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Abstract: The US Dietary Guidelines for Americans (DGA) provide dietary recommendations to
meet nutrient needs, promote health, and prevent disease. Despite 40 years of DGA, the prevalence
of under-consumed nutrients continues in the US and globally, although dietary supplement use can
help to fill shortfalls. Nutrient recommendations are based on Dietary Reference Intakes (DRIs) to
meet the nutrient requirements for nearly all (97 to 98 percent) healthy individuals in a particular
life stage and gender group and many need to be updated using current evidence. There is an
opportunity to modernize vitamin and mineral intake recommendations based on biomarker or
surrogate endpoint levels needed to ‘prevent deficiency’ with DRIs based on ranges of biomarker or
surrogate endpoints levels that support normal cell/organ/tissue function in healthy individuals, and
to establish DRIs for bioactive compounds. We recommend vitamin K and Mg DRIs be updated and
DRIs be established for lutein and eicosapentaenoic and docosahexaenoic acid (EPA + DHA). With
increasing interest in personalized (or precision) nutrition, we propose greater research investment in
validating biomarkers and metabolic health measures and the development and use of inexpensive
diagnostic devices. Data generated from such approaches will help elucidate optimal nutrient status,
provide objective evaluations of an individual’s nutritional status, and serve to provide personalized
nutrition guidance.

Keywords: DRIs; lutein; EPA and DHA; magnesium; vitamin K; dietary guidelines; nutritional status

1. Introduction

The second Sustainable Development Goal of the World Health Organization recog-
nizes that nutrition is the foundation of peaceful, secure, and stable societies and the need
for better nutrition to improve health and end poverty. While the association of dietary
patterns with health is generally accepted, the complexity of the relationship led to the US
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developing the Dietary Guidelines for Americans (DGA) in 1980. Based on the facts that: (1)
“about 40 different nutrients to stay healthy, these include vitamins and minerals, as well
as amino acids (from proteins), essential fatty acids (from vegetable oils and animal fats),
and sources of energy (calories from carbohydrates, proteins, and fats)” and (2) “These
nutrients are in the foods you normally eat” [1], the DGA identified seven principles of a
healthful diet with the goal of helping reduce nutritional deficiencies and risk of related
illnesses. As mandated by Congress in 1990, new DGAs have been issued every 5 years
with the 9th edition being released in 2020 [2]. This paper reviews the history of dietary
guidance with respect to dietary supplements, nutritional contributions from food and di-
etary supplement use, and identifies opportunities to update the Dietary Reference Intakes
(DRIs) for magnesium and vitamin K and establish DRIs for lutein and the omega-3 fatty
acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).

2. Dietary Guidelines History

After the first DGA in 1980, a Dietary Guidelines Advisory Committee (DGAC) has
convened every 5 years to assess the best available nutrition and health science and produce
a scientific report used in the development of the DGA. The DGA are the cornerstone of
US nutrition policies and programs, including food assistance and consumer education
programs. The purpose of the DGA has evolved over the last 40 years and it now serves
as a reference for regional, state, and local organizations, provides information to health
professionals and healthcare systems, and functions as a call to action for food product
innovators. The role of dietary supplements in national dietary guidance has been given
only modest attention in each DGA edition.

The DGA process has changed from guidelines decided by a group of experts to a
synthesis of evidence-based reviews, data modeling and analyses to inform conclusions and
implications resulting in a comprehensive scientific report of recommendations. In turn,
this external Report forms the basis for Federal policy—the DGA—which gives advice for
healthy eating patterns applied by the programs of all agencies with food and public health
missions. The 1980 DGA recommended that women in their childbearing years may need
iron supplements and women who are pregnant or breastfeeding may need more iron, folic
acid, vitamin A, and calcium but “rarely need to take vitamin or mineral supplements if
you eat a wide variety of foods” [1]. The 1985 DGA cautioned against consuming excessive
amounts of any nutrient and state “large dose supplements of any nutrient should be
avoided” with key exceptions, e.g., iron supplements of women of childbearing years
and acknowledgement for “the need for more of many nutrients” during pregnancy and
breastfeeding [3]. Key legislative actions in the 1990s influenced subsequent DGAs, many
of which had impacts on nutrient intake needs and recommendations. For example, in
1992, the Department of Health and Human Services (HHS), the Public Health Service, and
Centers for Disease Control (CDC) recommended all women of childbearing age consume
400 µg of folic acid daily through fortification, supplementation, and diet to prevent neural
tube defects [4]. The Nutrition Labeling and Education Act (NLEA) (Public Law 101-535)
and recent regulatory amendments [5,6] mandated nutrition labeling requirements on most
foods sold at retail [7] including essential nutrients. The US Food and Drug Administration
(FDA) proposed a health claim for folic acid and neural tube defects in 1994 [8] and
mandated folic acid fortification of cereal grains in 1996 [9] that was subsequently expanded
to include corn masa flour [10]. The Dietary Supplement Health and Education Act of
1994 (DSHEA) defined dietary supplements, labeling and manufacturing practices, and
established the Office of Dietary Supplements at the National Institutes of Health (NIH) [11].
The 1995 DGA specifically stated “supplements of vitamins, minerals, or fiber may help
to meet special nutritional needs” and caveats that “‘regular use in large amounts may
be harmful” and “supplements do not supply all of the nutrients and other substances
present in foods” [12]. The 2000 DGA expanded beyond a focus on food variety (to
reduce nutritional deficiencies) and moderation (to reduce risk of nutrition-related chronic
disease) to include physical activity [13]. The 2005 DGAC adopted a more formalized
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systematic literature search and the focus of DGA policy shifted from the general public to
policymakers, health care professionals, nutritionists and nutrition educators [14]. In 2008,
the USDA established the Nutrition Evidence Library to conduct food- and nutrition-related
systematic reviews and support subsequent DGAC [15]. While the 2010 DGA focused on
the status of Americans’ health and the prevalence of dietary nutrient inadequacies and
deficiencies, the 2015 DGA placed a greater focus on eating patterns. [16]. The 2015 DGA
recognized that dietary supplements may be useful in providing one or more nutrients
that otherwise may be consumed in less-than-recommended amounts, such as vitamin
D [16]. The 2020 DGAC Report reiterated previous DGA reports identifying nutrients of
public health concern and related biochemical or chemical indicators, acknowledging that
vitamin and mineral supplements can help address vitamin and mineral intake shortfalls
(Table 1), and discussing potential risks of overconsumption.

