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Abstract: Binge-eating disorder, recently accepted as a diagnostic category, is differentiated from
bulimia nervosa in that the former shows the presence of binge-eating episodes and the absence of
compensatory behavior. Epigenetics is a conjunct of mechanisms (like DNA methylation) that regulate
gene expression, which are dependent on environmental changes. Analysis of DNA methylation in
eating disorders shows that it is reduced. The present study aimed to analyze the genome-wide DNA
methylation differences between individuals diagnosed with BED and BN. A total of 46 individuals
were analyzed using the Infinium Methylation EPIC array. We found 11 differentially methylated
sites between BED- and BN-diagnosed individuals, with genome-wide significance. Most of the
associations were found in genes related to metabolic processes (ST3GAL4, PRKAG2, and FRK),
which are hypomethylated genes in BED. Cg04781532, located in the body of the PRKAG2 gene
(protein kinase AMP-activated non-catalytic subunit gamma 2), was hypomethylated in individuals
with BED. Agonists of PRKAG2, which is the subunit of AMPK (AMP-activated protein kinase), are
proposed to treat obesity, BED, and BN. The present study contributes important insights into the
effect that BED could have on PRKAG2 activation.

Keywords: eating disorders; binge-eating disorder; bulimia nervosa; DNA methylation; AMPK

1. Introduction

Bulimia nervosa (BN) and binge-eating disorder (BED) are classified as eating dis-
orders (EDs), which are mental disorders characterized by an alteration in eating behav-
iors [1,2]. These disorders are present worldwide, with a prevalence ranging from 1.0%
to 2.0% [3–6]. BN and BED are highly related but differ in terms of restrictive behavior.
Individuals diagnosed with BN have a fear of gaining weight in combination with recurrent
binge eating episodes (i.e., consumption of large amounts of food in short periods of time,
with a loss of control), followed by compensatory behaviors [7,8]. Meanwhile, individuals
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diagnosed with BED have binge eating episodes, but these episodes are not followed by
compensatory behaviors [1,8]. BED has recently been recognized as a separate disorder,
while it was previously included in eating disorders not otherwise specified. Studies of
this disorder are still missing [9,10]. Despite the differences between BN and BED, some
authors have proposed that BED could be a severe eating disorder. This increased severity
is related to a higher presence of psychiatric metabolic comorbidities [10–17], the ability to
differentiate between these disorders is essential for health providers, as it allows them to
provide the correct treatment. Later, eating disorders were considered adult-onset disor-
ders, but recent studies have reported that the early-onset of these disorders is correlated
with a higher severity [18–21].

BN and BED are considered complex traits, since their etiology is the effect of the
accumulation of different biological, social, and environmental factors [22,23]. In this
sense, epigenetics is the processes that influence the expression of genes, without changing
the gene structure [22,24]. Epigenetics has been proposed as the link between environ-
mental changes and gene expression. It is the process by which an organism changes
its phenotype in response to the environment [25]. The environment could be as simple
as the cell microenvironment or as complex as metabolic changes, drug use, or stressful
stimuli [26]. The most studied epigenetic change in humans is the dysregulation of the
DNA methylation profile [22,27,28]. DNA methylation is found in the 5′ position of the
cytosine, and it is necessary for the repression of gene expression [29–33]. However, the
study of methylation in eating disorders is still lacking. The main studies have focused
on candidate regions, with few studies on genome-wide DNA methylation scanning [24].
DNA methylation occurs in the 5′ position of cytosine, and guanine is in the next posi-
tion. This cytosine is known as the CpG site, and if it is methylated, it is also called a
methylated site [23]. To date and as far as we know, there has not been any epigenetic
study on individuals diagnosed with BED [23]. The hypomethylation of the promoter of
the atrial natriuretic peptide and dopamine transporter in individuals diagnosed with BN
has been reported [23,34,35]. Additionally, another study of ED-diagnosed individuals
demonstrated hypermethylation on the oxytocin receptor, which was negatively correlated
with body mass index (BMI) [36], pointing to a relationship between the effect of ED on
BMI and epigenetic changes. Nevertheless, the epigenetics of ED is still an emerging field.

Several studies are exploring epigenetic factors, but no studies have focused on the
differences between disorders. As mentioned, BN and BED are differentiated in terms
of compensatory behaviors. Nevertheless, it is not known whether the presence of these
compensatory behaviors is enough to promote epigenetic changes. In this sense, the
present study aims to compare the genome-wide DNA methylation profiles of individuals
diagnosed with BN and BED. We hypothesized that the lack of compensatory behaviors
could promote epigenetic changes between BN and BED. As far as we know, this is the
first study to explore DNA methylation data in Mexican adolescents diagnosed with EDs.

