup, they will be more compliant and not feel 

stigmatized [95]. The selected sensor must be ergonomic so the user does not drop and 

break it [95]. 

6.1. Inertial 

Inertial methods used accelerometers and gyroscopes to determine the orientation of 

the bottle. This involves placing an IMU on the outside of the bottle. Based on the orien-

tation and duration of the event, the volume of each sip can be estimated. It is also possible 

to detect whether the contents have been drunk, spilled or poured out. Gellerson et al. 

was the first to place an IMU in a mug with a temperature sensor to determine whether 

hot liquids were present, but they did not test it with human subjects [118]. Liu et al. 

placed an IMU in the base of a 3D-printed cup to detect drinking in every day settings, 

but they did not estimate intake volume [119]. They found that using kNN to classify 

drink events achieved F1-score of 89.92% for detecting a drink event within a window and 

85.88% to detect the exact frame in 11 participants. Dong et al. and Griffith et al. placed an 

elastic band with an accelerometer around a water bottle to estimate volume intake and 

fill ratio (fill level as a percentage of the height of the container), shown in the schematic 

in Figure 4a [120–124]. They obtained an overall MAPE of greater than 7.64% for the fill 

ratio and 19.49% per sip using machine learning [120–122]. In addition, they found that 

using the fill ratio instead of volume intake had less inter-subject variability.  

 

Figure 4. Schematic diagram of various sensor layouts for each smart container category, namely 

(a) inertial [120–124], (b) load and pressure [125], (c) capacitive [126], (d) conductive [127], (e) Wi-

Fi [128], (f) vibration [129], (g) acoustic [130], (f) and other level sensor [131]. 

Due to large potential errors, the IMU is often combined with other liquid level de-

tection methods such as capacitive or load cells [125,132,133]. The Playful bottle by Chiu 

et al. combined the data from an accelerometer and a phone camera attached to a clear 

plastic cup [134]. This method obtained 96–98% drinking detection accuracy and provided 
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games to encourage hydration [134]. The proposed design creates a bulky and heavy de-

vice and it requires a phone placed against a clear cup with clear liquid to determine the 

volume [134].  

6.2. Load and Pressure 

Load cells have been used to monitor changes in weight accurately, but they were 

not able to detect whether the drinking action was performed or the liquid spilled or 

poured out. That is why they are often combined with other technologies, e.g., IMUs 

[125,132,133]. Another limitation is that the container needs to be on a surface to measure 

the weight and must be calibrated for each container, separately. Zimmerman et al. used 

strain gauge load cells in the base (demonstrated in Figure 4b) and an IMU in a smart cup 

holder and tested the design with patients in a nursing home [125]. The holder had a vol-

ume intake estimation accuracy of 2 mL. This proposed cup holder was able to increase 

the liquid consumption from 1.9 to 4.9 L over a 5 month experiment by using feedback 

sent to the nurses via cellphone [125]. Some commercial products such as the H2OPal also 

used load cells [132]. Pressure-based approaches have been used to monitor liquid level 

in industrial tanks but have not been applied to smart bottles. Wang et al. developed a 

container with a plastic pipe in the middle and a load cell to measure buoyancy force 

under the pipe [135]. This could be incorporated as the straw of the bottle and had a water 

level resolution of 1 mm. 

6.3. Capacitance and Conductivity 

Capacitive sensing is often used to estimate the liquid levels in industrial tanks. This 

method usually requires the sensors to be in direct contact with the liquid [130], which 

can cause issues with corrosion or the liquid might leak at the electrode liquid interface 

[136]. Additionally, there is a tradeoff between the number of sensors and the accuracy of 

liquid level detection. The accuracy is often higher when the entire container surface is 

covered by the sensors, as the sensors can only discretely determine the liquid level [130]. 