Table 1. Select food components (nutrients) of public health concern with summary by life stage. Adopted from Dietary
Guidelines Advisory Committee (2020) [17].

Food Component Life Stage Dietary Intake
Metric

Biochemical or
Clinical Indicator

Associated Health
Condition Last DRI Review

Potassium 1
≥1 y, including

pregnant or
lactating women

% > AI 24 h urinary
excretion

Hypertension and
cardiovascular

disease
2019

Sodium
≥1 y, including

pregnant or
lactating women

% > CDRR 2 24 h urinary
excretion

Hypertension and
cardiovascular

disease
2019

Calcium 1
≥1 y, including

pregnant or
lactating women

% < EAR
No reliable
biochemical

marker exists

Impaired peak
bone mass accrual;
low bone mass and

osteoporosis

2011

Vitamin D 1
≥1 y, including

pregnant or
lactating women

% < EAR Serum 25(OH)D
concentrations

Impaired peak
bone mass accrual;
low bone mass and

osteoporosis

2011

Iron 1

Infants fed human
milk; adolescent,
pre-menopausal,
pregnant women

% < EAR

Serum ferritin,
soluble transferrin

receptor,
hemoglobin

Iron deficiency and
iron deficiency

anemia
2001

Iodine Pregnant women % < EAR Urinary iodine
concentrations

Impaired
neurocognitive
development

2001

Folic Acid Pregnant women,
1st trimester % < EAR Serum and red

blood cell folate
Neural tube

defects 1998

1 FDA’s designation as a nutrient of “public health significance”. 2 CDRR = Chronic Disease Risk Reduction.

For the first time, the DGAC Report acknowledged that some terms, i.e., “essential
nutrients”, “nutrients of concern” (and subgroups “under-consumed”, “over-consumed”,
and “shortfall”), and “nutrients of public health concern” are consistently defined and used
in the literature, and that scientific assessment and policy development are hampered by
a lack of consistent use of terms for biochemical indicators such as “deficiency”, “insuf-
ficiency/inadequacy”, “sufficient/adequate” and “optimal nutrition” [17]. As consumer
interest in personalized nutrition grows, the NIH has issued a notice of Intent to Publish
a funding opportunity for “Nutrition for Precision Health” for research to provide more
targeted and dynamic nutritional recommendations for individuals and their health care
providers in January 2021 [18]. The 2020 DGA acknowledges that personal preferences,
cultural traditions and budgetary considerations affect dietary choices and encourages
people to choose healthy dietary patterns, recognizing that in some cases, fortified foods
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and dietary supplements are useful when it is not possible to meet needs for one or more
nutrients, e.g., during pregnancy [2].

3. Understanding Population Derivation and Use of RDAs

With the exception of the discovery of mineral element essentiality in the 19th cen-
tury [19], the nutritional essentiality of amino acids [20], fatty acids [21] and vitamins [22]
was established early in the 20th century. Recommended Dietary Allowances (RDAs)
were introduced to serve as a guide for planning adequate nutrition for the military and
civilians [23] and evolved into Dietary Reference Intakes (DRIs) that consisted of Estimated
Average Requirements (EAR), RDAs, Adequate Intake (AIs) and Tolerable Upper Intake
Levels (UL) in 1993 [24]. RDAs are target intake levels of essential nutrients judged to
be adequate to meet the needs of practically all (97–98%) healthy persons [25]. RDAs are
based on: (1) studies of people eating diets that were low or deficient in the nutrient, (2)
nutrient balance studies, (3) biochemical measures of tissue saturation or function, (4) nu-
trient intake data, (5) epidemiological observations of nutrient intake, and (6) extrapolation
from animal experiments [25]. The EAR is the nutrient intake value estimated to meet
the requirement defined by a specified indicator of adequacy in 50% of the individuals in
a life stage and sex group [26–30]. An AI, a value based on observed or experimentally
determined approximations of nutrient intake of healthy people, is set instead of an RDA
when the scientific evidence is insufficient to calculate an EAR. The UL is the highest level
of nutrient intake that is likely to pose no risk of adverse effects for most people. The
DRIs do not include dietary bioactive compounds, i.e., natural constituents of food that
provide health benefits [31], typically because there has been a lack of nutrient databases
and dietary intake data.

4. Nutrient Gaps in the US and the Role of Dietary Supplements

For the past 40 years, data consistently show that Americans have not been and are still
not consuming recommended amounts of whole grains, vegetables, fruits, and dairy foods,
and to a lesser extent, protein food groups [17]. This translates to significant proportions of
the US population who are consuming less than the EAR or AI for essential nutrients even
though ~50% of US adults take at least one dietary supplement [32–35].

Products containing vitamins and minerals are the most often consumed dietary
supplements [35,36]. Thus, dietary supplement use is associated with higher vitamin
and mineral intake and a lower proportion of the population consuming <EAR for key
micronutrients [33,37–39]. The decrease in % of population <EAR observed with vitamin
and mineral supplement use depends on the nutrient, age, and sex groups, and other
characteristics, e.g., food security, pregnancy. For example, 91.5% of men and 98.4% of
women ≥19 years do not meet requirements for vitamin D from food and beverages and
this shortfall drops to 66.4% of men and 59.1% of women when intake from supplements is
included [40]. While dietary supplements may help meet dietary recommendations, use of
multiple nutrient-containing supplements, especially high-dose forms, may increase the
risk of exceeding the UL as ~ 70% and 30% of adults ≥60 years report using ≥1 and ≥4
dietary supplement in the past 30 days, respectively [35]. However, data from NHANES
2009–2012 find ≤2.6% of adults ≥71 years exceed the UL when food and supplement intake
is combined, except for zinc where 5.2% exceed the UL [39]. It is also important to note that
global data show micronutrient intakes do not meet dietary recommendations in many
countries [41].