2. Materials and Methods
2.1. Study Design

This was a cross-sectional study, with a sample-based design.

2.2. Sample Population

In this analysis, we included a total of 46 individuals, with 25 diagnosed with BN and
21 with BED. The individuals were recruited from the area of external consultation of the
Hospital Psiquiátrico Infantil Juan N Navarro. The inclusion criteria included children or
adolescent (age between 8–17 years), enrolled between 2016–2018, diagnosed with BED or
BN only, non-tobacco users, and neither medical nor illegal drugs users. All evaluations
were performed by psychiatrists specializing in eating disorders. The recruitment was
performed by means of psychiatric treatment. The psychiatrist invited the children or
adolescents to participate by speaking with their parents, with a previous explanation
that not accepting to participate would not impact their treatment in any way. Besides,
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no monetary compensation was delivered. Once the aims of the study were exposed, the
children/adolescents signed an informed assent, and their parents signed an informed
consent. The evaluation of eating patterns was performed using the Spanish version of
the Questionnaire on Eating and Weight Patterns-5 (QEWPR-5) and the Eating Attitude
Test-26 [37,38]. The present work was approved by the research and ethics committee of the
Hospital Psiquiátrico Infantil Juan N Navarro (Number = II3/01/0913) and the Instituto
Nacional de Medicina Genómica (Number = 06/2018/I).

2.3. Anthropometric and Clinical Characteristics

The age, gender, scholarship, and parents/grandparents’ country of birth of the
participants were collected using a structured questionnaire of all the individuals. The
anthropometric measurements collected included the weight and height, as previously
reported [39]. The body mass index (BMI) was determined according to the obesity task
force criteria. One of the limitations of the use of BMI on children and adolescents is that
this parameter could be influenced by the development of the child. In order to conduct a
comparison of the participants’ BMI, we transformed this value into z-score (z-BMI) values,
according to previous reports [40,41]. Screening of binge-eating behavior was performed
with the QEWPR-5 and EAT-26, and the diagnostic confirmation was performed by the
children’s specialized psychiatrist. QEWPR-5 is a structured questionnaire that allows
for the screening of binge-eating disorders based on the DSM-5 criteria. Meanwhile, the
EAT-26 is a structured questionnaire that allows for the diagnosis of bulimia nervosa.

The mean age of the participants was 13.91 (Table 1). Of the total 45 adolescents,
12 were males, and 34 were females. Non-individuals diagnosed with BED had compen-
satory behavior. The mean z-score value for body mass index (BMI) in the total sample
was 1.25. Thus, based on the 2007 WHO growth chart reference for school-age children
and adolescents, 12 of the participants were overweight, and 19 were obese [40]. The
individuals with BED had a higher BMI, compared to the BN individuals (t = −4.02,
p-value = 2.24 × 10−4), as evaluated by the Student’s t-test. As expected, none of the
individuals diagnosed with BED had compensatory behavior.

Table 1. Sample description.

BN (n = 25) BED (n = 21) Total (n = 46)

Gender
Female (n, %) 22 (88.00) 12 (57.14) 34 (73.91)
Male (n, %) 3 (12.00) 9 (42.86) 12 (26.09)

Age (s.d) 13.76 (1.56) 14.10 (1.51) 13.91 (1.53)
Body Mass Index
BMI z-score (s.d) 0.87 (0.74) 1.69 (0.65) 1.25 (0.81)

Normal weight (n, %) 14 (56.00) 1 (4.76) 15 (32.61)
Overweight (n, %) 5 (20.00) 7 (33.33) 12 (26.09)

Obese (n, %) 6 (24.00) 13 (61.90) 19 (41.30)
Eating behavior

Compensatory (n, %) 25 (100.0) 0 (0.00) 25 (47.83)
Binge eating (n, %) 17 (68.00) 21 (100.00) 38 (82.61)

Notes. BN = Bulimia Nervosa, BED = binge-eating disorder, s.d = standard deviation.