The capacitive or conductive sensors most often are in the form of stickers placed at dis-

crete levels on the cup wall, either inside or outside of the container. Dietz et al., Kreutzer 

et al. and Geethamani et al. developed contactless capacitance methods, where the sensors 

are placed around a large portion of the bottle, not in direct contact with the liquid 

[126,136,137]. Geethamani et al. did not provide any evaluation results of their system 

[137]. In the study by Dietz et al., they combined an RFID sensor with the capacitive sensor 

to locate the cup in a restaurant setting [136]. The drinking container was divided into 16 

levels of liquid. They stated in the paper that the accuracy varied depending on whether 

the vessel was placed on a table, but they did not report any accuracy values [136]. Kreut-

zer et al. obtained an average error of 3–6% for estimating the liquid level with contactless 

capacitance sensors placed on the outside of the container similar to Figure 4c [126]. They 

found that the accuracy was affected by the temperature of the liquid and the location of 

the user’s hands relative to the sensors [126]. It is also possible to place capacitive sensors 

on the outside walls or bottom of a cup, as done by Fan et al. in the form of electric tape, 

similar to Figure 4d but on the outside of the cup [138]. This method does not contact the 

liquid inside and obtained a correlation coefficient of 0.98, a relative absolute error of less 

than 16% for all material types tested [138]. To mitigate interferences caused by hands 

touching the sensor, they added a 3D-printed case, which made the device bulkier [138]. 

Kreutzer et al. developed a smart cup with an embedded conductive sensor inside 

the inner wall to monitor the liquid level, also similar to Figure 4d [117]. Various tests 

were performed to validate their volume level estimation technique. The tests included 

liquid put in/removed, different beverages, temperatures, various placements of conduc-

tive sensors, and cleaning methods [117]. In the preliminary results, it was able to detect 

liquid levels at all temperatures, but had difficulty in measuring some types of liquid such 

as those with large remnants at the bottom of the bottle like milk suds [117]. Bobin et al. 



Nutrients 2021, 13, 2092 15 of 28 
 

 

also used five conductive electrode sensors placed vertically on the inner wall of the con-

tainer, as depicted in Figure 4d, to detect liquid level, along with an IMU to capture the 

stability of the motion for stroke rehabilitation [127]. Using a 5-class SVM (including sit-

ting, standing, walking, stairs and drinking), the overall accuracy of the system was 94.33% 

and a drink class accuracy of 96.98 [127].  

6.4. RFID, Radar and Wi-Fi 

RFID can measure liquid level because the signal strength (RSS) and phase are im-

pacted by the volume of liquid [139]. Some papers used RFID to detect drinking events 

[140,141], empty cups [142] or to identify liquid types since the RSS and phase are also 

affected by different liquid components (for example, Pepsi and Coke) [143]. Jayatilaka 

used RFID attached to the bottom of a cup to detect drinking events (binary classification) 

in young and old subjects with an F1-score of 87% from SVM and 79% from RF [140]. 

Kreutzer et al. tested the RFID and conductivity to detect liquid level, and achieved a res-

olution of less than 25 mL per measurement in their preliminary trials [117,139]. The RFID 

was also placed on the bottom of the cup, and the conductivity sensor attached on the 

inner wall. The range of most RFID tags is very limited and therefore it is not possible to 

measure the signal, continuously [139]. In other words, since the RFID is passive, it re-

quires very close proximity to the sensor; otherwise, the RFID readers consume relatively 

large amounts of power to transmit the data continuously [139]. 

LiveTag used passive metal tags placed on the container which were remotely de-

tected by WiFi receiver, as seen in Figure 4e [128]. The liquid level was measured by ver-

tically arranged tags with 90% accuracy if the vessel was within 4.8 m of the router [128]. 

This study had limitations such as: the measurement was not continuous, the container 

could not be metal, and the container could not be in motion [128]. It is also important to 

note that liquid monitoring was just one application of their system and not the main focus. 