5. Defining Optimal Nutrition and Lessons from Nutrients Considered Essential

Inadequate intake of essential nutrients is known to cause deficiency diseases and
increase the risk of NCD [42,43]. Albert Szent-Gyorgi, recipient of the 1937 Nobel Prize in
Physiology and credited with first isolating vitamin C, is quoted as saying “The medical
profession itself took a very narrow and wrong view. Lack of ascorbic acid caused scurvy,
so if there is no scurvy there was not a lack of ascorbic acid. Nothing could be clearer than
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this. The only trouble was that scurvy is not a first symptom of a lack but a final collapse,
a premortal syndrome and there is a wide gap between scurvy and full health” [44].
In other words, setting nutrient intakes using biomarker cutoffs to prevent deficiency
disease is not optimizing nutritional status for health or quality of life. When nutrient
biomarkers or surrogate endpoints are measured, the health gap between ‘deficient’ and
‘sufficient/adequate’ becomes apparent. Nutritional biomarkers or surrogate endpoints
should reflect long term nutritional status with limited within-day or day-to-day variability.
In some cases, biomarkers or surrogate endpoints may need to be adjusted for other
indicators, e.g., according to WHO guidelines on the use of ferritin concentrations to
assess iron status in individuals with inflammation or infection [45]. Keeping in mind
that RDAs are the average dietary intake level that is sufficient to meet the nutrient
requirement of 97–98% of healthy individuals and AIs are set based on experimentally
derived intake levels or approximations of observed mean nutrient intakes of healthy
people, we recommend that RDAs and AIs for micronutrients and bioactive compounds be
established (EPA + DHA, lutein) or updated (vitamin K, magnesium) based on biomarker or
surrogate endpoint concentration ranges that optimize healthy cell/organ/tissue function,
as has been carried out for vitamin D.

In 1997, an AI was set for vitamin D with a goal of maintaining (in individuals with
limited or uncertain sun exposure and stores) serum 25(OH)D concentrations above a
defined amount to prevent vitamin D deficiency rickets or osteomalacia [46]. Recognizing
that serum 25(OH)D served as a reflection of total vitamin D exposure (dietary and skin
synthesis by sunlight), new RDAs were established in 2011 for healthy individuals to
maintain a serum 25(OH)D concentration ~50 nmol/L (20 ng/mL), which is needed to
support skeletal health [26,47]. The release of a standard reference material for vitamin D
in 2009 [48] had been a significant development for vitamin D research since its availability
increased the reliability of 25(OH)D data. Thus, the 2011 RDA for vitamin D was based
on a shift in target serum 25(OH)D cutoffs associated with deficiency in a serum 25(OH)D
to a level sufficient to maintain skeletal health in healthy people (Figure 1) [26,49]. The
2011 DRI Report states serum 25(OH)D levels <30 nmol/L (12 ng/mL) increase risk of
skeletal deficiency diseases and some persons may be at risk of inadequacy between 30 and
50 nmol/L (12 and 20 ng/mL). Practically everyone would be sufficient at 50 nmol/L
(20 ng/mL) whereas levels >75 nmol/L (30 ng/mL) were not consistently associated with
increased benefit and there may be some concern at 25(OH)D concentrations >125 nmol/L
(50 ng/mL). Using NHANES (2001–2006) data from adolescents (12–19 y), bone min-
eral density was positively associated with serum 25(OH)D with an inflection point at
~60 nmol/L (24 ng/mL) [50]. A systematic literature search from May 15 to December
20 2020 found low serum 25(OH)D level was significantly associated with a higher risk of
COVID-19 infection [51].

Vitamin C is required to prevent scurvy; deficiency is defined as plasma ascorbic acid
<11 µmol/L, while plasma saturation occurs ~70 µmol/L [28]. Scurvy can be prevented
with as little as 10 mg vitamin C per day [52]. Vitamin C intake recommendations globally
vary almost 3-fold based on the choice of biomarker, e.g., plasma level, tissue saturation,
neutrophil ascorbate concentration, and/or a combination, used by different expert com-
mittees [53]. Vitamin C, an enzyme cofactor for collagen and carnitine biosynthesis, is
essential for skeletal muscle structure and function [54]. When healthy adult men with
vitamin C levels <50 µmol/L are supplemented, plasma levels increase to >70 µmol/L
within a week and after 4 weeks, there is a significant increase in neutrophil vitamin C
content and 20% increase in neutrophil chemotaxis post-intervention. Mortality increases
with low vitamin C status in US men, but not women, with a 62% increased risk of dying
from cancer with serum ascorbate levels <28 µmol/L vs. ≥74 µmol/L [55]. A meta-analysis
of 15 prospective cohorts (n = 320,548 participants) and 3 prospective within interventional
studies (n = 17,974 cases) finds a U-shaped association between circulating ascorbate con-
centrations and risk of CVD mortality (Figure 2) [56]. Even though vitamin C deficiency
(<11 µmol/L) appears globally (8% in US, 12% in Singapore, 14% in Canada, 14% in
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France, 20% in Scotland) [57], there is still no consensus on definitions for “inadequate” or
“adequate/sufficient” status [57].
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Figure 1. Serum 25(OH)D concentration relationship with different structural or functional outcomes. (A). Serum 25(OH)D
concentrations relationship with sit-to-stand time in adults with mean age 71 years (49% female) controlled for sex, age
(5-year categories), race/ethnicity, BMI, poverty income ratio, daily calcium intake, number of medical comorbidities, use
of a walking device, self-reported arthritis, activity level, and month of vitamin D measurement. From [47]. (B). Serum
25(OH)D concentration relationship with bone mineral density in adults ≥50 years after adjustment for sex, age, BMI,
smoking, calcium intake, estrogen use, month of vitamin D measurement, and poverty income ratio. From [47]. (C). Spline
curve describing the association between 25(OH)D concentration and recurrent fallers in the total population. From [49].
(D). The association between serum 25(OH)D level and total bone mineral density from NHANES 2001–2006 among
5990 adolescents (12–19 years). Solid red line represents the smooth curve fit between variables. Blue band represents
the 95% confidence interval from the fit. Adjusted for age, gender, race/ethnicity, income to poverty ratio, education,
physical activity, body mass index, calcium use. From [50]. Vertical line indicates vitamin D deficiency cutoff, i.e., serum
25(OH)D < 30 nmol/L (red), used in setting DRI [46] and insufficiency cutoff, i.e., serum 25(OH)D < 50 nmol/L (green),
used in updating DRI [26].