2.4. DNA Extraction and Microarray DNA Methylation

Once the diagnostic was confirmed, the informed assent/consent was signed, and
only if the adolescents accepted to donate the sample, a tube with blood and EDTA
(anticlotting agent) was collected by venipuncture. Whole blood samples were collected,
and the DNA was extracted using the Gentra Puregene Blood Kit (Qiagen, Germantown,
MD, USA), according to the manufacturer’s protocol. The DNA was converted using
bisulfite with the Zymo research kit (Zymo, Irvine, CA, USA). The bisulfite-converted
DNA was hybridized to the Illumina Infinium Methylation EPIC microarray beadchip
(Illumina, San Diego, CA, USA), following the manufacturer’s microarray protocol. The
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fluorescence intensity was scanned using iScan, and it was transformed into idat files using
the GenomeStudio software (Illumina, USA). Quality control was also applied using the
ChAMP package [42], according to previously published algorithms. Briefly, we removed
the probes using (i) p-value detection (higher than 0.01); (ii) less than 3 beads in less than 5%
of the samples; (iii) all non-CpGs sites; (iv) SNP-associated probes; (v) sexual chromosome-
associated probes; and (vi) multi-hit probes. Samples with a ratio higher than 0.1 were also
removed. Normalization was performed using the beta-mixture quantile normalization
method, batch effect removal (slide, array, gender, and age), and adjustment by blood cell
proportions were performed, following the algorithm implemented in ChAMP [43].

2.5. Differential Methylated Sites Analysis

For these analyses, we used the beta values from the quality control file of the ChAMP
package, and a comparison of the groups was performed using the linear models of the
limma package [44]. We compared BN with BED and also analyzed BMI (with the z-scores
of BMI as the numerical variable). We considered a value statistically significant if the
p-values were lower than 5 × 10−8 (genome-wide significance). We annotated the sites
to their gene location (1st Exon, 3′UTR, 5′UTR, Body, Exon Bound, TSS1500, and TSS200)
based on the EPIC array manifest. Based on the sample size, we performed a power
analysis using the pwrEWAS package [45]. Expecting a difference of betas (delta of Beta) of
0.03, we reached a statistical power of 41.0%.

3. Results
Differentially Methylated Sites in BN and BED

In the comparison of bulimia nervosa and binge-eating disorder, we found 11 differ-
entially methylated sites at a genome-wide level (p-value < 5 × 10−8) (Figure 1).

Figure 1. Manhattan plot of the comparison of BED and BN.

Of the 11 sites, 4 were intergenic, and 7 were located in gene-coding regions (CTBS,
SLITRK3, PACRGL, FRK, PRKAG2, ST3GAL4, and BANP) (Table 2). In the gene position,
2 sites were in transcription starting sites, 2 sites were in the gene body, 1 was in the first
exon, and 1 was in the untranslated region.
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Table 2. Differentially methylated sites in bulimia nervosa and binge-eating disorder.

Position 1 CpG Site LogFC 2 p-Value BED Avg BN Avg Gene Gene Loc 3 CGI 4

1:85040857 cg14791530 −0.0499 5.3305 × 10−9 0.8150 0.8550 CTBS TSS1500 Shore
2:131090049 cg26638005 −0.0509 9.0552 × 10−9 0.3135 0.3644 IGR OpenSea
3:164907027 cg00059161 0.0216 6.0427 × 10−8 0.7929 0.7713 SLITRK3 Body OpenSea
4:20702180 cg05248502 0.0211 4.5662 × 10−8 0.0737 0.0526 PACRGL 1st Exon Island

4:189258348 cg22740817 −0.0138 6.1212 × 10−8 0.9427 0.9565 IGR 5 OpenSea
5:20305935 cg07823496 −0.0386 1.3534 × 10−8 0.9039 0.9424 IGR Island

6:116381966 cg05304507 −0.0765 3.6910 × 10−8 0.7500 0.8265 FRK TSS200 OpenSea
7:151565722 cg04781532 −0.0190 6.3694 × 10−9 0.9376 0.9566 PRKAG2 Body OpenSea
11:126284163 cg16685832 −0.0282 7.4533 × 10−9 0.8750 0.9032 ST3GAL4 3′-UTR Shelf
13:114318347 cg21211187 −0.0115 5.7405 × 10−8 0.9501 0.9616 IGR OpenSea

16:88110197 cg10838260 −0.0245 6.6465 × 10−8 0.8966 0.9211 BANP Body Island

Notes: 1 Human genome position of the CpG site (GRCh37/hg19). 2 LogFC = logarithm of fold change. 3 Gene Loc = location of the CpG
site relative to the coding gene. 4 CGI = CpG island. 5 IGR = Intergenic region.