6.5. Vibration 

Vibration methods determine liquid level by detecting the resonant frequency. Ren 

et al. attached a low-cost, small transducer to the outer surface of the container, as seen in 

Figure 4f. This emitted a vibration through the container, which affected the WiFi signals 

[129]. The phase changes in Wi-Fi signals helps in extracting the resonance frequency of 

the liquid to determine the level [129]. This method achieved an overall accuracy of 97% 

when measuring the liquid level continuously with a curve fitting technique and found 

that 90% of all measurements had an error of less than 6%. This paper also obtained an 

average F1-score of 96.8% with SVM to classify the liquid level to the nearest marker (10 

classes/levels). The device worked in non-line-of-sight trials with different liquid types, 

container types, angles and distances, but had high power consumption [129]. Nakagawa 

et al. used a piezoelectric vibrator and measured the amount of mm-waves absorbed by 

the liquid with a Doppler sensor outside the bottle [144], and Ryu et al. applied a piezoe-

lectric receiver inside the bottle to measure the resonance frequency [145], though neither 

evaluated the accuracy of their systems.  

6.6. Acoustic 

Acoustic sensors can also measure liquid volume, by placing the sensor on the out-

side of the container, as in Figure 4g [129,130]. Tommy et al. proposed a bottle with an 

ultrasonic distance sensor to monitor liquid level, an accelerometer to monitor the bottle 

cap position, and temperature and humidity sensors to provide recommendations [146]. 

The SmartOne device proposed by Vithanage et al. combined a humidity sensor to detect 

whether a mouth was close, an IMU to detect the drinking pattern, and an ultrasound 

sensor to measure the volume in the container [147]. It also had a temperature sensor to 

give accurate intake recommendations, and a pH and turbidity sensor to monitor the qual-
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ity of the liquid [147]. Wijanarko et al. used ultrasound and ambient temperature to meas-

ure the amount consumed and recommend if the user should drink a small, medium, or 

larger amount of liquids using a Fuzzy Logic algorithm [148]. None of the aforementioned 

studies tested the system accuracies. Fan et al. acoustically excited a container by output-

ting a probing signal and at the same time recording the impulse response to determine 

the content level in the container [130]. This system, as shown in Figure 4g, can be applied 

to any container in its original packaging including food, but does not work with deform-

able containers, such as soft plastics [130]. The system obtained an F1-score of 96.9% to 97% 

for all 19 containers tested [130]. 

6.7. Other 

Float sensors have been used in industrial applications to measure liquid level. 

Pankajavalli et al. used a water float sensor based on a magnetic field that contacts the 

water and sends a text message when the level is low and high, but this technique was not 

tested by human participants [149]. Akbar and Oktivasari used float sensors based on the 

Hall Effect concept to measure the amount of water consumed [131]. This device can pro-

vide the amount of daily water required based on a user's profile [131]. The system had 

an average error of 1.1% with a maximum error of 2% [131]. This involved placing a sensor 

on the outside of wall of the container, shown in Figure 4h.  

Ayoola et al. developed a smart cup for heart failure patients to inform nurses of 

hydration status, but the user needs to manually press a button to register drinks [150]. 

They did not test if the patient’s behavior changed after the nurse’s recommendations 

[150]. Lester et al. classified various liquids in a cup using an ion selective electrical pH 

sensor, conductivity sensors, and optical methods using light [151]. They did not deter-

mine the liquid intake amount, but were able to recognize 68 different drinks with 79.4% 

accuracy [151]. Table 4 summarizes the top eight studies that used smart container for 

fluid level detection. 

Table 4. Summary of top eight smart containers literature. 

Ref. Technology #Sen. #Sub 
System 

Accuracy (%) 

Weight 

Error 

[120] IMU 1 7 99 25% volume 

[125] Strain gauge + IMU 2 15 - 2 mL 

[126] Capacitance 20 1 - 3–6% 

[127] Conductive electrodes + IMU 6 15 94.33 - 

[128] Metal tag + WiFi 3 - 90 - 

[129] Vibration transducer + WiFi 1 
6 liquids,3 con-

tainers 
>97 <10% liquid level 

[147] 

IMU + ultrasound, humid-

ity/temperature sensor + pH + 

turbidity sensor 

6 6 - - 

[131] Water flow sensor 1 Unknown - 8 mL, 2% 

where #Sen. corresponds to the number of sensors used and #Sub. corresponds to the number of 

subjects in the study. 