Vitamins, minerals, and some amino acids and long-chain fatty acids are defined as
essential nutrients because of known deficiency diseases. However, systemic availability of
nutrients above cutoffs used to define deficiency may be insufficient to maintain normal
cellular structure and/or function of organ systems.
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6. Establishing Lutein and EPA + DHA DRIs and Updating Vitamin K and Mg DRIs

Some nutrients are essential to prevent deficiency diseases and for normal growth and
maintenance, e.g., intrauterine growth, childhood development, etc., whereas bioactive
compounds in food that are not deemed essential may still help maintain normal cellular
structure and function. The Office of Dietary Supplements at the NIH defines bioactive
compounds as constituents of foods or dietary supplements, other than those needed to
meet basic nutritional needs, which are responsible for changes in health status; however,
currently, dietary bioactive ingredients have almost no role in public policy [58]. A scientific
framework has been proposed [59–61] requiring a safety evaluation for every ingredient
before establishing recommended intakes and a UL.

The RDAs for Vitamin D and calcium, updated in 2011, were the first nutrients
to have DRIs updated with a goal beyond a straightforward prevention of deficiency,
i.e., an intended goal to maintain the health of a tissue/organ, i.e., skeletal health [26].
Subsequently, the US and Canadian governments sought nominations in 2013 for nutrients
that should undergo the DRI process. Sixteen nutrients were nominated: arachidonic
acid, choline, chromium, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), fiber
(specifically viscous fibers and fermentable fibers), magnesium, niacin, potassium, protein,
saturated fat, sodium, stearic acid, vitamin B6, vitamin E, and zinc [62]. The prioritized
nutrients were sodium, omega-3 fatty acids, vitamin E, and magnesium [63]. DRIs for
sodium and potassium have been updated [64] and the scientific evidence for a riboflavin
DRI is being scanned [65]. Arising from two conference reports, nine criteria have been
identified for a food ingredient that has not been defined as a nutrient, i.e., a dietary
bioactive, to qualify for DRI evaluation (Table 2) [60,61].
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Table 2. Criteria to qualify for DRI evaluation and inclusion in DGAs. Adapted from [61].

Criterion Additional Information

Commonly used definition of the substance Definition matches method of analysis

A method of analyzing the substance
consistent with the definition Preferably validated by multi-center analysis

Database of the amount of the nutrient or
bioactive in food (and supplements) Preferably global and regularly updated

Prospective Cohort studies
Both sexes and showing relationship between

outcome and dietary intake, or preferably
biochemical or clinical indicator

Clinical trials on digestion, absorption,
transport, and excretion of the substance

Important to understand level of intake, factors
affecting absorption, metabolism, and excretion

Clinical trials on efficacy and dose–response
Conducted in healthy populations with

bioactive being measured along with accepted
endpoint or biomarker

Safety data at anticipated level of intake Should include data from special populations,
e.g., children, pregnant or lactating women

Systematic reviews and/or meta-analyses
showing efficacy

Required by IOM for setting DRI and inclusion
in DGA recommendations

A plausible biological explanation for efficacy Not required but nevertheless important

This report will now discuss two dietary bioactive compounds and two nutrients as
case studies deserving of consideration for DRIs. Lutein was selected because, as a bioac-
tive compound, it fulfills all nine criteria in Table 2 [66]. The second bioactive compounds,
the omega-3 fatty acids EPA + DHA, and magnesium, were selected because they were
prioritized by the Joint Canada–US Dietary Reference Intakes Working Group [63]. Vitamin
K was chosen based on new data and requests to review vitamin K dietary recommenda-
tions [67,68]

7. Lutein

Lutein, lycopene, zeaxanthin, β-cryptoxanthin, and α-carotene were excluded from
DRI consideration in the late 1990s because of a lack of (1) comprehensive food composition
data, (2) population-based dietary intake data, (3) limited information on absorption and
metabolism, and (4) insufficient data on biological actions [28,69]. Since then, lutein has
been proposed for DRI review [66].