Only three sites were CpG islands, 6 were in Open Sea, 1 was in the shelf, and 1 was on
the shore. Of the 11 CpG sites, 9 were hypomethylated in individuals diagnosed with BED.
The cg00059161 and cg05248502 were hypermethylated in BED-diagnosed individuals.
The higher difference between the groups was found in the cg05304507 associated to the
promoter of FRK. Additionally, cg05304507 was hypomethylated in individuals diagnosed
with BED. In the analysis of differentially methylated sites with BMI, we did not find any
CpG site that reached a genome-wide association (p-value < 5 × 10−8).

4. Discussion

Binge-eating disorder (BED) and bulimia nervosa (BN) are differentiated compen-
satory behaviors in individuals diagnosed with BED. During a binge eating episode,
individuals tend to eat fat-rich foods and, as a consequence, have a higher caloric in-
take [46–49]. The higher caloric intake has a direct impact in promoting a higher BMI
in individuals diagnosed with BED (also seen in this study), and as a consequence, this
promotes a higher metabolic disturbance (like adiposity increase) [50–52]. Some studies
using genetic scoring and Mendelian randomization studies have proposed that epigenetic
changes are a consequence of this metabolic disturbance [53–55]. One gene that could be
influenced by this metabolic disturbance is PRKAG2. PRKAG2 encodes the γ2-subunit
isoform of the AMP-activated protein kinase (AMPK), which is a cellular energy sensor and
modulates energy homeostasis [56–58]. AMPK is a heterotrimeric serine-threonine kinase
that senses cellular energetics, and the activated form triggers the catabolic process and
represses anabolic biosynthesis [59,60]. Beyond the metabolic effect, AMPK is essential for
the orexigenic effect of ghrelin [61–63]. Constitutively, the expression of an active form of
AMPK, by recombinant adenoviral expression, acutely increases mice food intake and body
weight, suggesting the central role of AMPK in the regulation of eating behavior [64,65].
Furthermore, the chronic expression of PRKAG2 promotes hyperphagia and obesity [66]. In
homology, we can see that individuals diagnosed with BED had hypomethylated PRKAG2,
suggesting a higher expression of the gene, compared to individuals diagnosed with BN.
Nevertheless, the effect of the activation of the former depends on the neuron popula-
tion [67]. The present result could have a high relevance in terms of the design and use
of drugs to activate the AMPK pathway used in the treatment of BED, BN, obesity, and
diabetes mellitus type II [68–71].

Another gene with hypomethylated CpG sites in individuals diagnosed with BED,
and not in those diagnosed with BN, is ST3GAL4. ST3GAL4, ST3 beta-galactoside alpha-
2,3-sialyltransferase 4, is one of the six enzymes that catalyzes Sia-2,3Gal linkages at the
ends of glycoproteins. A deficiency of this enzyme in mice is concomitant with depression-
and anxiety-like behavior [72,73]. Such behaviors could be important in the modulation of
the mood of individuals diagnosed with BED, principally because depression and anxiety
are the more common comorbidities found in individuals with this condition.
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The gene that showed the most differences was FRK (fyn-related kinase). FRK is a
59KDa tyrosine kinase protein that belongs to the Src family [74,75]. The former has recently
been reported to play a crucial role in diabetes induction and the increase of proinflamma-
tory signals [76–78]. The activation of FRK induces cytotoxic signals to the beta pancreatic
cells in response to several cytokines or beta cell toxins (like streptozotocin) [79,80], thus
promoting the induction of diabetes. Our results showed a hypomethylation of FRK in BED,
compared to BN, suggesting an overexpression of the gene, which could lead to a higher
induction of cytotoxic signals. This change in methylation could point to a higher risk of
metabolic dysfunction in individuals diagnosed with BED, compared to those diagnosed
with BN.

Even when we found interesting associations in the effect that BED could have on
epigenomes, compared to BN, we noticed some limitations of our work. The main one is
the sample size, which imitates the statistical power of our associations. Another limitation
is associated with the lack of biochemical and food intake data, principally during the binge
eating episodes. These data could help us to better characterize the epigenetic changes due
to environmental sources. Another point to mention is that we did not find any associations
with BMI, which may be because this construct cannot be perfectly measured in individuals
diagnosed with ED. This limitation could pose some issues, as individuals diagnosed
with ED are generally more worried about other weight constructs than they are about
BMI [81]. Nevertheless, further analysis of the phenotype and a larger sample are required
to replicate our findings.

5. Conclusions

Individuals diagnosed with BED showed hypomethylation in genes of the metabolic
system, and those diagnosed with BN did not. The present result could be important in
connection with the use of agonists or activators of AMPK in the treatment of BED, BN,
or obesity.
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