6.8. Commercial 

Commercial smart bottles and mugs are becoming more popular especially among 

active younger people. The commercial water bottle HidrateSpark used the capacitive and 

IMU sensors into the straw to estimate the volume by an accuracy of 97% (Figure 5a) 

[152,153]. The recent version, the HidrateSpark Steel (Figure 5b), has all the sensors in the 

bottom of the device and has the option to have a straw or not [154]. Both versions connect 

to your phone via Bluetooth and LEDs in the bottle light up to remind the user to drink 

throughout the day [147,149]. The H2O Pal (Figure 5c) uses a load cell and IMU sensor in 

the base of the device, and any regular water bottle can be inserted as long as it has a 

similar size [132]. This device is not rechargeable but has a 6 month battery life and can 
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store data both offline and online [132]. Additionally, the device must be placed on a sur-

face after each drink [132]. The Thermos Smart Lid (Figure 5d) contains the temperature 

and liquid level sensor in the lid, but cannot withstand hot liquids and must be upright to 

perform measurements [155]. The Ozmo Active Smart Bottle (Figure 5e) can differentiate 

coffee and water and tracks both intakes separately and continuously in the app [156]. The 

Java+ version can also regulate the temperature of the liquid and heat or cool it to a desired 

temperature [157]. The DrinKup bottle uses ultrasonic sensors placed in the lid and dis-

plays the volume intake both on the lid and in the app [158]. It looks identical to a regular 

water bottle as shown in Figure 5f and can store data offline [158]. This bottle will inform 

the user if the water is “stale” (has not been replaced in 24 h) and can be used with hot or 

cold liquids [158]. The HydraCoach (Figure 5g) logs water using an impeller placed in the 

straw of the device [159]. The logs are only stored locally and displayed on the build in 

LCD screen [159]. The Droplet cup (Figure 5h) is specifically designed for seniors to be 

lightweight and ergonomic [160]. The cup and mug version can use the same base, and 

custom audio recordings remind the senior to drink regularly [160]. Plecher et al. com-

pared the practicality of different smart bottles in terms of key feature, liquid leveling, 

user interaction and suitability for elderly people [95]. However, some of the bottles in-

cluded in this study were no longer available to purchase [95]. Figure 5 and Table 5 show 

the eight commercial bottles described in this study. 

. 

Figure 5. Images of analyzed commercial bottles: (a) HidrateSpark 3 [153], (b) Hidrate Spark Steel 

[154], (c) H2OPal [132], (d) Thermos Smart Lid [155], (e) Ozmo Active [156], (f) DrinkUp [158], (g) 

HydraCoach [159], and (h) Droplet Tumbler [160]. 

Table 5. Summary of commercial smart bottles. 

Product Name Price (USD) Pros Cons Size (oz)  

Hidrate Spark 3 $59.95 

Clinically validated, 

Offline glow reminders, 

Plastic—Light,  

Saves data locally, sync later 

Not rechargeable, 

No API, 

Large size 

20 

 

Hidrate Spark Steel $64.99 

Clinically validated, 

Rechargeable, 

Offline glow reminders, 

Allows ice, 

Saves data locally, sync later 

Hand wash only, 

No hot drinks, 

10–14 day battery, 

No API, 

Steel—Heavy 

17/21 

 

H2OPal $99.99 

API available, 

Compatible with any bottle of same size, 

Dishwasher safe, 

Saves data locally, sync later, 

Hot liquid allowed 

Needs setup, 

Not rechargeable, 

No offline reminders 

18.6 

 