Lutein is a chemically defined xanthophyll, a class of oxygen-containing carotenoids
commonly found in nature [70] with a standard reference material [71] and a publicly
available database [72]. Lutein accumulates in the macular pigment in the retina and is
the predominant carotenoid found in the human brain [73–76]. Factors known to affect
carotenoid bioavailability, i.e., blood and tissue concentrations, include: (1) food-based
factors, e.g., co-consumption of lipids, food processing, and molecular structure, (2) en-
vironmental factors, e.g., prescription drugs, smoking and alcohol consumption, and (3)
individual physiological factors, e.g., age, body composition, hormonal fluctuations, and
variation in genes associated with carotenoid absorption and metabolism [77]. The typical
US lutein intake is 1–2 mg/day, well below the 10 mg lutein supplemented daily in Age-
Related Eye Disease Study (AREDS) 2 [78]. There is strong evidence that up to 20 mg/day
is safe and efficacious, and doses up to 40 mg/day have been used in studies ranging
from 7 days to 24 months without reported adverse effects [66]. Extreme manipulations
in primate lutein intake (xanthophyll-free diet) affect retinal pigment epithelial cells that
play an important role in the visual cycle, i.e., modifying and recycling retinoids, photore-
ceptor materials, and nutrient transport from the blood to photoreceptor cells [79]. Foveal
protection from blue light is absent in primates fed xanthophyll-free diets but evident
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after supplementation with lutein and zeaxanthin [80]. Lutein from foods or supplements
increases blood levels and macular pigment optical density (MPOD) in the retina in a
dose-dependent manner (Figure 3) [81–83].
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MPOD is related to static indicators of visual performance, such as glare and contrast
sensitivity, and dynamic measures of visual performance such as the critical flicker fusion
threshold [84–86]. MPOD is also related to measures of cognitive function such as verbal
fluency, memory, processing speed and accuracy [76]. MPOD was significantly associated
with select auditory thresholds in young healthy adults [87]. Elevated lutein and zeaxanthin
status appears to be associated with diminished risk of cataract [88]. While supplementation
with 10 mg lutein and 2 mg zeaxanthin had no effect on advanced age-related macular
degeneration (AMD) risk in AREDS, subgroup analysis showed a beneficial effect in
patients with the lowest baseline intake of these carotenoids [89]. A recent systematic review
and meta-analysis of six longitudinal cohort studies concluded that dietary intake of lutein
and zeaxanthin was not significantly associated with a decrease in risk of developing early
AMD but an increased intake of these carotenoids may be protective against late AMD [90].
A meta-analysis of 22 publications found a positive correlation of MPOD with measures of
visual function, i.e., contrast sensitivity, photostress recovery, and glare disability [91]. A
steroidogenic acute regulatory family protein, i.e., StARD3, has been identified in primates
and subsequently identified as a human retinal lutein-binding protein [92]. In summary,
there is evidence to support the promulgation of lutein DRI to achieve MPOD levels that
are associated with healthy visual and brain function.

8. Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (EPA)

The omega-3 (n-3) long-chain polyunsaturated fatty acids EPA (C20:5n-3) and DHA
(C22:6n-3) can be produced endogenously by humans fromα-linolenic acid (ALA; C18:3n-3) [93]
and metabolized into hundreds of active forms, e.g., resolvins, leukotrienes, prostaglandins,
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thromboxane, poxytrins, maresins, etc. [94]. Biological mechanisms of action have been
established and reviewed elsewhere [95]. The rate of biosynthesis from ALA is low and
insufficient to meet the physiological demands for EPA + DHA [96,97]. EPA + DHA
are structurally integrated via phospholipid molecules into surface membranes of heart,
cardiovascular, brain and visual cells, affecting signaling pathways and function [98]. The
primary sources of EPA + DHA are fish and shellfish with n-3 long-chain polyunsaturated
fat intake varying from 0.023 to 0.435% of energy globally [99]. An official method to
quantify fatty acids in foods is available [100] and publicly available databases exist [72].
US dietary intake studies estimate n-3 long chain intake, i.e., EPA + DHA + estimated
EPA-equivalents, of 0.17 mg/day with >90% of the population consuming <0.5 g/day with
~6% of the population reporting n-3 fatty acid supplement use [101].

In 2005, the Institute of Medicine concluded there was insufficient evidence to establish
DRIs for EPA and DHA [30]. The 2005 DGA recommended eating 2 servings of fatty fish per
week to obtain omega-3 fatty acids, i.e., EPA and DHA, which is associated with a reduction
in risk of mortality from cardiovascular disease, and it noted that “other sources of EPA
and DHA may provide similar benefits” [102]. In addition to recommending that ~10% of
the Acceptable Macronutrient Distribution Range for ALA can be consumed as EPA and/or
DHA (~100 mg/d),Kris-Etherton et al. (2009) [103] called for the National Academies to
establish DRIs for individual long-chain (≥20 carbons or greater) n-3 fatty acids. A technical
committee of experts from the International Life Sciences Institute of North America
proposed a DRI for EPA + DHA be established between 250 and 500 mg/day [104]. A review
of 40 randomized controlled trials with EPA/DHA supplementation in 135,267 participants
found EPA + DHA supplementation to be an effective lifestyle strategy for coronary heart
disease prevention, and the protective effect probably increases with dosage, especially the
use of 1000–2000 mg/day [105]. The EPA + DHA content of food products is available [106].
Digestion and absorption are understood. Colipase-dependent pancreatic lipase hydrolyzes
triglyceride and phospholipids, with ethyl esters being digested by a bile salt-dependent
carboxyl ester lipase that is affected by co-consumption of a fat-containing meal [107,108].
Dietary lipid structure does not seem to modify the incorporation of EPA and DHA found
in blood [109,110]. EPA + DHA are transported into RBC and cardiac tissue at similar
rates [111] and have half-life estimates in humans of 1, 67 and 22 hours for ALA, EPA, and
DHA, respectively [112]. Long-chain n-3 fatty acids are sequestered in brain [113–115],
eye [116], and adipose [117].