Ozmo Active/ Java+ $69.99 

Differentiates water and coffee, 

Java + regulates temperature, 

Real-time sync in app, 

Rechargeable,  

LED to indicate hydration goals, 

Offline vibration reminders 

Hand wash only, 

No API 
16  

Thermos Smart lid $42.35 

Temperature sensor, 

Rechargeable, 

Stores locally for up to 1 week, 

Plastic—Light 

No hot liquids, 

Must be upright to rec-

ord, 

Large size 

24 
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DrinKup $69 

Shows amount and temperature, 

Determines whether water is stale, 

Allows ice, 

Rechargeable, 

Stores locally, 

Simple, subtle design 

Not available, limited in-

formation 
17  

HydraCoach 2.0 $27.94 

Allows ice, 

Dishwasher safe, 

Results directly on bottle 

Low-intensity sips may 

not register, 

Offline use only, 

No data transfer, 

No hot drinks 

22 

Droplet $47.53 

Designed for elderly (light, ergonomic), 

Looks like normal cup/mug, 

Compatible base, 

Light, 

Voice reminders on bottle, 

Dishwasher safe 

Offline,  

No access to data 
9.5–11.2 

7. Fusion 

Several researchers attempted to combine data from multiple sources to obtain more 

accurate results. Hondori et al. fused data from a Microsoft Kinect depth camera and in-

ertial sensors placed on utensils and cups [161]. This was a pilot study with one participant 

and was not clinically tested, but preliminary results showed that position, displacement 

and acceleration of the arm can be captured properly [161]. Additionally, this study did 

not attempt to classify the movements to detect drinking actions [161]. Troost et al. fused 

wrist inertial data with camera data to improve eating and drinking recognition [162]. 

However, they concluded that the dataset is too small to evaluate the performance [162]. 

Soubam et al. combined a load cell in a cup with an accelerometer on the wrist to estimate 

both the volume intake and if the liquid was spilled or dumped [133]. This setup was 

tested on 3 different containers with 6 different liquid types to obtain a drink detection 

accuracy of 95.97% with RF and volume intake accuracy of 98.34% [133]. Each container 

needed to be recalibrated every time, which was an issue with disposable containers. Sei-

derer et al. combined a weight scale, a smartwatch, and a smartphone to monitor food and 

drink intake [163]. The author did not report any evaluation results. 

Jovanov et al. implemented and compared two systems to detect drinks and measure 

the amount [164]. The first method used a capacitive sensor that detects touches of the 

bottle and monitors PPG. The second method combined two accelerometers, one on the 

bottle and one as a wearable around the user’s wrist [164]. This product was not tested 

with human subjects but preliminary tests showed that both systems could be viable de-

pending on the application.  

Garcia-Constantino et al. fused data from a wearable accelerometer, contact sensors 

placed around a kitchen (on kettles, cups, doors, cupboards, containers) and thermal sen-

sors placed on the ceiling [165]. This study involved 30 participants all performing the 

same action of entering the kitchen, preparing a hot drink, consuming the drink and leav-

ing. No other activities were recorded (no Null class) [165]. Drinking actions were de-

tected with 95% accuracy, but the overall system accuracy for 4 classes was only 73.51% 

since entering and exiting were often poorly classified [165]. The HydraDoctor by Du et 

al. uses a commercial wrist accelerometer to first detect drink events and then triggers 

smart eye glasses (Google Glasses) to record a video [166]. The video is used to classify 

the type of container and beverage from a database [166]. With 11 subjects and 6 types of 

liquid, the system had an accuracy of 85% drink detection and could classify the liquid 

type with 84.3% accuracy [166]. This system claimed that it can detect the amount con-

sumed, but this was not tested in the study [166]. 
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8. Discussion and Overview 

The analysis of the literature showed that the majority of studies applied machine 

learning to perform classification as it outperforms template-matching and threshold-

based techniques. Although most of the studies performed the classification offline, there 

exist recent papers that attempted to use the classification in real time or on the watch 

directly. However, more research is needed to improve the accuracy and optimize the 

power consumption. Additionally, though many papers claimed to target seniors, only 

five of the reviewed papers tested the systems with elderly subjects and only one com-

mercial water bottle targeted seniors. Hydration status in seniors is a recognized prevalent 

issue, but technological solutions to monitor fluid intake in this demographic are not heav-

ily explored in research. 