EPA + DHA content of RBC, the Omega-3 Index, reflects long-term intake of
EPA + DHA [118] and is inversely associated with risk of CHD [119,120]. The concentration
of EPA + DHA in RBC can be accurately estimated from the fatty acid composition of other
blood fractions [121,122]. Best practices for the design, laboratory analysis and reporting
of clinical trials involving fatty acids have been published [123]. As EPA + DHA intake
increases, blood EPA + DHA concentrations increase in a dose-dependent manner [124,125].
A meta-analysis of 21 randomized clinical trials (RCT) involving high-dose EPA + DHA
prescription drugs found doses of 1.8–4 g/day for intervals ranging from 8 to 261 weeks
to be safe and well-tolerated [126]. DHA supplementation, alone or in combination with
EPA, is associated with improved episodic memory in adults with mild memory com-
plaints [127]. Higher plasma EPA and DHA status are associated with lower total mortality,
especially CHD death, in older adults (Figure 4) [128,129].
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A meta-analysis of omega-3 supplementation trials reported an 8% reduced risk of
myocardial infarction and CHD death [130] but not all RCTs or prospective cohort studies
have shown a consistent response [131,132]. In an extensive Cochrane review of the effects
of omega-3 fatty acid supplementation (without consideration of blood EPA + DHA levels)
on cardiovascular health, the authors reported moderate- and low-certainty evidence that
increasing long-chain omega-3s slightly reduces risk of coronary heart disease mortality
and events, and reduces serum triglycerides (evidence mainly from supplement trials) [133].
Two meta-analyses report reduced relative risk per 1 standard deviation increase in blood
fatty acid level for CHD: EPA + DHA (0.75; 95% CI: 0.62–0.89) [134] and EPA (0.91; 95%
CI: 0.82–1.00) [135]. Indeed, the International Society for the Study of Fatty Acids and
Lipids has recommended that all research studies include measurement of n-3 fatty acids
at baseline and follow-up [136]. In a prospective cohort study with 1625 deaths (total, CVD,
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and CHD), collected between 1992 and 2008 and a total of 30,929 person-years, individuals
in the highest plasma EPA + DHA quintile lived an average of 2.22 more years after age
65 years than did those in the lowest quintile [128]. The Women’s Health Initiative Memory
Study, a prospective cohort, found an 8% reduction in risk of death with higher blood
EPA + DHA levels [137]. A meta-analysis of prospective observational studies found
that individuals with an Omega-3 Index >8% were at 35% lower risk for death from any
cause than those with an Omega-3 Index <4% [138]. Circulating DHA concentrations were
significantly lower in individuals with mild cognitive impairment relative to controls [139].
Higher blood EPA + DHA levels appear to protect people exposed to ambient particulate
matter air pollutants as they have muted blood fibrinogen responses [140] and greater
brain volumes [141]. In conclusion, the growth in evidence associating higher EPA + DHA
levels with beneficial health outcomes coupled with updated safety data is sufficient to
justify setting EPA + DHA DRIs to achieve target blood ranges.

9. Vitamin K

Vitamin K is a fat-soluble vitamin that exists naturally in multiple forms: 1) vitamin K1
consisting of a phylloquinone with a 2-methyl-1,4-napthoquinone ring with a phytyl group
at the 3-position, and 2) vitamin K2, or menaquinone (MK) forms where the phytyl group is
replaced with 4–10 repeating isoprenoid units, MK-4 through MK-10, respectively [142,143].
Vitamins K1 and K2 were isolated in 1939 [144]. Vitamin K1 is found in green leafy
vegetables and vegetables oils [72], MK-4 through MK-6 are present in low levels in animal
based foods, e.g., some cheeses and chicken meat, and MK-7 is found in fermented soybeans
(natto) where it is formed by bacteria during fermentation [143]. Vitamin K is also produced
by gut microbiota but their contribution to vitamin K status is unclear [68]. In 1935, vitamin
K was identified as an antihemorrhagic factor and a convenient analytical method for food
was published in 1936 [145]. All forms of vitamin K serve as a cofactor for posttranslational
carboxylation of specific protein-bound glutamyl residues to γ-carboxyglutamate (Gla) that
are essential for the formation of several coagulation factors (II, VII, IX and X) and inhibitors
(proteins C and S) in the liver [146,147]. Gla proteins not related to blood clotting are
osteocalcin (OC, synthesized in bone) and matrix Gla protein (MGP, primarily synthesized
in cartilage and the vessel wall) [148]. Low vitamin K intake is associated with low bone
mineral density increased fracture risk, and increased risk of CVD and mortality [148].
Higher levels of under-carboxylated osteocalcin (ucOC) are a marker of hip fracture in
elderly women [149]. Supplementation with vitamin K2 (375 µg MK-7/day) decreased
ucOC after 3 months and preserved trabecular bone structure at the tibia at 12 months [150].
Based primarily on indicators of coagulation and dietary phylloquinone (K1) intake, AIs
for vitamin K were established [27]. Vitamin K consumption from food or supplements
is not associated with adverse effects, including toxicity, in humans or animals with the
caveat that there was insufficient high vitamin K intake data in humans to establish a UL
(highest recorded intake was 367 µg/day) [27]. Since the DRIs were issued, a protective
role for vitamin K, specifically vitamin K2, in bone health has emerged [151,152] and it has
been noted that the AI may be insufficient for full carboxylation of all vitamin K-dependent
proteins [143]. The essential role of MGP in inhibiting arterial calcification was confirmed in
rats treated with warfarin to induce rapid arterial calcification [153]. Using this rat model,
increasing dietary vitamin K intake increases vitamin K concentrations in the aorta and
blunted cardiovascular calcification [153,154]. At the tissue level, vitamin K1 is converted to
MK-4 [155] with vitamin K2 being effective at lower doses than K1 [156]. Supplementation
with vitamin K has been shown to block age-related arterial stiffening in postmenopausal
women [157] and retard postmenopausal bone loss [158,159]. Often prescribed to prevent
thomboembolisms, vitamin K antagonists interfere with γ-carboxylation of Gla-proteins in
mice [160]. Vascular calcification is a predictor of cardiovascular mortality and ucOC levels
and MK-7 supplementation induces a time- and dose-dependent reduction in circulating
ucOC, dephospho-uncarboxylated matrix Gla protein (dp-ucMGP) levels in hemodialysis
patients [161]. A meta-analysis of 19 RCTs with postmenopausal women with or without
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osteoporosis found that vitamin K2 supplementation decreased ucOC and increased OC,
indicating a positive effect on bone metabolism and reduced the incidence of fractures with
a risk ratio of 0.63 [162]. The authors concluded vitamin K2 supplementation was effective
for maintaining vertebral and forearm bone mineral density (BMD) in postmenopausal
women with osteoporosis but there was no significant effect in postmenopausal women
without osteoporosis. Calcification of the coronary artery has been identified as a marker
of increased CVD risk in humans [163–165]. In a double-blind RCT, MK-7 supplementation
of healthy, prepubertal children resulted in increased blood MK-7 concentrations and
OC (vs. controls) but bone markers and coagulation parameters did not differ between
treatments [166]. In an RCT with 244 postmenopausal women using 180 µg MK-7 per
day for 3 years, vitamin K2 supplementation decreased dp-ucMGP values by 50% (vs.
controls) and significantly improved vascular stiffness indicators [157]. Subsequently, MK-
7 supplementation has been reported to increase circulating c-OC and ucOC levels [167]. In
a meta-analysis of 13 controlled RCTs and 14 longitudinal trials, vitamin K supplementation
was associated with a 9% reduction in vascular calcification, 44% reduction in dp-ucMGP,
and 12% reduction in ucOC, all indicators pointing to a reduction in vascular disease and
CVD mortality (Figure 5) [168].
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A meta-analysis of 11 prospective cohort studies concluded that high blood dp-ucMGP
level, an indicator of vitamin K insufficiency, is an independent predictor of cardiovascular
disease and mortality [169]. In conclusion, recent insights into the metabolism of vitamin
K1 and K2 forms and their metabolites as biomarkers of disease risk and new evidence
linking dietary vitamin K in food or supplement with maintaining normal bone, blood
clotting, and cardiovascular function justify a systematic review of the scientific literature,
reevaluation of the vitamin K AI, and possibly dividing the DRI into vitamin K1 and K2
forms [67].