8.1. Wearables 

The analysis showed that the majority of wearable devices provided useful infor-

mation to detect drinking activity, are scalable and widely available commercially. In ad-

dition, this method is not limited by the type of container or location (i.e., can be in used 

public). There is also no risk of obstruction or occlusion and the device can be worn easily 

on the wrist without disturbing the user. However, wearables have a high rate of false 

positives and do not detect drinks when drinking from a straw or if using the opposite 

hand that does not have the device. Additionally, some elderly people are not compliant 

with wearable devices and do not want to wear the devices. To classify drinking activities, 

RF models were among the superior models. To date, wrist wearables have not accurately 

estimated fluid intake volume. However, there has been little effort to attempt this, so 

more research is still needed. Textile-based methods need to be integrated into shirts to 

be feasible for everyday use and should be washing machine safe. Solutions involving 

neck bands or collars would likely have low compliance in the real world, though may be 

accurate in a lab setting. RIP has promising results detecting swallowing, but no research 

has been done to estimate the intake volume. It has also not been tested for compliance 

when integrated into shirts. All reviewed RIP studies were only tested in lab settings with 

small subject groups. 

8.2. Surfaces 

Sensors embedded in surfaces are much less common and less investigated. The stud-

ies that used an entire table as the surface are mainly focused on determining food intake 

while the studies that used coasters focused on determining drink intake. It is more feasi-

ble to determine drinking actions than eating because the entire container must be lifted 

up and set back down on the surface every time. This is an action that is simpler to detect 

compared to differentiating fork and spoon use. However, without other information to 

make the system contextually aware in the environment, any object can be placed or re-

moved from the surface which may result in many false alarms. 

8.3. Vision and Environmental Based 

In vision-based approaches, privacy is a major concern. Some researchers combat this 

by only capturing the region of interest and not the faces. However, this creates another 

challenge for how to identify this region. There exist studies that used segmentation algo-

rithms to remove faces from the captured data [102]. Some researchers rely on the depth 

data obtained from RGB-D cameras to resolve these issues. Overall, the accuracy of the 

algorithms performed on the data is limited to the resolution of the camera. Additionally, 

vision-based methods also performed poorly when there is low lighting and require high 

processing power and storage of the data. The review of the literature also showed that 

approaches using wearable cameras often lead to a large loss of data and are usually not 

automated. The majority of vision-based approaches used deep learning to classify images, 
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relied on static images, and did not test the detection performance in real time. The clas-

sification accuracy was often above 90% when using deep learning models, which is 

promising. Using environmental methods such as radar would remove the concerns 

around privacy and the need for a well-lit environment. However, very few papers used 

radar or RFID and more research is needed in this field. Additionally, there was no re-

search done using other types of environmental approaches such as LiDAR or thermal IR. 

None of these vision or environmental-based approaches estimate intake amount and 

they only focus on intake detection.  

8.4. Smart Container 

Placing sensors in the water vessel has yielded effective and accurate results when 

determining the intake volume consumed. However, there are still some limitations in the 

commercial smart bottles. For instance, these bottles are targeted toward active young 

adults and are mostly large, heavy and not tailored to seniors. Most of the commercial 

bottles also rely on displaying the information in a mobile app, which can be too compli-

cated for a senior. Some bottles display the information on a screen directly on the bottle, 

but often the data is not stored and available for the users. Although several smart bottles 

and cups are mentioned in research, they were not available to purchase in Canada, in-

cluding the Droplet, Ozmo, Smart CUP, and DrinkUp. 