10. Magnesium (Mg)

Mg, a required cofactor for over 600 enzyme reactions and 50% of total body Mg
content found in bone [170], has an EAR derived from intake data and limited balance
studies [46]. Apatite-bound Mg in bone cannot be mobilized even under extreme deple-
tion, whereas Mg absorbed to the surface of mineral crystals can be mobilized during
hypomagnesemia [171]. Most men and women are not consuming the Mg EAR from food
alone, i.e., green vegetables, nuts, seeds, dried beans, whole grains, and meats, and sup-
plements containing Mg contribute importantly to total dietary intake [172,173]. Mg has
been repeatedly identified as an under-consumed nutrient [16,17,102,174] with a greater
percentage of non-Hispanic Black people <EAR for Mg, calcium, and phosphorus than
non-Hispanic white people across all ages [175]. Older obese adults have a greater risk
of inadequate Mg intake than their healthy-weight counterparts [176]. Thirty percent of
Mexican-American and non-Hispanic Black women have dietary Mg intake <EAR with
the percentage varying by body weight status [177]. Mg is generally absorbed from the gut
as an ion through transcellular and paracellular pathways [178]. Due to the importance
of passive paracellular Mg2+ absorption, the amount of Mg in the gut is the major factor
controlling absorption [178]. Other factors affecting Mg requirement include body mass,
obesity, background diet (calcium, type of fiber, vitamin E and selenium), and oxidative
stress [179]. Mg is essential in the metabolism of vitamin D as low dietary Mg intake
can alter vitamin D–parathyroid hormone balance [180] and large doses of vitamin D can
deplete Mg [181]. Evidence from 27 different balance studies in 243 healthy individuals
found age and sex do not appear to affect urinary Mg excretion [182]. Some think the 1997
DRIs were set too high and lower levels have been proposed [182], whereas others think
the proposed levels did not consider numerous physiological factors such as total body
weight [179,183].

Cellular Mg levels are strictly regulated and eight cation channels have been identified
with transient receptor potential melastatin (TRPM7) being the most selective channel for
Mg in the heart, blood vessels, lungs, liver, brain, intestine and spleen, whereas TRMP6
is mainly responsible for regulating total body magnesium level via the kidney and in-
testines [170]. The serum total Mg concentration (STMC) normal reference range used
clinically is 0.85–0.96 mmol/L (1.70–1.92 mEq/L or 2.06–2.33 mg/dL) [184] and is derived
from values measured in a healthy population (NHANES I) [185] rather than the relation-
ship between serum Mg and clinical outcomes which can manifest <0.85 mmol/L [186].
While overt Mg deficiency is not common, almost every organ system is affected by the
availability of Mg [186,187]. Strong correlations of Mg concentration with increased risk of
several chronic diseases indicate that Mg status should be assessed more routinely [188], not
only to reassess DRI chronic disease endpoints [189] but also for optimization of nutritional
status and body stores.

Using baseline STMC data from 14,353 participants (NHANES 1 1971–1975) with a
median follow-up of 28.6 y (until 2011), very low STMC (<0.7 mmol/L) was significantly
associated with a 34% increased risk of all-cause mortality (HR = 1.34; 1.02–1.77) (Figure 6)
and trended significance for cancer (HR = 1.39; 0.83–2.32), CVD (HR = 1.28; 0.81–2.02)
and stroke (HR = 2.55; 1.18–5.48) [190]. A cross-sectional, population-based survey (2012–
2013) of 5561 participants living in Canada found 9.5–16.6% of adults and 15.8–21.8% of
adolescents surveyed had a STMC <0.75 nmol/L and STMC was negatively associated
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with diabetes, BMI, serum glucose, serum insulin, HbA1C, and HOMA-IR [191]. Having
diabetes was associated with 0.04–0.07 mmol/L lower STMC compared to not having
diabetes [191].
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Figure 6. Adjusted hazard ratios of serum magnesium with all-cause mortality in the US adult
population (NHANES I 1971–2011). The solid curve is HR calculated by restricted cubic splines with
knots at serum Mg levels of 0.73, 0.82, 0.87, and 0.96 mmol/L, a reference HR = 1 set at 0.80 mmol/L,
and adjusted using weighted Cox regression model for age, sex, race/ethnicity, education, family
income, smoking, alcohol, physical activity, BMI, history of diabetes, hypertension, and vitamin
and/or mineral supplement uses. From [190]. Vertical red line indicates magnesium depletion cutoff,
i.e., serum Mg concentration <0.75 mmol/L, used in setting DRI [46].

In summary, in addition to the established evidence linking Mg with healthy bones,
there is emerging evidence of a relationship between STMC and risk of NCD. Current DRIs
need to be updated to consider physiological factors, i.e., body mass and obesity, and assess
the interaction of other dietary factors, such as the amount of calcium, protein, dietary fiber,
antioxidants, vitamin E and selenium. This will require updating food databases [72] to
maintain accurate estimates of Mg, sodium, potassium and calcium content in food. The
lack of a standardized biomarker and STMC reference range with appropriate cutoffs to
accurately assess Mg status remains a challenge. With only 0.3% of total body Mg in serum,
the combination of STMC, urinary Mg excretion and dietary Mg history adjusted for body
weight may be the best means to assess Mg status [186].

11. Personalizing Nutrition Guidance and Improving Population-Based Assessment

Precision health depends upon the integration of dietary history, supplement use,
demographics, behavior, lifestyle, social, cultural, economic, occupational, and environ-
mental factors. It also encompasses personal information, i.e., age, sex, nutrition-related
biomarkers, genetics, microbiome, etc. The DRIs provide a set of reference values that are
useful in planning and assessing the adequacy of nutrient intakes of healthy individuals.
Nutrient intake assessments provide insight into individual dietary patterns and inform
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nutritional advice, i.e., personalizing guidance, but it can take days of intake data to predict
an individual’s usual intake, even months for nutrients such as vitamin A [192]. Dietary
intake records may still not reflect nutritional status because of reporting inaccuracies, out-
dated and/or incomplete food and supplement databases because of the rapid evolution
of commodity, food and supplement offerings, and a lack of bioavailability information.
Technology is streamlining dietary data collection, analysis and interpretation and diag-
nostic devices measuring validated biomarkers and metabolic profiles can help assess the
availability of essential nutrients and dietary bioactive components to cells, tissues and
organs [193]. The proliferation of smartphone dietary apps, direct-to-consumer sale of
personalized formulations with re-order reminders, wearable devices, and submission of
biological samples raises ethical and privacy considerations. Nevertheless, personalized or
precision nutrition approaches will benefit from the validation of biomarkers and metabolic
health, standardization of methods of analysis, consensus on reference ranges defining
deficient, insufficient, adequate, and optimal status with consideration for an individual’s
sex, age, life stage, nutrigenomics, microbiomics, and the algorithms that bring these factors
together [194].

With objective measures of nutritional status, e.g., RBC folate, uncarboxylated vitamin
K-dependent proteins, or serum 25(OH)D concentrations, researchers can characterize
relationships between objective, biochemical measures of nutritional status and functional
outcomes to define nutrient ranges for vitamins, minerals and bioactive compounds that
support healthy cellular, organ, and tissue function, i.e., optimize health. The greatest risk
of false-negative or false-positive tests is not in the optimal range; risk is greatest at the
tails of the distribution surrounding the cutpoints being used to diagnose a deficiency
disease or nutritional excess. Finally, by understanding the nature of nutritional status
and functional outcome relationships, e.g., 25(OH)D and skeletal health, it is possible to
define optimal ranges and use these data to update or establish DRIs for the general healthy
public (Figure 1). The adoption of point-of-care diagnostic tools by health care professionals
will enable accurate assessment of the nutritional status of individuals, personalization of
dietary guidance, and follow-up to determine if a deficiency, insufficiency, or excess has
been remediated. These same biomarker or surrogate endpoint measures can be used by
public health professionals to accurately assess nutrition interventions [195]. Point-of-care
nutrition monitoring diagnostic tools are often invasive, i.e., finger stick, but advances
in wearable and saliva-based technologies are likely. While the adoption of point-of-care
diagnostic technologies may be more costly than measuring dietary intake, manufacturing
economies of scale will decrease cost and increase availability. Most importantly, by
identifying individuals and communities at risk of undernutrition and overnutrition, the
risk of nutrition-related communicable diseases may be reduced.

12. Conclusions

Underconsumption of some essential nutrients and food bioactive components, es-
pecially from food alone, is still a concern in the US population, even though dietary
guidance recognizes the contributions from food fortification and vitamin and mineral
dietary supplements. The DGA aim to provide recommendations for healthy eating to
promote health and prevent disease, and are updated periodically to incorporate current
scientific evidence, yet recommended intakes still rely on DRIs established decades ago.
Moreover, US DRIs define dietary intakes needed to maintain nutritional status at levels
that prevent vitamin/mineral deficiency diseases; DRIs should be revised to be based
on intake levels that provide cells, organs and tissues with access to adequate amounts
of micronutrients (and bioactives) to function optimally, i.e., healthy structure/function
outcomes. It is recommended that DRIs for vitamin K and Mg be updated and DRIs
be established for lutein and EPA + DHA. Precision or personalized nutrition offers un-
precedented opportunities to assess the nutritional status of healthy individuals and to
personalize individual dietary guidance. The field will be further advanced by investments
in the research, development, evaluation and validation of innovative algorithms and
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technologies to better assess dietary intake from food and dietary supplements, nutritional
status, metabolomic fingerprints, microbiome profiles, and metagenomic measures across
age, sex, and physiological (growth, pregnancy, lactation) classifications. Continual up-
dating of food and supplement composition databases will be required. The adoption of
diagnostic devices, including the measurement of nutritional biomarkers, is a foundation
of precision health. Objective measures of nutritional status, e.g., RBC folate, uncarboxy-
lated vitamin K-dependent proteins, or serum 25(OH)D concentrations, will allow for the
evaluation of interventions ranging from mandatory food enrichment and fortification to
the distribution and use of dietary supplements on health outcomes. The data generated
via precision nutrition on nutritional status and physiological function will be important to
guide public health policy on federal nutrition programs.
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