In the literature reviewed, the majority of techniques had an accuracy above 90% for 

detecting drinking volume. This review also showed that using solely an inertial system 

provided lower results compared to fusing the inertial data with another method to detect 

liquid level or weight. Sensors embedded in containers have their own limitations. For 

example, the user needs to drink only from a specific container. Several studies investi-

gated ultrasonic sensors to determine liquid volume in a container, but very few tested 

the accuracy of the systems. Thus, there is a need to create an accurate smart bottle that is 

inexpensive, light, and easy to use especially for an older population, and that is also com-

mercially available.  

8.5. Fusion 

Most of the fusion techniques reviewed involved a wrist accelerometer and one other 

technology. This is likely due to the good accuracy but high false positive rates that a 

single accelerometer provides. Combining the acceleration data with other devices could 

create more accurate systems. This is an area that can be explored further to increase the 

accuracy of systems and reduce false positives. Additionally, many of the fusion studies 

found were only preliminary pilot studies with no results or were conducted on a small 

sample size. Fusing sensors is promising to obtain an accurate system, but it is essential 

that the combination is not cumbersome to use.  

8.6. Real-World Datasets 

Of the reviewed studies, only four systems were tested in free living conditions, and 

seven were tested in semi-free living (non-scripted) conditions, such as allowing the par-

ticipant to act freely during a shorter period of time like during a meal. None of the textile 

studies or vision-based approaches tested the systems in free living conditions. Many of 

the surface-based studies used semi-free living conditions as they tested the system dur-

ing an entire meal time. The majority of the free living studies used wearables (3 out of 4). 

As expected, the free living studies provided lower system performance compared to la-

boratory conditions. Two out of four free-living studies provided real-time validation 

[47,125]. The longest study was conducted for 5 months in a nursing home [125] to vali-

date if volume intake increased when the patients were prompted by nurses. Table 6 

summarizes the performance for all free living studies reviewed in this paper. 
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Table 6. Summary of all free-living studies reviewed in this paper. The mL indicates weight error 

accuracy, not an F1-score. 

Ref. Technology #Sub 
Duration 

of Data 

F1-Score from 

Lab  

F1-Score from Free Liv-

ing Conditions 

[47] Wearable 12 lab, 5 free living - 97% 85% 

[56] Wearable 7 free living 35 days - 75.6% 

[59] Wearable 70 total, 8 free living 24 h 85.5% 68.5% 

[125] 
Smart  

Container 
15 free living 5 months - 2 mL 

9. Conclusions 

This paper provides a review for technological fluid intake monitoring systems, fo-

cusing on their applicability for elderly people. Although many papers mentioned the 

impact their systems may have on the elderly population, very few were tested on this 

age group. Many of the devices reviewed did not estimate volume intake and only focused 

on intake detection. Only embedded surfaces and drinking containers were able to esti-

mate volume level, accurately. Sensors in fluid containers almost always required the user 

to place the device on a surface for a drink to be recorded, as do sensors in the surfaces. 

Additionally, the user must drink from a specific container or in a specific location. Vision-

based approaches had high accuracy of image detection, but they cannot estimate volume 

intake, and may be subject to occlusion or poor performance under various light condi-

tions. They also only work when the user is at home. Many studies included depth cam-

eras to avoid potential privacy concerns. There are a lack of studies using other environ-

mental approaches such as radar, infrared, RFID or LiDAR, which also preserve privacy. 

Wearable technology has been studied extensively for activity recognition including nu-

trition-intake recognition. Wrist wearables are versatile in all environments but are subject 

to a high false positive rate when used alone. Determining intake volume from wrist ac-

celeration alone was investigated but yielded low accuracy. Textile solutions are promis-

ing, but more investigation is needed to make a textile that is practical and economical for 

everyday use. Although there are many promising studies in the literature with high ac-

curacy that could monitor senior hydration level, most of these studies do not reach the 

commercial market. It is important to create products for the end user as there is no widely, 

commercially available product that aids monitoring and tracking senior liquid intake au-

tomatically. 
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